
VISUAL FRAMING FEEDBACK FOR DESKTOP VIDEO CONFERENCING

1Chen Wu, 2Ramin Samadani, 2April Mitchell, 2Mary Baker, 2Dan Gelb

1Stanford University, Dept. of Electrical Engineering, 2HP Labs, Mobile & Immersive Experiences

(a) (b)

(c) (d) (e)

Fig. 1. Out-of-frame detection and feedback.

ABSTRACT

Desktop video conferencing participants are often poorly
positioned in their outgoing video – unaware of their appear-
ance on camera. We combine face detection, feature track-
ing and motion detection for automatic real-time detection of
poorly framed participants and subsequently provide framing
feedback by compositing their incoming and outgoing video
streams. Our solution provides participants visual feedback
only while they have framing problems. Otherwise the dis-
play shows only the remote participants, allowing users to
focus fully on the conference. We analyze the system com-
ponents and describe a user study that found advantages of
our approach over the existing mirror window solution.

Index Terms— video conferencing, video analysis.

1. INTRODUCTION

Consider the case of a user having a video conference using a
PC desktop or laptop and a web-cam with one or more remote
users. Often, the user is poorly positioned or out-of-frame so
that only a portion of the face is seen in the outgoing video
stream. Existing solutions use a mirror window that shows
the user’s outgoing video. This mirror window 1) occludes a
portion of the remote participants video feed, 2) may distract
the user - causing neglect of or missed cues from the other
conference participants, and 3) fails to alert the user if the user

(a) (b) (c) (d)

Fig. 2. Failure cases with a single module. (a) With only
motion detection, out-of-frame falsely triggers when there is
a person walking by. Face detector fails given (b)(c) partially
occluded face, and (d) difficult head pose.

has become too accustomed to the presence of the window
and misses the feedback provided.

We developed feedback methods for one-to-one and one-
to-multiple video conferencing layouts. Fig. 1 shows out-of-
frame feedback for the one-to-one case. The user is video
conferencing with a remote person as in (a). Without any
feedback the screen shows only the remote person (b). The
window with feedback is shown in (c). With our system,
when there is a framing problem a feedback window blends
onto the screen (d). Then the feedback fades away when the
user goes back to position (e). Our approach frees screen real
estate and allows participants to focus their full attention on
the conference.

The out-of-frame condition is detected using video anal-
ysis. For feedback, the incoming and outgoing video streams
are composited [1] only when out-of-frame is detected. The
detection is real-time, light-weight (preserves computing re-
sources for other tasks), and provides results reliable enough
to compete with the simple mirror window solution.

2. SOFTWARE ARCHITECTURE AND ALGORITHM

Our system combines face detection, feature tracking and
motion detection for out-of-frame detection because there are
failure situations if the individual modules are applied alone.
Face or motion activity bounding boxes trigger out-of-frame
feedback if they intersect a pre-defined image boundary re-
gion. If only motion detection is applied, out-of-frame is
falsely triggered by background motion such as a person
walking by (Fig. 2(a)). We use a good state-of-the art face
detector [2], but by itself it does not reliably detect out-of-
frame. In addition, face detection fails for cases important
to this application such as the partially out-of-frame or oc-

Do face detection?

Frame start

Face detection

Found faces?

Face BBox out-of-frame check
Initialize features for tracking

Feature set not empty?

Feature tracking

Face BBox out-of-frame check

Motion detection

Motion BBox out-of-frame check

Frame end

Yes
No

Yes

No

No
Yes

Fig. 3. The flowchart for out-of-frame detection. The sys-
tem switches between three modules: face detection, feature
tracking, and motion detection. BBox: bounding box.

cluded faces shown in Fig. 2(b)(c) or in difficult poses as
in Fig. 2(d). By itself, face detection is also unnecessarily
expensive. Table 1 describes advantages and disadvantages
of the face detection, feature tracking, and motion detection
modules when used individually.

2.1. System design and implementation

For overall robustness and lightweight computation, our sys-
tem switches between the three modules, as shown in Fig. 3.

To overcome its shortcomings, we only perform face de-
tection every few frames and augment it with feature tracking
to localize the face in frames when face detection is not per-
formed or has failed. Feature tracking computes much faster
than face detection. Harris corner features [3] are initial-
ized within the face bounding box after each face detection.
The features are tracked with optical flow using the iterative
Lucas-Kanade method with pyramids [4]. Both feature detec-
tion and feature tracking use the OpenCV library [5], while
our software system is implemented in a video conferencing
framework [6] that allows rapid prototyping.

Feature tracking is usually reinitialized by successful face
detection. But feature tracking fails if not reinitialized for
an extended period due to face detection repeatedly failing,
since noise and other distortions cause too few high confi-
dence features that fit the translational motion model to re-
main valid. When both face detection and feature tracking
fail, motion detection provides a fallback mechanism to de-

Fig. 4. Face features and background features are detected.
All the features are shown in green squares in the left image.
Background features should be removed for the face motion
calculation (yellow squares in the right image).

tect out-of-frame. Thresholded grayscale absolute frame dif-
ference (|g(x, y, ti) − g(x, y, ti−1)| > 30) is used to detect
motion at a pixel. Out-of-frame is triggered when motion is
detected within a pre-defined boundary of the video frames.
Motion detection is used as a last resort out-of-frame detector
since it creates false alarms when there is background motion,
such as a person walking behind the user.

Ideally, face detection should run every frame but that
generates high computational load. On the other hand, long
frame intervals between face detections result in a higher
chance of losing track of all features without being able to
recover. We trigger face detection every 5th frame, which
empirically gives a good balance between computation and
tracking robustness. If a face is found, this re-initializes fea-
tures for tracking, and the face position is reported. If no face
is found, tracking continues with the existing set of features.
The position of the face is calculated from the features’ dis-
placement computed using a RANSAC algorithm (Sec. 2.2).
For any frames where both face detection and feature tracking
fail, the system switches to motion detection.

2.2. Updating face location from feature tracking

The displacement (motion) of a valid set of tracked features
determines the face position. The features initialized inside
the rectangular face bounding box may include face features
and background features. When the user moves, the fea-
tures on the face move but the background features stay still
(Fig. 4). Therefore, we need to differentiate between face and
background features in order to calculate the displacement.

We use a RANSAC (random sample consensus) algo-
rithm to estimate face motion in the presence of outliers
(background features). We considered projective and affine
camera models and the corresponding motion models (affine,
translational) for translating and rotating heads. In the end,
we adopted a simple translational motion model that was fast
as well as effective:

x′ = x+ d, (1)

Module Advantages Disadvantages
Face detection True positive rate is high. Slow computation. Fails with occlusions

and difficult poses.
Feature tracking Computes fast. Tracks face with occlu-

sions, difficult poses, and fast motion.
Needs to be initialized with face detection.

Motion detection Computes fast. Easily triggered by background motion.

Table 1. Advantages and disadvantages of the three modules used individually.

where x and x′ are the feature’s positions in the first and cur-
rent frame, correspondingly, obtained from tracking. The ob-
jective is to estimate the translation d from the set of valid
face features. The modified RANSAC algorithm is shown in
Alg. 1. The algorithm outputs the face feature set Sbest cons

and the best model Mbest. Mbest includes the translation d
and the error of Sbest cons on Mbest (mean of ||xi + d − x′

i||
for the features in Sbest cons). S0 denotes the whole set of fea-
tures, including the features’ original positions and positions
from tracking in the current frame. N0, between 20 and 40 for
typical face sizes, is the number of features in S0. Parameters
for the RANSAC algorithm include K,N1, N2, where K is
the number of iterations, N1 is the number of features in a
random sample, and N2 is the minimum size of the consensus
set. In our system, K = 10, N1 = 0.7N0 and N2 = 0.5N0.
M1 and Sconsensus are used to store the model and consensus
set for each iteration. ∆ is the max tolerance on the error be-
tween the observed feature translation and the current model.

Algorithm 1 Estimate face motion model with RANSAC.
1: for i = 1 to K do
2: S1 ← Randomly selected N1 features from the total

N0 features
3: M1 ← the mean translation of features in S1

4: Calculate ∆ based on M1

5: Sconsensus, Sbest cons,Mbest ← empty
6: for each feature i in S0 do
7: if ‖translation of feature i−M1 ‖≤ ∆ then
8: Sconsensus ← Sconsensus+ feature i
9: end if

10: end for
11: if size of Sconsensus > N2 then
12: if error of Sconsensus on M1 < error of Sbest cons

on Mbest then
13: Sbest cons ← Sconsensus

14: Mbest ←M1

15: end if
16: end if
17: end for

In our system, features are typically initialized every 5
frames from face detection so that the simple translational
model for face motion is fairly accurate for the 5 frames
(∼160ms). However, when face detection fails, feature track-

Width of the detected face (in pixel) Number of features

T
im
e
(in
 m
s)

T
im
e
(in
 m
s)

Time to initialize features Time to track features

(a) (b)

Fig. 5. Execution time for single-frame feature initialization
and tracking. (a) Feature initialization time vs. face size. (b)
Feature tracking time vs. number of features.

ing is continued for potentially many frames. In this case,
the features may be far from the original initialization posi-
tions, and the translation motion model has larger errors. To
account for the variable model inaccuracy, we use an adap-
tive tolerance ∆ on the model error, which is proportional to
df , the distance between the current feature position and the
initialization position: ∆ = αdf . In our system α = 0.4, but
empirically we found the algorithm result is not sensitive to
the α value.

3. EVALUATION

Experiments with our system show that it achieves robust
performance in out-of-frame detection. It correctly reports
the face location even when the face is partially occluded
(Fig. 2(b)(c)) and when the head pose is challenging to a face
detector (Fig. 2(d)). When the user is in-frame, the system
is not distracted by background motions (Fig. 2(a)). Sec. 3.1
discusses the algorithm efficiency and Sec. 3.2 discusses a
user study showing preference for the new feedback method.

3.1. Performance of components

Running time statistics of the system modules were measured
using an Intel Xeon 2.93 GHz dual CPU HP-Z800 worksta-
tion with 3.48 GB RAM running Microsoft Windows 7. The
webcam streamed 640×480 pixel video at 30 fps.

Average face detection execution time, recorded for 260
frames, was 35.9ms with standard deviation 5.1ms. The de-
tection times were similar whether there were 0, 1 or 2 faces

detected since the algorithm always scanned the entire image.
Fig. 5 shows the average time for feature initialization and

tracking in single frames. After each face detection, features
are detected in the face bounding box. Therefore, feature
initialization time should be proportional to the face region
area, and polynomial to the width of the detected face (square
face region). This is verified by the experimental result in
Fig. 5(a). Using 253 frames, for each face width (quantized
into 10 pixel bins), feature initialization times are recorded.
The mean feature initialization times are plotted in Fig. 5(a).
The individual times tightly cluster near the mean (the mean
of standard deviations of all bins is 2.2ms). Normally, the
face size is between 100 to 180 pixels (the user does not get
too close to the camera) so feature initialization time is usu-
ally below 10ms. Features are initialized at most every 5th
frame when there is a successful face detection.

We recorded feature tracking time of 3071 frames with the
corresponding number of features Nf (Fig. 5(b)). For each
Nf , the mean tracking time of all frames with that Nf is cal-
culated and plotted in the figure. Since pyramid optical flow
is calculated on each feature location, tracking time should be
linear to Nf , as confirmed by Fig. 5(b). The mean of standard
deviations of all Nf is below our timer quantization of 1ms.
Normally there are 20-40 features in the face region. So for
most frames, feature tracking takes less than 3ms.

We collected motion detection time for 1018 frames. The
mean detection time is 4.6ms with standard deviation 1.1ms.

The above performance evaluation supports our design
choices. Feature tracking (initialization 10ms and tracking
3ms) is much faster than face detection (36ms), so it is a good
alternative as long as it provides face location. Motion detec-
tion is also fast to compute (4.6ms) so it does not hamper the
system’s overall realtime operation. In practice, the system
may be running in two modes: 1) The algorithm alternates
between face detection and feature tracking. In our system
we chose to do face detection every 5th frame. So on average,
each frame’s running time is (36+10+4∗3)/5 = 11.6ms. 2)
There is no face detected and the algorithm only does motion
detection for each frame. In this case, each frame’s average
running time is 4.6ms.

3.2. User preferences

The new detection and feedback solution was incorporated
into a prototype video conferencing system for users to com-
pare with the industry standard mirror window solution.
While details of the user study are available online [7], we
present a brief summary here. Fourteen users ranging in age
from 20 to 60 and split equally by gender participated. Sev-
eral methods of feedback with varied sizes and positions of
the feedback window were presented in random order during
a one-to-one and then one-to-four video conferencing setup.
For comparison, the standard always-on mirror window was
one of the presented methods in each setup. The users reached

for a peripheral object that caused them to go out of frame
to trigger the out-of-frame feedback. We found variation in
preference about the size and location of the windows, but
overall there was roughly a two to one preference in both
the one-to-one and one-to-four conferencing layouts for an
alternative feedback solution instead of the mirror window.

4. CONCLUSIONS

In this paper, we describe a realtime out-of-frame detection
technique. This work enables a new feedback method for
video conferencing that allows users to focus on the con-
ference itself by providing visual feedback only when the
user is out of frame. The challenges for the algorithm de-
sign are the reliability and realtime requirements. For this
purpose, face detection, feature tracking, and motion detec-
tion are combined. We conducted a user study with the im-
plemented system to identify the preferred out-of-frame feed-
back types. Even though there were different preferences
about window sizes and locations, an alternative feedback
was preferred by a two-to-one ratio over the usual mirror win-
dow. Since the preferred type of feedback consisted of alpha
blending of video in a window, almost all users could be satis-
fied within the same uniform software architecture by provid-
ing control for a alpha blended, movable, resizable window in
the user interface for the conferencing system.

5. REFERENCES

[1] T. Porter and T. Duff, “Compositing digital images,”
ACM SIGGRAPH Computer Graphics, 1984.

[2] D. Greig, “Video object detection speedup using stag-
gered sampling,” in Workshop on Appl. of Comp. Vision
(WACV), 2009.

[3] J. Shi and C. Tomasi, “Good features to track,” in Proc.
CVPR Conf., 1994, pp. 593–600.

[4] Jean-Yves Bouguet, “Pyramidal implementation of the
lucas kanade feature tracker description of the algorithm,”
2000.

[5] OpenCV, “http://opencv.willowgarage.com/wiki/,” .

[6] D. Tanguay, D. Gelb, and H. Baker, “Nizza: A frame-
work for developing real-time streaming multimedia ap-
plications,” Tech. Rep. HPL-2004-132, HP labs, 2004.

[7] A. Mitchell, M. Baker, C. Wu, R. Samadani, and
D Gelb, “How do I look? An evaluation
of visual framing feedback in desktop video con-
ferencing,” Tech. Rep. HPL-2010-175, HP labs,
2010, http://www.hpl.hp.com/techreports/2010/HPL-
2010-175.pdf.

