
1

Measuring Bandwidth
Kevin Lai Mary Baker�

laik, mgbaker � @cs.stanford.edu
Department of Computer Science, Stanford University

Abstract— Accurate network bandwidth measurement is important
to a variety of network applications. Unfortunately, accurate band-
width measurement is difficult. We describe some current bandwidth
measurement techniques: using throughput, pathchar [8], and Packet
Pair [2]. We explain some of the problems with these techniques, includ-
ing poor accuracy, poor scalability, lack of statistical robustness, poor
agility in adapting to bandwidth changes, lack of flexibility in deploy-
ment, and inaccuracy when used on a variety of traffic types. Our solu-
tions to these problems include using a packet window to adapt quickly
to bandwidth changes, Receiver Only Packet Pair to combine accuracy
and ease of deployment, and Potential Bandwidth Filtering to increase
accuracy. Our techniques are are at least as accurate as previously used
filtering algorithms, and in some situations, our techniques are more
than 37% more accurate.

I. INTRODUCTION

A common complaint about the Internet is that it is slow.
Some of this slowness is due to properties of the end points,
like slow servers, but some is due to properties of the net-
work, like propagation delay and limited bandwidth. Prop-
agation delay can be measured using widely deployed and
well understood algorithms implemented in tools like ping
and traceroute. Unfortunately, tools to measure band-
width are neither widely deployed nor well understood. This
work attempts to develop further understanding of how to
measure bandwidth.

Current bandwidth measurement techniques have many
problems: poor accuracy, poor scalability, lack of statistical
robustness, poor agility in adapting to bandwidth changes,
lack of flexibility in deployment, and inaccuracy when used
on a variety of traffic types. We propose solutions to these
problems and demonstrate their effectiveness:
Packet Window We use a packet window (not the TCP win-
dow) to adapt quickly to bandwidth changes. In the presence
of link failure, a small window is 144% more accurate than
an infinite window.
Receiver Only Packet Pair We use Receiver Only Packet
Pair to allow the deployment of special software at only one
host while achieving accuracy within 1% of Receiver Based
Packet Pair [12].
Potential Bandwidth Filtering We use Potential Band-
width Filtering to measure bandwidth accurately in the pres-
ence of a variety of packet sizes. In such an environment, it
is at least 37% more accurate than previously used filtering
algorithms [5] [12].

This research is supported by a gift from NTT Mobile Communications
Network, Inc. (NTT DoCoMo), a graduate fellowship from the USENIX
Association, and a Sloan Foundation Faculty Fellowship.

Our overall goal is to make Packet Pair algorithms practi-
cal and robust enough to be widely and frequently used. Our
approach has been to derive simple algorithms from statisti-
cally valid network models and avoid heuristics. Heuristics,
especially in combination, tend to be difficult to debug and
explain and lack the robustness to apply to diverse network
environments.

The rest of the paper is organized as follows: In Section
II, we present motivation for examining bandwidth measure-
ment techniques. In Section III, we propose ways to make
Packet Pair algorithms robust and practical. In Section IV,
we describe bottleneck bandwidth algorithms. In Section V,
we describe our new Packet Pair filtering algorithm, Poten-
tial Bandwidth Filtering. In Section VI, we describe how we
simulated different bottleneck bandwidth algorithms on a va-
riety of networks. In Section VII, we present the results of
our simulations. In Section VIII, we describe our plans for
further exploration of this area. Finally, we conclude in Sec-
tion IX with our overall observations about the algorithms.

II. MOTIVATION

In this section, we describe the motivation for examining
bandwidth measurement techniques.

A. Applications

Several applications could benefit from knowing the bot-
tleneck bandwidth of a route. Developers of network proto-
cols and applications need to know the bottleneck bandwidth
to judge the efficiency of their protocols and applications.
For example, if an HTTP server is delivering data at close to
the bottleneck bandwidth, then increasing the bandwidth of
that link may increase application performance. However, if
the bottleneck link already has plenty of bandwidth to spare,
increasing its bandwidth will probably not improve applica-
tion performance.

Network clients could dynamically choose the “best”
server for an operation based on the highest bottleneck band-
width. This has been suggested as a way to choose a web
server or proxy [4] [15].

In addition, accurate and timely bandwidth measurement
is useful for mobile computing. Mobile computers fre-
quently have more than one network interface, often with
very different bandwidths (e.g. 10Mb/s Ethernet and 28 Kb/s
wireless). Knowing the bandwidth would allow the mobile
host to pick the highest bandwidth interface as the default in-



terface and to degrade service gracefully when it detects that
it is operating on a low bandwidth link.

Another application is congestion control. TCP already
implicitly measures the bandwidth of the network so that it
will not send packets faster than the network can handle, but
this has certain disadvantages described in the next section.

Finally, we could use bandwidth information to build mul-
ticast routing trees more efficiently and dynamically. Ideally,
multicast routing trees would be built so that packets travel
along a tree that minimizes duplicate packets and latency
while maximizing bandwidth. Currently, multicast routing
trees are built either without bandwidth information or with
only static information.

B. Metrics

We distinguish between the bottleneck bandwidth and the
available bandwidth of a route. The bottleneck bandwidth
of a route is the ideal bandwidth of the lowest bandwidth
link (the bottleneck link) on that route between two hosts. In
most networks, as long as the route between the two hosts re-
mains the same, the bottleneck bandwidth remains the same.
The bottleneck bandwidth is not affected by other traffic. In
contrast, the available bandwidth of a route is the maximum
bandwidth at which a host can transmit at a given point in
time along that route. Available bandwidth is limited by
other traffic along that route.

The question of which is the better metric can only be an-
swered by the application. Some applications want to know
which route will give them the minimum delay or want to use
an estimate taken longer than a few seconds ago. For these
applications bottleneck bandwidth is probably the best met-
ric. Some applications are only interested in the best average
throughput. For these applications, available bandwidth is
probably the best metric.

We are interested in both metrics, but have chosen to inves-
tigate bottleneck bandwidth first because it is a more stable
metric and is therefore useful over a longer period of time,
and because it bounds the available bandwidth and can there-
fore be used later to more accurately compute available band-
width (see section VIII).

C. Current Techniques

Given the importance of measuring bandwidth, it is not
surprising that there are currently several techniques for do-
ing so. However, all have drawbacks for at least some of the
applications described above.

The most popular technique is to use throughput as an
approximation of bandwidth. Throughput is the amount of
data a transport protocol like TCP can transfer per unit of
time. One problem with throughput is that other metrics
(e.g. packet drop rate) may have a significant effect on TCP
throughput, while not affecting bandwidth.

Another problem with measuring throughput is that an ap-
plication’s throughput to a host implies nothing about other

transfers, even from the same application to the same host.
For example, a web browser sending a request to a web
server may experience low throughput because that request
involved running a slow CGI script. The same browser send-
ing a different request could experience high throughput be-
cause the latter request did not involve running a CGI script.
Correlating the throughput of different applications (like tel-
net and http) is even more inaccurate.

TCP uses another technique to estimate bandwidth. It
sends more and more packets until one is dropped. It es-
timates the bandwidth to be somewhere between the send-
ing rate when the packet was dropped and half that rate.
This has several problems: 1) TCP is measuring the bot-
tleneck router’s buffer size in addition to the bottleneck
bandwidth, 2) TCP wastes network resources by forcing a
dropped packet and filling the router’s buffers, and 3) TCP
has to increase its sending rate slowly, or else it will over-
shoot the real bandwidth and cause massive packet loss. The
last problem is particularly acute on high bandwidth, high la-
tency links, such as satellite connections, because TCP needs���������	��

��������������������������� ��!#"$�

time to reach the maximum
transmission rate.

Another solution is to use pathchar [8]. As far as we
know, pathchar is unique in its ability to measure the
bandwidth of every link on a path accurately while requir-
ing special software on only one host. This means it could
easily be widely deployed. Although excellent as a testing
tool, the problem with pathchar is that it is slow and can
consume significant amounts of network bandwidth. In par-
ticular, pathchar runs in time proportional to the round
trip time of the network and sends a relatively fixed amount
of data, regardless of the actual bandwidth of the network
(see Section IV-A). If more hosts were to run pathchar,
its packets would become a significant burden on the network
[15]. Even for isolated hosts with low bandwidth connec-
tions, pathchar could consume too much bandwidth to be
usable regularly.

III. MAKING PACKET PAIR ROBUST AND PRACTICAL

The bandwidth measurement technique we have chosen to
investigate is called Packet Pair [2] (described in more de-
tail in Section IV-B). The advantages it has over the tech-
niques mentioned above are that 1) it measures the true band-
width of the network (instead of throughput), 2) it does not
cause packet loss (unlike TCP), 3) it does not require many
packet round trips to work, and 4) it does not send massive
amounts of data (unlike pathchar). On the other hand,
each of those techniques currently has a robust and prac-
tical implementation and is in common use in the Internet,
while Packet Pair does not have such an implementation and
is rarely used at all (although several tools implement a ver-
sion of the Packet Pair algorithm, including bprobe [5] and
tcpanaly [11]).

Here are some of the key problems with current Packet



Pair algorithms and how we propose to solve them:

Not statistically robust Previous work on filtering Packet
Pair samples has used techniques such as adding error bars
to values and intersecting them [5], or clustering values that
are close together [12]. Such heuristics do not have well un-
derstood statistical properties and their effectiveness may de-
pend on a particular data set.
Instead, we use a kernel density estimator to filter data, which
has well understood statistical properties [14]. In particular,
it makes no assumptions about the data, and is therefore sta-
tistically robust (see Section IV-C).
Not scalable Active Packet Pair implementations [5] gener-
ate their own traffic and therefore have the same scalability
problems as pathchar (see Section IV-A).
Packet Pair algorithms do not need to do this [12]. Our pas-
sive Packet Pair implementation uses existing network traffic
to measure bandwidth.
Slow On the other hand, previous passive implementations
are designed to analyze a TCP connection after its comple-
tion [12], instead of while it is occurring. Given the long
duration of some TCP connections, this could be too late for
some of the applications mentioned above.
Our gradual Packet Pair implementation forms a bandwidth
estimate for every packet that arrives. It initially gives inac-
curate answers and then gradually converges to an accurate
answer. In this way, applications obtain an estimate as soon
as it is available (see Section IV-E). Our results show that
Packet Pair can give the correct estimate within three packets
of the start of the connection.
Not robust on all traffic Most passive implementations are
designed to use traffic composed of mostly large packets.
However, Internet traffic is a mix of many packet sizes and
any one flow between two hosts may contain a wide vari-
ety of packet sizes. Existing passive implementations do not
account for this and thus give inaccurate results on diverse
traffic such as a mix of predominantly small packets and a
few large packets (see Section V). This is because the net-
work model used in those implementations does not account
for potential bandwidth.
We designed a new Packet Pair filtering algorithm, called Po-
tential Bandwidth Filtering (PBF), which can deliver an ac-
curate answer despite variation in packet size and transmis-
sion rate. On a mix of packet sizes, PBF is at least 37% more
accurate than the standard filtering algorithm.
Not flexible to bandwidth changes Some prior implemen-
tations detect only one bandwidth over time [5]. Other im-
plementations can detect multiple bandwidths, but only those
which differ by a large amount [12]. Although not as fre-
quent as congestion changes, bottleneck bandwidth changes
do happen because of routing changes [12] or because of mo-
bility [1]. Some of the applications described above would
like to know as soon as possible that the bandwidth has
changed and what the new bandwidth is, regardless of mag-
nitude.

To accomplish the above, we propose the use of a limited
window of past packets to calculate bandwidth. This in-
creases the speed at which the algorithm can adapt to a new
bandwidth (the agility), but it leaves the results more vul-
nerable to noise. We believe that an increase in agility fun-
damentally requires becoming more vulnerable to noise (see
Section IV-E). We show that a small window is 144% more
accurate than an infinite window in the presence of link fail-
ure, but 10% less accurate in the presense of congestion.
Difficult to deploy A current highly accurate Packet Pair al-
gorithm, Receiver Based Packet Pair (RBPP) [12], requires
that packet timings be taken at both the sender and receiver of
those packets. This means that special software must be de-
ployed at both the sender and receiver, which may not be pos-
sible. Another algorithm, Sender Based Packet Pair (SBPP)
[12] requires timings (and therefore special software) only
on the sender. Unfortunately, SBPP is far less accurate than
RBPP.
We describe a variation of RBPP, called Receiver Only
Packet Pair (ROPP), which is more accurate than SBPP (but
less than RBPP), while only requiring timings at the receiver
(see Section IV-D). This allows applications to trade some
accuracy for ease of deployment. Our results show that
ROPP is accurate within 1% of RBPP.
Not studied under controlled conditions There have been
several studies of Packet Pair algorithms using data from the
Internet. This has the advantage of using real TCP/IP code,
routers, and network traffic. However, we would like: 1) ver-
ifiable and reproducible results and 2) testing under a variety
of controlled conditions. Testing under controlled conditions
in the Internet at large would be difficult, if not impossible.
To overcome these limitations, we use a network simulator
(fully described in Section VI) to compare the effectiveness
of the algorithms and modifications described above to pre-
vious Packet Pair implementations.

IV. BANDWIDTH MEASUREMENT ALGORITHMS

In this section, we describe the models and assumptions of
the algorithms for measuring bottleneck bandwidth. We con-
sider their accuracy, timeliness, and agility as well as whether
they are active or passive and whether they require measure-
ments from multiple network hosts.

We know of two families of bottleneck bandwidth algo-
rithms. The first family of algorithms, which we call the
Pathchar Algorithms, is used in the tools pathchar [8] and
utimer [6]. The second family of algorithms is based on
the Packet Pair algorithm and is used in the tools bprobe
[5], cprobe [5], and tcpanaly [11]. Variants of the
Packet Pair algorithm are Sender Based Packet Pair (SBPP),
Receiver Based Packet Pair (RBPP), Packet Bunch Mode
(PBM) [12], and our own Receiver Only Packet Pair (ROPP).

An orthogonal issue for Packet Pair algorithms is how they
filter bandwidth samples. We call the standard algorithms
Measured Bandwidth Filtering (MBF) and propose our own



Potential Bandwidth Filtering (PBF). In addition, we de-
scribe our refinements of the Packet Pair algorithms and their
filtering methods: the use of a kernel density function to in-
crease statistical robustness, the use of gradual bandwidth
calculation to increase timeliness, and the use of a packet
window to increase agility.

A. Pathchar Algorithm

In this section, we analyze the time taken and bandwidth
consumed by the Pathchar algorithm. The program works by
sending packets of varying sizes and measuring their round
trip time. It correlates the round trip times with the packet
sizes to calculate bandwidth. It uses the results from earlier
hops for calculations on father hops. For a more thorough
description of how and why pathchar works, see [8]. For
our purposes, all we need to know is that the pathchar pro-
gram uses an active algorithm that sends packets varying in
size from 64 bytes to the path MTU with a stride of 32 bytes.
Therefore, the number of different packet sizes pathchar
sends is ��� �������	�
���
�� (1)

For Ethernet, the MTU is 1500 bytes, so � is 45. In addition,
it sends � packets per size for every hop. In the default con-
figuration, � � 	�


. It must wait for each packet it sends to
be acknowledged before sending the next packet. Thus, the
total time for pathchar to run is�� ����� � � � � �

�
(2)

where
�

is the number of hops and
�
�

is the round trip latency
from the sender to hop

�
. We assume that the receiver im-

mediately sends an ack in response to a packet and that the
sender immediately sends out the next packet when an ack ar-
rives. For a 10-hop Ethernet network with an average round
trip latency of 10ms, pathchar would run in 144 seconds.
This is too slow for a host to run it for every TCP connection,
or even every 10 minutes. It can be configured to send fewer
packets of each size, but at the cost of accuracy.

More importantly, pathchar consumes considerable
amounts of network bandwidth. The average bandwidth used
for probing a particular hop is

������� ��� � � � !�� � � � � ���� �"! ��� � ��� � ����������!
" �$#&%(' )%$* 	�

�
�

(3)

in bytes/s, where
�
�

is the round trip latency (in seconds)
across that hop. For a 1-hop Ethernet network with a la-
tency of 1ms, the average bandwidth consumed is 6.02Mb/s.
This would be a considerable imposition on a 10Mb/s Eth-
ernet. Farther hops would consume less bandwidth, but
pathchar always has to probe closer hops before farther

hops. Furthermore, the total data transferred is

� � � ��� �,+ )� ��� % 	�
 �.-
(4)

where
�

is the number of hops. For the 10-hop Ethernet net-
work mentioned before, pathchar sends 10 MB of data.
In fact, pathchar will send 10 MB of data on a 10-hop
network regardless of the bandwidth of the network, since
it only depends on the number of hops, the path MTU, and� . If the path MTU is high and one of the early hops is a
low bandwidth network link, such as a 56K modem, then
pathchar can consume most of the bandwidth of that link
for an extended amount of time. This means that we would
have problems scaling pathchar usage up to a large num-
ber of hosts.

B. Packet Pair

The basic Packet Pair algorithm [9] relies on the fact that
if two packets are queued next to each other at the bottleneck
link, then they will exit the link

�
seconds apart:

� � � %
�/1032 (5)

where � % is the size of the second packet and

4/.052

is the bot-
tleneck bandwidth. This is the “bottleneck separation” (see
Figure 1). Since there are no links with lower bandwidth than
the bottleneck link downstream of that link, and assuming the
packets are the same size, the second packet will never catch
up to the first packet.

The two packets have to be the same size because differ-
ent size packets have different “velocities”. If the second
packet were smaller than the first, then its transmission delay
would always be less than the first packet’s. Consequently,
it would pass through links faster than the first packet and
quickly eliminate the bottleneck separation. Similarly, if the
the first packet is smaller, then it will be faster than the sec-
ond packet and continuously grow the bottleneck separation.

Assuming the bottleneck separation is constant, the two
packets will arrive at the receiver spaced

�
seconds apart.

Since we know � % , we can then calculate the bottleneck band-
width: 
 /.052 � � %� (6)

This algorithm makes several assumptions that may not
hold in practice. For instance, it is impossible to guarantee
that two packets will queue next to each other at the bottle-
neck link. If other packets queue in between the two mea-
surement packets, then (6) becomes


(/.052 � � % * �"6
� (7)

where � 6 is the total size of the other packets. In addition, if
other packets queue ahead of the first packet when it is down-
stream of the bottleneck link, those extra packets will delay



Sender Based


Receiver/Sender Based


Receiver Only


Packet Send

Timings


Packet Arrival

Timings


Ack Arrival

Timings


Bottleneck Link
Sender
 Receiver


R
 R
R
R
R


P
 P
P
P


Bottleneck Separation


A
A
A


Bottleneck Separation


A
 Ack
P
 Packet
 R
 Router


Fig. 1. This figure shows how the Packet Pair algorithm works. Note how the data packets have a greater separation after the bottleneck link and how this
separation is maintained by the acks. The arrows pointing to SBPP, RBPP, and ROPP indicate what timing information must be sent from the sender
and receiver for each of the algorithms.

the first packet, causing time compression of the two packets.
Similarly, other packets could only delay the second packet,
causing the packets to be time extended. Time compression
can cause a high estimate of the bottleneck bandwidth, while
time extension can cause a low estimate.

C. Packet Pair Filtering

The main problem with the basic Packet Pair algorithm is
how to filter out the noise caused by time compressed and
extended packets. One solution would be to take the mean
or median of all the bandwidth samples. Unfortunately, the
noise has little correlation to the true bandwidth, so this gives
wildly varying estimates.

Previous Packet Pair research has proposed finding the
point of greatest density in the distribution of bandwidth es-
timates. The idea is that valid samples should be closely
clustered around the correct value, while incorrect samples
should not be clustered around any one value.

A well known method for doing this is to use a histogram.
Unfortunately, there are several problems with histograms.
One problem is that bin widths are fixed, and it is difficult to
choose an appropriate bin width without previously knowing
something about the distribution. Another problem is that bin
boundaries do not respect the distribution. Two points could
lie very close to each other on either side of a bin boundary
and the bin boundary ignores that relationship. Finally, a his-
togram will report the same density for points with the same
value as points which are in the same bin, but at opposite
ends of the bin.

Previous Packet Pair filtering algorithms [5] [11] have
overcome some of these problems, but not all of them. We
use the kernel density estimator algorithm, which overcomes
all of these problems. This algorithm is well known to statis-
ticians [14] [16]. To use it, we first define a kernel function

� �����
with the property������ � � � ������� � � (8)

Then the density at any point � is�� 0� ����� �� �	� � 
 � �� 
 (9)

where
�

is the kernel width,
�

is the number of points within�
of � , and � � is the

�
th such point. The kernel function we

use is
" ��� � * � ��
��� 
 � ������� (10)

This function has the desirable properties that it gives
greater weight to samples closer to the point at which we
want to estimate density, and it is simple and fast to com-
pute. The kernel density estimator algorithm is known to be
statistically valid and we show in section VII that it gives
accurate results. Most importantly, it makes no assumptions
about the distribution it operates on and therefore should be
just as accurate on other data sets.

D. Receiver and Sender Based Packet Pair

Receiver Based Packet Pair (RBPP) and Sender Based
Packet Pair (SBPP) (both [12]) are types of Packet Pair al-
gorithms. They differ in how the

�
from (6) is measured.

Figure 1 shows the difference in where timing measurements
must be taken. In Receiver Based Packet Pair,

�
is measured

at the receiver, so (6) becomes

 /.052 � � %� % 
 �

�
(11)

where
�
�

and
� % are the arrival times of the first and second

packets, respectively.



If we cannot measure the arrival times at the receiver, we
have to use the round trip time, which is measured at the
sender (SBPP). Equation (6) becomes


 /1032 � � %� % 
 � � (12)

where
� �

and
� % are the arrival times of the acks to the first

and second packets, respectively. This assumes that the re-
ceiver promptly sends back an acknowledgement for both of
the packets. With SBPP, packets from other hosts could in-
terfere with the acks as well as the original packets.

In both the receiver and sender based algorithms, we can
apply additional filtering techniques to reject incorrect esti-
mates. We can detect time compression or reordering when
two packets have a difference between their transmission
times greater than the difference between their arrival times
(for RBPP) or their round trip times (for SBPP).

RBPP and SBPP are useful in different circumstances.
RBPP is more accurate, but it can be harder to deploy since it
requires measurement collection at both endpoints. SBPP is
easy to deploy, but its results can be highly inaccurate during
congestion (see Section VII).

Another difference is that SBPP requires that packets be
acknowledged (as in TCP) and that the acks be constant size
and relatively small. The acks must be constant size because
variation in ack size causes variation in total round trip time,
which would causes noise in the bandwidth samples. The
acks must be small because as they become larger, the band-
width of the path back to the sender would start to become
the bottleneck. If the bottleneck bandwidth of the path back
to the sender is much less than that from the sender (as in an
asymmetric network) then ack size becomes that much more
important (we see this effect in Section VII).

Finally, the algorithms differ in the kind of traffic they can
use and the paths they can measure. SBPP relies on data
packets flowing away from the measurement host and can
only measure the bandwidth of the path from the sender to
the receiver. RBPP can use whatever traffic is available. In
the usual situation of data packets flowing in one direction
and acks flowing in the other, RBPP can determine the band-
width in both directions. However, the usually small size of
the acks will limit the bandwidth that can be measured (see
Section V).

Some applications may need the high accuracy of RBPP
and the ease of deployment of SBPP. For those applications,
we propose Receiver Only Packet Pair (ROPP). As shown in
Figure 1, ROPP only takes timing measurements from the re-
ceiver and is therefore easier to deploy than RBPP. However,
without timing information from the sender, ROPP cannot
filter out time compressed packets or reordered packets, as
SBPP and RBPP can. On the other hand, it is much less
likely than SBPP to have such samples (like RBPP) because
it is not relying on round trip latency. Another limitation is
that it cannot use the new Potential Bandwidth Filtering algo-

rithm described in Section V. Finallym, it has the limitation
that it needs packets (although these can be acks) flowing on
paths towards the measurement host and can only determine
the bandwidth of such paths.

Despite these limitations, our results show that ROPP
achieves accuracy within 1% of RBPP (see VII). We con-
clude that ROPP achieves the ease of deployment of SBPP,
while sacrificing little accuracy. It is an excellent choice for
applications needing to know the bandwidth of paths towards
a host.

E. Timeliness versus Accuracy

In this section we describe the tradeoff of accuracy ver-
sus timeliness in Packet Pair algorithms and how we imple-
mented our algorithms to take advantage of these tradeoffs.

The Packet Pair algorithms described in the previous sec-
tions are usually implemented as running over a fixed number
of packets or over an entire connection before providing an
estimate. This translates into a long delay before providing
an estimate. One problem is that some applications would
prefer to have a ballpark answer sooner in addition to an ac-
curate answer later.

Our solution is to calculate bandwidth gradually. Instead
of calculating a single bandwidth, we calculate a new esti-
mate with every packet arrival. In Section VII-B, we show
that a gradual algorithm can converge to the correct band-
width within three packets, instead of having to wait the en-
tire life of the connection.

A problem with the gradual Packet Pair algorithm is that it
is slow to detect a bandwidth change, i.e. it has poor agility.
A bandwidth change may be caused by a route change such
as a link failing or host mobility. The gradual algorithm
described above will initially detect a bandwidth change as
noise and stick to its initial estimate.

To compensate for this problem and to be able to detect
multiple bandwidth changes, we use a packet window. We
use at most

�
(the window size) packets into the past to cal-

culate the bandwidth at a particular packet. This has the ad-
vantage that only the most recent and probably most relevant
samples are used to calculate bandwidth.

The disadvantage of using a window is that it may reduce
stability. With smaller windows, we are more affected by
transient conditions like congestion, which we may detect as
a temporary bandwidth change, as shown in Section VII-B.
We believe this is a fundamental tradeoff. A Packet Pair algo-
rithm cannot distinguish between true changes in bandwidth
and persistent congestion. However, given this fundamental
limitation, our addition of windows to the basic Packet Pair
algorithm enables it to distinguish bandwidth changes in the
presence of light to moderate congestion.

V. POTENTIAL BANDWIDTH FILTERING

In this section we describe a previously unaddressed prob-
lem with using the filtering algorithm described above in



Section IV-C. We call that algorithm Measured Bandwidth
Filtering (MBF) to distinguish it from our solution to the
problem, Potential Bandwidth Filtering (PBF).

A. The Potential Bandwidth Problem

One problem with Packet Pair algorithms is that they can-
not measure a higher bandwidth than the bandwidth at which
the sender sends. If a sender sends two packets of 1000 bytes
each with 1ms separation, then the receiver cannot measure a
higher bottleneck bandwidth than 8Mb/s, even if the true bot-
tleneck bandwidth is 100Mb/s. This is a fundamental prop-
erty of all Packet Pair algorithms regardless of how the filter-
ing is done. We call the bandwidth at which the sender sends
two packets the potential bandwidth because the measured
bandwidth cannot exceed it.

The problem arises when the sender sends small pack-
ets, or sends packets slowly, or both. Then the potential
bandwidth is likely to be lower than the actual bottleneck
bandwidth of the path, and any measured bandwidth will be
wrong.

Fortunately, some packets have a large potential band-
width. Most HTTP and FTP packets are large and rapidly
sent, and therefore have a high potential bandwidth. Un-
fortunately, it may be that not all packets in a flow have a
high potential bandwidth, and in fact, it may frequently be
the case that the high potential bandwidth packets are not the
most common type of packets.

For example, consider someone browsing a site using
HTTP/1.1. HTTP/1.1 opens one TCP connection to a site and
uses that connection for all communication. The client will
receive many large packets filled with HTML pages while
sending many acks and a few medium-sized packets filled
with HTTP requests. The outbound link will be dominated
by many small packets, with a few medium-sized packets.
If we used the normal MBF algorithm, we would report the
measured bandwidth of the small packets.

We discovered this problem in our simulation of an asym-
metric network, where this is even more of a problem. On an
asymmetric network with a high bandwidth inbound link and
low bandwidth outbound link, an inbound data transfer will
fill the outbound link with acks at a packet/second rate that
is likely to exceed that of any outbound data packets.

B. The Potential Bandwidth Filtering Solution

The general idea of Potential Bandwidth Filtering is that
we should correlate the potential bandwidth and measured
bandwidth of a sample in deciding how to filter. Samples
with the same potential bandwidth and measured bandwidth
are not particularly informative because the actual bandwidth
could be much higher. Samples with a high measured band-
width and low potential bandwidth are time compressed and
should be filtered out. Samples with a high potential band-
width and low measured bandwidth are the most informative
because they are likely to indicate the true bandwidth.

M
ea

su
re

d 
B

an
dw

id
th



Potential Bandwidth


x = y


y = b
knee at

x = b


Bandwidth Samples


Fig. 2. This graph shows how PBF works. The dots represent bandwidth
samples plotted using their potential and measured bandwidth. All sam-
ples above the ����� line are filtered out. Notice how there is a knee in
the samples.

We implement the algorithm by plotting all the samples on
a graph with potential bandwidth on the x-axis and measured
bandwidth on the y-axis. An example is shown in Figure
2. We would expect that in the absence of congestion, the
samples would fall along the line � � "

until some point� � 

. These samples have potential bandwidth approxi-

mately equal to measured bandwidth. The packets that gen-
erated these samples did not queue behind each other at the
bottleneck link. After



the samples should run along the line" � 


. These are the samples with a higher potential band-
width than measured bandwidth. The packets that generated
these samples did queue behind each other at the bottleneck
link. The value



is the actual bandwidth.

If the samples never divert from the line � � "
, then we

know that our samples had insufficient potential bandwidth.
For example, this would be case if we only had the samples
to the left of � � 


in Figure 2.In this case, we should try an
active algorithm.

To compensate for noise, we fit the � � "
and

" � 

lines

to the data and compute the relative error for each point as
the distance of that point to the nearest line divided by the
x-value of that point. This ensures that errors when x is large
do not dominate the calculation. We then sum the errors for
all the points and attempt to minimize the sum to choose the
optimal



.

Our results show that PBF is just as accurate as MBF on an
Ethernet network and 37% to 435% more accurate than MBF
on an asymmetric network (see Section VII-C). We believe



that PBF is essential to the practical use of passive Packet
Pair algorithms.

VI. SIMULATION ENVIRONMENT

In this section, we discuss why we use a network simula-
tor, how we simulated the network and why we believe the
results are valid.

We use a network simulator because 1) we want verifiable
and reproducible results, 2) we want to test the algorithms in
a variety of conditions, and 3) we believe the limitations of
current simulator technology have limited and accountable
effects on our experiments. We discuss this final point in
Section VI-B.

A. Simulator Goals and Setup

In this section, we describe our goals for the simulator and
how we configure it to meet those goals.

Our goal for the simulation is to stress the algorithms in
both optimal and pathological conditions. We want to know
how the worst possible conditions affect these algorithms.
The bottleneck bandwidth algorithms are affected by the fol-
lowing conditions:
1. Lack of Queueing at Bottleneck Link This destroys the
causality between packet arrival times and the bottleneck
bandwidth.
2. Queueing after Bottleneck Link This destroys the causal-
ity between packet arrival times and the bottleneck band-
width.
3. Packet Loss This causes algorithms to take longer to con-
verge.
4. Changing Bottleneck Bandwidth Some algorithms detect
this faster than others.
5. Asymmetric Bandwidth This could cause algorithms that
assume symmetric bandwidth paths to fail. In particular,
TCP packets arriving through a high bandwidth downlink
will cause many acks to exit the low bandwidth uplink. These
low potential bandwidth acks may cause MBF algorithms to
fail (see Section V-A).

To model these conditions in a controlled manner, we used
the ns network simulator [10]. We generated an 87 node net-
work using the tiers topology generator [3]. tiers gen-
erates a network that reflects the semi-hierarchical topology
of the Internet. The topology consists of 4 Wide Area Net-
work (WAN) nodes, 16 Metropolitan Area Network (MAN)
nodes, and 67 Local Area Network (LAN) nodes and in-
cludes redundant links between different MAN nodes and
LAN nodes.

The client is usually 9 hops from the server and sometimes
as many as 14 hops away, depending on which links have
failed.

The traffic measured is one TCP connection from the
client to the server beginning at 0.5 seconds into the simula-
tion. The client and server are on different LANs and MANs.

TABLE I

TYPES OF CLIENT CONNECTIONS.

Link Type Bandwidth Latency
Cable Modem Uplink 500Kb/s 3ms
Cable Modem Downlink 10Mb/s 3ms
Ethernet 10Mb/s 3ms

TABLE II

TRAFFIC SOURCE PARAMETERS: THIS TABLE LISTS THE TRAFFIC

SOURCE PARAMETERS USED BY NS IN OUR SIMULATIONS. SIZE IS THE

SIZE OF PACKETS. BURST AND IDLE GIVE THE AVERAGE ON AND OFF

TIMES FOR SENDING PACKETS. SHAPE IS THE SHAPE PARAMETER

USED FOR THE PARETO DISTRIBUTION GENERATOR.

Size Burst Idle Shape
1500 bytes 1000ms 500ms 1.5

576 bytes 500ms 1000ms 1.5
41 bytes 50ms 1000ms 1.5

The simulation runs for 30 seconds of simulation time. The
different link characteristics are summarized in Table III.

We varied three simulation parameters: client connectiv-
ity, congestion, and link failure model. We used the two
client connections listed in Table I. Only the client is con-
nected to the network using one of the client connections.
All other nodes use links described in Table III.

We created congestion by placing three traffic sources
at each LAN node. Each source sends data according to
a Pareto distribution [7]. The parameters for these traffic
sources are summarized in Table II. We varied congestion
by using average data rates of 0Kb/s, 400Kb/s, and 1Mb/s.
The variety of levels of congestion allows us to explore situ-
ations where the packets to and from the client did not queue
together at the bottleneck link and/or did queue after the bot-
tleneck link.

We varied the link failure model by using either no failure
or a deterministic failure model where selected links along
the path from client to server fail at specific times. The first

TABLE III

SIMULATOR LINK CHARACTERISTICS: TYPE 1 LINKS ARE USED TO

CARRY PACKETS UNLESS THEY FAIL, IN WHICH CASE TYPE 2 LINKS

ARE USED.

Type From To Modeling BW Latency
1 WAN WAN T3 44Mb/s 40ms
1 WAN MAN Ethernet 10Mb/s 20ms
1 MAN MAN Ethernet 10Mb/s 10ms
1 MAN LAN Ethernet 10Mb/s 10ms
1 LAN LAN Ethernet 10Mb/s 5ms
2 WAN MAN T1 1.5Mb/s 20ms
2 MAN LAN T1 1.5Mb/s 20ms



link fails for 5.0 seconds beginning at 10.0 seconds. The sec-
ond link fails for 6.0 seconds at 20.0 seconds. We chose the
following two links for failure: client LAN to client MAN,
and WAN to server MAN. Link failures cause packets to be
lost, and when combined with redundant links, create the
possibility for multiple paths, asymmetric bandwidth, and
changing bottleneck bandwidth.

B. Simulator Validity

We believe that the limitations of current simulator tech-
nology have limited effect on our results. Although the Inter-
net exhibits effects that no current simulator can reproduce
[13], our results do not depend on having high fidelity. Our
goal is not to determine precisely how well these algorithms
perform in the Internet on average. Our goal is to compare
how well these algorithms perform under certain conditions
known to exist in the Internet.

VII. SIMULATION RESULTS

In this section we present the simulation results. The fol-
lowing tables show the accuracy of Packet Pair algorithms
and how they react to changes in network conditions. We use
gradual versions of all the algorithms described in Section
IV, so we compute a bandwidth estimate for every packet ar-
rival. We then calculate the difference from the estimate to
the real bandwidth at that point in time (the real bandwidth
varies in some of the simulations). We express this difference
as a ratio of the error to the actual bandwidth. The tables
show the mean of these ratios. For example, a 0.10 mean
error indicates that the algorithm’s estimate deviated by an
average of

�
10% from the actual bandwidth.

In the tables shown later, the Alg. column describes which
algorithm we are using: Sender Based (SB), Receiver Based
(RB), and Receiver Only (RO). The Filter column describes
the filtering algorithm used. The BW column lists the actual
bottleneck bandwidth of the route between sender and re-
ceiver. The Fail column lists whether links fail in the simula-
tion. The

�
column gives the size of the packet window. The

Traffic column gives the amount of extra traffic simulation.
The Mean, � , Med., and Max. columns describe the mean,
standard deviation, median, and maximum, respectively, of
the ratio of the estimate error to actual bandwidth.

For the graph, we plot the bandwidth measured against
elapsed time in the flow. We collect measurements at every
packet arrival. Packet arrivals are not evenly distributed in
time, so the points are not evenly distributed along the x-
axis. In each graph we also plot the actual bandwidth so
we can gauge the accuracy of each algorithm. Note that all
graphs in this section plot bandwidth on a log scale starting
at 10,000 b/s rather than 1 b/s.

A. Receiver Only Measurements

In this section we compare the accuracy of Sender Based
Packet Pair, Receiver Based Packet Pair, and the new Re-

TABLE IV

THIS TABLE COMPARES THE ACCURACY OF VARIOUS PACKET PAIR

ALGORITHMS DEPENDING ON WHETHER THEY ARE SENDER BASED,

RECEIVER BASED, OR RECEIVER ONLY.

Alg. � Traffic Mean � Med. Max.
SB � 0Kb/s 0.001 0.026 0.000 0.998
RB � 0Kb/s 0.001 0.028 0.000 0.998
RO � 0Kb/s 0.001 0.035 0.000 0.998

SB � 400Kb/s 12.204 12.264 1.000 25.667
RO � 400Kb/s 0.009 0.051 0.006 0.998
RB � 400Kb/s 0.008 0.034 0.005 0.998

TABLE V

THIS TABLE COMPARES THE ACCURACY OF VARIOUS PACKET PAIR

ALGORITHMS WITH VARYING WINDOW SIZE AND VARYING

CONGESTION.

Alg. Fail � Traffic Mean � Med. Max.
RB N � 400Kb/s 0.009 0.051 0.006 0.998
RB N 128 400Kb/s 0.005 0.037 0.000 0.998
RB N 32 400Kb/s 0.110 0.252 0.000 0.998

RB Y � 0Kb/s 1.705 2.598 0.000 5.667
RB Y 128 0Kb/s 0.602 1.463 0.000 5.667
RB Y 32 0Kb/s 0.263 0.794 0.000 5.667

ceiver Only Packet Pair. We configure the simulator to use
Ethernet as the client technology and use either no conges-
tion or 400Kb/s of congestion.

The results are summarized in Table IV. With no con-
gestion, all of the Packet Pair algorithms have less than 1%
error. With 400Kb/s of congestion, the 1200% error of SBPP
is probably too much for most applications, while the error
of RBPP and ROPP are still less than 1%.

These results confirm our assertion in Section IV-D that
ROPP can achieve an accuracy close to that of RBPP, while
maintaining the ease of deployment of SBPP.

B. Congestion Tolerance and Detecting Bandwidth Change

In this section, we explore how well RBPP tolerates con-
gestion and detects bandwidth changes. We use RBPP be-
cause it is more accurate than SBPP and ROPP and we
wanted to isolate the effects of our new algorithms. We en-
able RBPP to detect bandwidth changes by setting a packet
window size (

�
) of less than � . The question is whether our

assertions in Section IV-E are accurate that a larger window
size will be more resistant to congestion and a smaller win-
dow size will adapt more quickly to bandwidth changes. The
results indicate that this assertion is correct.

Table V summarizes the statistics. The first three lines
show the accuracy of three different window sizes when ex-
periencing moderate congestion. As expected, smaller win-
dow values give less accurate results. However, even the 11%
average error of the

� � 	�

estimate is probably tolerable for



10000

100000

1e+06

1e+07

0 5 10 15 20 25 30

B
an

dw
id

th
 (

b/
s)

 (
lo

g 
sc

al
e)

Elapsed time (seconds)

Packet Pair with varying Window Size with Bandwidth Change

Actual BW
w = 128

w = 32

Fig. 3. This graph shows the effect of varying window size (w) in an Ethernet client simulation with varying bandwidth and no congestion. Notice the
change in actual bandwidth at 10, 15, 20 and 26 seconds.

many applications.

The next three lines show how different window sizes af-
fect agility. To test the agility of smaller window sizes in
adapting to changing bandwidth, we configure the simulator
to shut down the primary links periodically and route traffic
through lower bandwidth secondary links (see Section VI).
When we use all the packets from the beginning of the con-
nection (i.e. ����� ), RBPP has a significant error. As we
would expect, the error decreases as we decrease the window
size. The estimate with �����	� is 144% more accurate than
the �
�
� estimate.

To visualize the effect of the different window sizes, we
plotted the estimated and actual bandwidth in Figure 3. No-
tice the changes in actual bandwidth (the thin solid line) at
10, 15, 20 and 26 seconds. The actual bandwidth begins
at 10Mb/s (the bottleneck bandwidth of the primary route),
dips to 1.5Mb/s (the bottleneck bandwidth of the secondary
route) at 10 seconds, rises again to 10Mb/s at 15 seconds and
switches again between these values at 20 and 26 seconds.
We removed the ����� plot from this graph because it al-
ways remains at 10Mb/s and obscures the other plots. Notice
that all the estimates jump to the correct estimate within three
packets of the start of the connection. The plot with �����
�
adapts to the change at � ����� almost instantly, while the
��������� plot is slower to adapt. At the � ����� change, the
�
���	� plot is again more agile than the �
������� plot.

Strangely, neither plot adapts to the � ����� change. Ex-
amination of the trace revealed that the TCP code in ns was
not increasing its window as it should have. Therefore, it was
sending packets with a potential bandwidth of only 1.5Mb/s.

TABLE VI

THIS TABLE COMPARES THE ACCURACY OF DIFFERENT FILTERING

ALGORITHMS.

Alg. Filter BW Mean � Med. Max.
SB MBF 10Mb/s 0.001 0.000 0.020 0.998
SB PBF 10Mb/s 0.001 0.000 0.020 0.998
RB MBF 10Mb/s 0.001 0.000 0.020 0.998
RB PBF 10Mb/s 0.001 0.000 0.020 0.998

SB MBF 500Kb/s 0.442 2.368 0.250 25.667
SB PBF 500Kb/s 0.078 0.268 0.000 0.998
RB MBF 500Kb/s 4.355 3.394 7.000 7.000
RB PBF 500Kb/s 0.000 0.021 0.000 0.998

As we discussed in Section V-A, Packet Pair algorithms can-
not report a measured bandwidth higher than the potential
bandwidth.

We conclude from these results that we must decrease the
window size to detect changes in bandwidth quickly. This
supports the conclusion in Section IV-E that we must make a
tradeoff between timeliness and accuracy in choosing a win-
dow size.

C. Potential Bandwidth Filtering

In this section, we investigate the effectiveness of our new
filtering algorithm, PBF. As discussed in Section V-B, PBF
is designed to overcome the problems that the standard Mea-
sured Bandwidth Filtering (MBF) algorithm has on traffic
with mostly low potential bandwidth packets. It would also
be desirable if PBF performed no worse than MBF on traffic
where most of the packets have high potential bandwidth. In



order to test PBF, we used our simulated Ethernet network
for the mostly high potential bandwidth traffic and the up-
link of a simulated asymmetric cable modem network for the
mostly low potential bandwidth traffic. In addition to a vary-
ing amount of overall congestion, we also set up a second
TCP connection between the same two hosts as the first con-
nection, but in the reverse direction. This ensures that there
are at least a few high potential bandwidth packets in the out-
bound direction.

The results are summarized in Table VI. The first four
lines show that PBF is equivalent to MBF on the Ethernet
network. The next four lines show that PBF is anywhere
from 37% to 435% more accurate on average than MBF on
the cable modem network. MBF also has a significantly
lower median than PBF, so MBF’s poor average accuracy
cannot be blamed on a few outliers. Examination of the trace
verifies the analysis of Section V that the outbound link is
filled with acks which overwhelm the few data packets. This
causes MBF to incorrectly report the bandwidth of the acks
as the true bandwidth. PBF is able to filter out those samples
and discern the true bandwidth.

VIII. FUTURE WORK

In the future, we are interested in simulating more net-
works and algorithms, calculating different metrics, and test-
ing our ideas in the Internet. One type of network we did not
simulate is a wireless network. ns has support for wireless
networks, but this was not fully functional at the time we did
our experiments. Wireless networks are interesting to exam-
ine because they tend to have high loss rates and high vari-
ance in latency, both situations that would challenge Packet
Pair algorithms. In addition, we would like to simulate the
Pathchar algorithm so that we can compare its accuracy to
the passive techniques.

We would like to apply the methods described here to cal-
culate available bandwidth. As mentioned in section II-B,
some applications would find that a more useful metric. We
believe that the methods described here would apply with
some minor modifications.

We are currently using these bottleneck bandwidth mea-
surement algorithms to implement nettimer, which can
take live measurements from the Internet.

IX. CONCLUSION

We examined the characteristics of current bandwidth
measurement techniques and found several problems. We
propose statistically robust algorithms which overcome these
problems by giving timely estimates, being agile in the face
of bandwidth changes, giving more flexibility in deployment,
and working with a variety of different traffic types. Our sim-
ulation results show that our implementation is more than
37% more accurate than previous techniques.

We conclude that accurate, flexible and scalable band-
width measurement is not only possible, but desirable in or-

der to maintain the growth and reliability of many Internet
applications.

X. ACKNOWLEDGMENTS

We would like to acknowledge the help of several peo-
ple. Stuart Cheshire provided the code for utimer, which
was the inspiration for nettimer. Guido Appenzeller sug-
gested investigating robust methods of calculating density.
Marcos de Alba pointed out an error in the pathchar anal-
ysis. Vern Paxson gave us an early copy of tcpanaly and
provided valuable feedback on Potential Bandwidth Filter-
ing. Craig Partridge provided advice on the motivation. Fi-
nally, we would like to thank the many anonymous reviewers
for their feedback.

REFERENCES

[1] Mary G. Baker, Xinhua Zhao, Stuart Cheshire, and Jonathan Stone.
Supporting mobility in mosquitonet. In Proceedings of the 1996
USENIX Technical Conference, January 1996.

[2] Jean-Chrysostome Bolot. End-to-end packet delay and loss behavior
in the internet. In Proceedings of SIGCOMM, 1993.

[3] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling
internet topology. IEEE Communications Magazine, 1997.

[4] Robert L. Carter and Mark E. Crovella. Dynamic server selection us-
ing bandwidth probing in wide-area networks. Technical Report BU-
CS-96-007, Boston University, 1996.

[5] Robert L. Carter and Mark E. Crovella. Measuring bottleneck link
speed in packet-switched networks. Technical Report BU-CS-96-006,
Boston University, 1996.

[6] Stuart Cheshire and Mary Baker. Experiences with a wireless network
in mosquitonet. In Proceedings of the IEEE Hot Interconnects Sympo-
sium, 1995.

[7] William Feller. An Introduction to Probability Theory and its Appli-
cations, volume II. Wiley Eastern Limited, 1988.

[8] Van Jacobson. pathchar. ftp://ftp.ee.lbl.gov/pathchar/, 1997.
[9] Srinivasan Keshav. A control-theoretic approach to flow control. In

Proceedings of SIGCOMM, 1991.
[10] Steven McCanne, Sally Floyd, Kevin Fall, and Kannan Varadhan et al.

ns. http://www-mash.cs.berkeley.edu/ns/, 1997.
[11] Vern Paxson. End-to-end internet packet dynamics. In Proceedings of

SIGCOMM, 1997.
[12] Vern Paxson. Measurements and Analysis of End-to-End Internet Dy-

namics. PhD thesis, University of California, Berkeley, April 1997.
[13] Vern Paxson and Sally Floyd. Why we don’t know how to simulate

the internet. In Proceedings of the 1997 Winter Simulation Conference,
1997.

[14] Dave Scott. Multivariate Density Estimation: Theory, Practice and
Visualization. Addison Wesley, 1992.

[15] Srinivasan Seshan, Mark Stemm, and Randy Katz. Spand: Shared pas-
sive network performance discovery. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems, 1997.

[16] Ronald A. Thisted. Elements of Statistical Computing: Numerical
Computation. Chapman and Hall, 1988.


