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Abstract

In peer-to-peer systems, attrition attacks include both
traditional, network-level denial of service attacks as
well as application-level attacks in which malign peers
conspire to waste loyal peers’ resources. We describe
several defenses for the LOCKSS peer-to-peer digital
preservation system that help ensure that application-
level attrition attacks even from powerful adversaries are
less effective than simple network-level attacks, and that
network-level attacks must be intense, widespread, and
prolonged to impair the system.

1 Introduction

Denial of Service (DoS) attacks are among the most dif-
ficult for distributed systems to resist. Distinguishing le-
gitimate requests for service from the attacker’s requests
can be tricky, and devoting substantial effort to doing
so can easily be self-defeating. The term DoS was in-
troduced by Needham [34] with a broad meaning but
over time it has come to mean high-bit-rate network-level
flooding attacks [23] that rapidly degrade the usefulness
of the victim system. In addition to DoS, we use the
term attrition to include also moderate- or low-bit-rate
application-level attacks that impair the victim system.

The mechanisms described in this paper are aimed at
equipping the LOCKSS1 (Lots Of Copies Keep Stuff
Safe) peer-to-peer (P2P) digital preservation system to
resist attrition attacks. The system is in use at about 80
libraries worldwide; publishers of about 2000 titles have
endorsed its use. Cooperation among peers reduces the
cost and increases the reliability of preservation, elimi-
nates the need for backup, and greatly reduces other op-
erator interventions.

A loyal (non-malign) peer participates in the LOCKSS
system for two reasons: to achieve regular reassurance
that its content agrees with the consensus of the peers
holding copies of the same content, and if it does not,

to obtain the needed repair. The goal of an attrition ad-
versary is to prevent loyal peers from successfully de-
termining the consensus of their peers or from obtain-
ing requested repairs for so long that undetected storage
problems such as natural “bit rot” or human error cor-
rupt their content. Other types of resource waste may be
inconvenient but have no lasting effect on this system.

In prior work [30] we defended LOCKSS peers
against attacks seeking to corrupt their content. That sys-
tem, however, remained vulnerable to application-level
attrition; about 50 malign peers could abuse the proto-
col to prevent a network of 1000 peers from auditing and
repairing their content.

We have developed a set of defenses, some adapted
from other systems, whose combination in a P2P context
provides novel and effective protection against attrition.
These defenses include admission control, desynchro-
nization, and redundancy. Admission control, effected
via rate limitation, first-hand reputation, and effort bal-
ancing, ensures that legitimate requests can be serviced
even during malicious request floods. Desynchronization
ensures that progress continues even if some suppliers of
a needed service are currently too busy. Redundancy en-
sures that the attacker cannot incapacitate the system by
targeting only few peers at a time. Our defenses may not
all be immediately applicable to all P2P applications, but
we believe that many systems may benefit from a subset
of these defenses, and that our analysis of the effective-
ness of these defenses is more broadly useful.

This paper presents a new design of the LOCKSS pro-
tocol that makes four contributions. First, we demon-
strate via simulation how our new design ensures that
application-level attrition, no matter how powerful the
attacker, is less effective than simple network flooding.
We do this while retaining our previous resistance against
other adversaries. Second, we show that even network-
level flooding attacks that continuously prevent all com-
munication among a majority of the peers must last for
months to affect the system significantly. Such attacks



are orders of magnitude more powerful than those ob-
served in practice [33]. Third, since resource manage-
ment lies at the crux of attrition attacks and their de-
fenses, we extend our prior evaluation [30] to deal with
numerous concurrently preserved archival units of con-
tent competing with each other for resources. Finally, re-
source over-provisioning is essential in defending against
attrition attacks. We show that with a practical amount
of over-provisioning we can defend the LOCKSS system
from an arbitrarily powerful attrition adversary.

In the rest of this paper, we first describe our applica-
tion. We continue by outlining how we would like this
application to behave under different levels of attrition
attack. We give an overview of the LOCKSS protocol,
describing how it incorporates each of our attrition de-
fenses. We then explain the results of a systematic explo-
ration of simulated attacks against the resulting design,
showing that it successfully defends against attrition at-
tacks at all layers, from the network level up through
the application protocol. Finally, we describe how the
new LOCKSS protocol compares to our previous work,
as well as other related work.

2 The Application

In this section, we provide an overview of the digital
preservation problem for academic publishing. We then
present and justify the set of design goals required of
any solution to this problem, setting the stage for the
LOCKSS approach in subsequent sections.

Academic publishing has migrated to the Web [46],
placing society’s scientific and cultural heritage at a vari-
ety of risks such as confused provenance, accidental edit-
ing by the publisher, storage corruption, failed backups,
government or corporate censorship, and vandalism. The
LOCKSS system was designed [39] to provide librarians
with the tools they need to preserve their community’s
access to journals and other Web materials.

Any solution must meet six stringent requirements.
First, since under U.S. law copyrighted Web content
can only be preserved with the owner’s permission [16],
the solution must accommodate the publishers’ interests.
Requiring publishers, for example, to offer perpetual no-
fee access or digital signatures on content makes them
reluctant to give that permission. Second, a solution
must be extremely cheap in terms of hardware, operating
cost, and human expertise. Few libraries could afford [3]
a solution involving handling and securely storing off-
line media, but most can afford the few cheap off-the-
shelf PCs that provide sufficient storage for tens of thou-
sands of journal-years. Third, the existence of cheap,
reliable storage cannot be assumed; affordable storage
is unreliable [22, 38]. Fourth, a solution must have a
long time horizon. Auditing content against stored dig-

ital signatures, for example, assumes not only that the
cryptosystem will remain unbroken, but also that the se-
crecy, integrity, and availability of the keys are guaran-
teed for decades. Fifth, a solution must anticipate ad-
versaries capable of powerful attacks sustained over long
periods; it must withstand these attacks, or at least de-
grade slowly and gracefully while providing unambigu-
ous warnings [37]. Sixth, a solution must not require a
central locus of control or administration, if it is to with-
stand concentrated technical or legal attacks.

Two different architectures have been proposed for
preserving Web journals. The centralized architecture
of a “trusted third party” archive requires publishers to
grant a third party permission, under certain circum-
stances, to republish their content. Obtaining this per-
mission involves formidable legal and business obsta-
cles [5]. In contrast, the distributed architecture of the
LOCKSS system consists of many individual archives at
subscribing (second party) libraries. Readers only ac-
cess their local library’s copy, whose subscription al-
ready provides them access to the publisher’s copy. Most
publishers see this as less of a risk to their business,
and are willing to add this permission to the subscription
agreement. It is thus important to note that our goal is not
to minimize the number of replicas consistent with con-
tent safety. Instead, we strive to minimize the per-replica
cost of maintaining a large number of replicas. We trade
extra replicas for fewer lawyers, an easy decision given
their relative costs.

The LOCKSS design is extremely conservative, mak-
ing few assumptions about the infrastructure. Although
we believe this is appropriate for a digital preservation
system, less conservative assumptions are certainly pos-
sible. Increasing risk can increase the amount of content
that can be preserved with given computational power.
Limited amounts of reliable, write-once memory would
allow audits against local hashes, a reliable public key in-
frastructure might allow publishers to sign their content
and peers to audit against the signatures, and so on. Con-
servatively, the assumptions underlying such optimiza-
tions could be violated without warning at any time; the
write-once memory might be corrupted or mishandled,
or a private key might leak. Thus, these optimizations
still require a distributed audit mechanism as a fallback.
The more a peer operator can do to avoid local failures
the better the system works, but our conservative design
principles lead us to focus on mechanisms that minimize
dependence on these efforts.

With the application of digital preservation for aca-
demic publishing in mind, we tackle the “abstract” prob-
lem of auditing and repairing replicas of distinct archival
units or AUs (a year’s run of an on-line journal, in our
target application) preserved by a population of peers (li-
braries) in the face of attrition attacks. For each AU it



preserves, a peer starts out with its own, correct replica
(obtained from the publisher’s Web site), which it can
only use to satisfy local read requests (from local pa-
trons) and to assist other peers with replica repairs. In
the rest of this paper we refer to AUs, peers, and repli-
cas, rather than journals and libraries.

3 System Model

In this section we present the adversary we model, our
security goals and the framework for our defenses.

3.1 Adversary Model
Our conservative design philosophy leads us to assume
a powerful adversary with several important abilities.
Pipe stoppage is his ability to prevent communication
with victim peers for extended periods by flooding links
with garbage packets or using more sophisticated tech-
niques [26]. Total information awareness allows him to
control and monitor all of his resources instantaneously.
He has unconstrained identities in that he can purchase
or spoof unlimited network identities. Insider informa-
tion provides him complete knowledge of victims’ sys-
tem parameters and resource commitments. Masquerad-
ing means that loyal peers cannot detect him, as long as
he follows the protocol. Finally, he has unlimited com-
putational resources, though he is polynomially bounded
in his computations (i.e., he cannot invert cryptographic
functions).

The adversary employs these capabilities in effortless
and effortful attacks. An effortless attack requires no
measurable computational effort from the attacker and
includes traditional DoS attacks such as pipe stoppage.
An effortful attack requires the attacker to invest in the
system with computational effort.

3.2 Security Goals
The overall goals of the LOCKSS system are that, with
high probability, the consensus of peers reflects the cor-
rect AU, and readers access good data. In contrast, an
attrition adversary’s goal is to decrease significantly the
probability of these events by preventing peers from au-
diting their replicas for a long time, long enough for un-
detected storage problems such as “bit rot” to occur.

Severe but narrowly focused pipe stoppage attacks in
the wild last for days or weeks [33]. Our goal is to ensure
that, in the very least, the LOCKSS system withstands
or degrades gracefully with even broader such attacks
sustained over months. Beyond pipe stoppage, attackers
must use protocol messages to some extent. We seek to
ensure the following three conditions. First, a peer man-
ages its resources so as to prevent exhaustion no matter

how much effort is exerted by however many identities
requesting service. Second, when deciding which re-
quests to service, a peer gives preference to requests from
those likely to behave properly (i.e., “ostensibly legiti-
mate”). And third, at every stage of a protocol exchange,
an ostensibly legitimate attacker expends commensurate
effort to that which he imposes upon the defenders.

3.3 Defensive Framework

We seek to curb the adversary’s success by modeling
a peer’s processing of inbound messages as a series of
filters, each costing a certain amount to apply. A mes-
sage rejected by a filter has no further effect on the peer,
allowing us to estimate the cost of eliminating whole
classes of messages from further consideration. Each fil-
ter increases the effort a victim needs to defend itself,
but limits the effectiveness of some adversary capability.
The series of filters as a whole is sound if the cost of ap-
plying a filter to the input stream passed through its pre-
ceding filter is low enough to permit the system to make
progress. The filters include a volume filter, a reciprocity
filter, and a series of effort filters.

The volume filter models a peer’s network connection.
It represents the physical limits on the rate of inbound
messages that an adversary can force upon the peer. It is
an unavoidable filter; no adversary can push data through
a victim’s network card at a rate greater than the card’s
throughput. Soundness requires the volume filter to re-
strict the volume of messages enough that processing
costs at the next filter downstream are low. This con-
dition can be enforced either through traffic shaping or
via the low-tech choice of configuring peers with low-
bandwidth network cards.

The reciprocity filter takes inbound messages at the
maximum rate exported by the volume filter and further
limits them by rejecting those sent from peers who ap-
pear to be misbehaving. A peer’s reciprocity filter fa-
vors those of its peers who engage it with requests at the
same average rate as it engages them. The filter further
penalizes those peers it has not known for long enough
to evaluate their behavior. In this sense, the reciprocity
filter implements a self-clocking invariant, by which in-
bound traffic exiting the filter mirrors in volume traffic
originated at the peer. Thus on average the number of
requests passed to the next filter matches the number of
requests inflicted by the peer upon others.

The effort filters focus on the balance of effort ex-
pended by the peer and a correspondent peer while the
two are cooperating on an individual content audit re-
quest. These filters ensure that the computational effort
imposed upon a potential victim peer by its ostensibly le-
gitimate correspondent is matched by commensurate ef-
fort borne by that correspondent. For example, an at-



tacker can only trick its victim peer into cryptograph-
ically hashing large amounts of data by first perform-
ing the same hash itself (or other effort equivalent to the
same hash). As a result, these filters enforce the invariant
that ostensible legitimacy costs the attacker as much as it
allows the attacker to inflict on its victim. Furthermore,
the effort filters ensure that a peer can detect at a low cost
that an attacker has abandoned ostensible legitimacy.

In summary, these filters take an input stream of pro-
tocol messages and reduce it to levels consistent with le-
gitimate traffic in terms of volume (volume filter), then
in number of individual messages per source (reciprocity
filter), and then in effort induced per message (effort fil-
ters). Malicious interactions that pass all filters can ulti-
mately affect the victim peer adversely, but are ensured
to impose no more than manageable additional burden on
the victim peer and are guaranteed to cost the attacker as
much burden in the process. The former guarantee is es-
sential for the correct operation of good peers in all cases,
whereas the latter is only meaningful when the adversary
is resource-constrained.

We show in Section 7.4 that the most effective strat-
egy for effortful attacks is to emulate legitimacy, and that
even this has minimal effect on the utility of the system.
Effortless attacks, such as traditional distributed DoS
(DDoS) attacks, are more effective but must be main-
tained for a long time against most of the peer population
to degrade the system significantly (Section 7.2).

4 The LOCKSS Replica Auditing and Re-
pair Protocol

The LOCKSS audit process is a sequence of “opinion
polls” conducted by every peer on each of its AU repli-
cas. At intervals, typically every 3 months, a peer (the
poller) picks a random sample of peers that it knows
to be preserving an AU, and invites those peers as vot-
ers into a poll. Each voter individually hashes a poller-
supplied nonce and its replica of the AU to produce a
fresh vote, which the poller tallies. If the poller is out-
voted in a landslide (e.g., it disagrees with 80% of the
votes), it assumes its replica is corrupt and repairs it from
a disagreeing voter. The roles of poller and voter are dis-
tinct, but every peer plays both.

The general structure of a poll follows the timeline of
Figure 1. A poll consists of two phases: vote solicita-
tion and evaluation. In the vote solicitation phase the
poller requests and obtains votes from as many voters in
its sample of the population as possible. Then the poller
begins the evaluation phase, during which it compares
these votes to its own replica, one hashed content block at
a time, and tallies them. If the hashes disagree the poller
may request repair blocks from its voters and reevaluate
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Figure 1: A timeline of a poll, showing the message ex-
change between the poller and a voter.

the block. If in the eventual tally, after any repairs, the
poller agrees with the landslide majority, it sends a re-
ceipt to each of its voters and immediately starts a new
poll. Peers interleave progress on their own polls with
voting in other peers’ polls, spreading each poll over a
period chosen so that polls on a given AU occur at a rate
much higher than that of undetected storage errors.

4.1 Vote Solicitation

The outcome of a poll is determined by the votes of the
inner circle peers, chosen at the start of the poll by the
poller from its reference list for the AU. The reference
list contains mostly peers that have agreed with the poller
in recent polls on the AU, and a few peers from its static
friends list, maintained by the poller’s operator.

A poll is considered successful if its result is based
on a minimum number of inner circle votes, the quorum,
which is typically 10, but may change according to the
application’s needs for fault tolerance. To ensure that
a poll is likely to succeed, a poller invites into its poll
a larger inner circle than the quorum (typically, twice as
large). If at first try an inner circle peer fails to respond to
an invitation, or refuses it, the poller contacts a different
inner circle voter, retrying the reluctant peer later in the
same vote solicitation phase.

An individual vote solicitation consists of four mes-
sages (see Figure 1): Poll, PollAck, PollProof, and Vote.
For the duration of a poll, a poller establishes an en-
crypted TLS session with each voter individually, via an
anonymous Diffie-Hellman key exchange. Every proto-
col message is conveyed over this TLS session, either
keeping the same TCP connection from message to mes-
sage, or resuming the TLS session over a new one.

The Poll message invites a voter to participate in a poll
on an AU. The invited peer responds with a PollAck mes-
sage, indicating either a refusal to participate in the poll
at the time, or an acceptance of the invitation, if it can
compute a vote within a predetermined time allowance.
The voter commits and reserves local resources to that ef-



fect. The PollProof message supplies the voter with a ran-
dom nonce to be used during vote construction. To com-
pute its vote, the voter uses a cryptographic hash function
to hash the nonce supplied by the poller, followed by its
replica of the AU, block by block. The vote consists of
the running hashes produced at each block boundary. Fi-
nally, the voter sends its vote back to the poller in a Vote
message.

These messages also contain proofs of computational
effort, such as those introduced by Dwork et al. [15],
sufficient to ensure that, at every protocol stage, the re-
quester of a service has more invested in the exchange
than the supplier of the service (see Section 5.1).

4.2 Peer Discovery
The poller uses the vote solicitation phase of a poll not
only to obtain votes for the current poll, but also to dis-
cover new peers for its reference list from which it can
solicit inner circle votes in future polls.

Discovery is effected via nominations included in Vote
messages. A voter picks a random subset of its cur-
rent reference list, which it includes in the Vote message.
The poller accumulates these nominations. When it con-
cludes its inner circle solicitations, it chooses a random
sample of these nominations as its outer circle. It pro-
ceeds to solicit regular votes from these outer circle peers
in a manner identical to that used for inner circle peers.

The purpose of the votes obtained from outer circle
voters is to show the “good behavior” of newly discov-
ered peers. Those who perform correctly, by supplying
votes that agree with the prevailing outcome of the poll,
are added into the poller’s reference list at the conclu-
sion of the poll; the outcome of the poll is computed only
from inner-circle votes.

4.3 Vote Evaluation
Once the poller has accumulated all votes it could obtain
from inner and outer circle voters, it begins the poll’s
evaluation phase. During this phase, the poller computes,
in parallel, all block hashes that each voter should have
computed, if that voter’s replica agreed with the poller’s.
A vote agrees with the poller on a block if the hash in the
vote and that computed by the poller are the same.

For each hash computed by the poller for an AU block,
there are three possibilities: first, the landslide majority
of inner-circle votes (e.g., 80%) agree with the poller; in
this case, the poller considers the audit successful up to
this block and proceeds with the next block. Second, the
landslide majority of inner-circle votes disagree with the
poller; in this case, the poller regards its own replica of
the AU as damaged, obtains a repair from one of the dis-
agreeing voters (via the RepairRequest and Repair mes-

sages), and reevaluates the block hoping to find itself in
the landslide majority, as above. Third, if there is no
landslide majority of agreeing or disagreeing votes, the
poller deems the poll inconclusive, raising an alarm that
requires attention from a human operator.

Throughout the evaluation phase, the poller may also
decide to obtain a repair from a random voter, even if
one is not required (i.e., even if the corresponding block
met with a landslide agreement). The purpose of such
frivolous repairs is to prevent targeted free-riding via the
refusal of repairs; voters are expected to supply a small
number of repairs once they commit to participate in a
poll, and are penalized otherwise (Section 5.1).

If the poller hashes all AU blocks without raising an
alarm, it concludes the poll by sending an evaluation re-
ceipt to each voter (with an EvaluationReceipt message),
containing cryptographic proof that it has evaluated re-
ceived votes. The poller then updates its reference list
by removing all voters whose votes determined the poll
outcome and by inserting all agreeing outer-circle voters
and some peers from the friends list (for details see [30]).
The poller then restarts a poll on the same AU, schedul-
ing it to conclude one interpoll interval into the future.

5 LOCKSS Defenses

Here we outline the attrition defenses of the LOCKSS
protocol: admission control, desynchronization, and re-
dundancy. These defenses raise system costs for both
loyal peers and attackers, but favor ostensible legiti-
macy. Given a constant amount of over-provisioning,
loyal peers continue to operate at the necessary rate re-
gardless of the attacker’s power. Many systems over-
provision resources to protect performance from known
worst-case behavior (e.g., the Unix file system [31]).

In prior work [30] we applied some of these defenses
(such as redundancy and some aspects of admission con-
trol, including rate limitation and effort balancing) to
combat powerful attacks aiming to modify content with-
out detection or to discredit the intrusion detection sys-
tem with false alarms. In this work, we combine these
previous defenses with new ones to defend against attri-
tion attacks as well.

5.1 Admission Control

The purpose of the admission control defense is to ensure
that a peer can control the rate at which it considers poll
invitations from others, favoring invitations from those
who operate at roughly the same rate as itself and pe-
nalizing others. We implement admission control using
three mechanisms: rate limitation, first-hand reputation,
and effort balancing.



Rate Limitation: Without limits on the rate at which
they attempt to service requests, peers can be over-
whelmed by floods of ostensibly valid requests. Rate
Limitation suggests that peers should initiate and sat-
isfy requests no faster than necessary rather than as
fast as possible. Because readers access only their lo-
cal LOCKSS peer, the audit and repair protocol is not
subject to end-users’ unpredictable request patterns. The
protocol can proceed at its own pace, providing an inter-
esting test case for rate limitation.

We identify three possible attacks based on deviation
from the necessary rate of polling. A poll rate adversary
seeks to trick victims into either decreasing (e.g., through
back-off behavior) or increasing (e.g., through recovery
from a failed poll) their rate of calling polls. A poll flood
adversary seeks, under a multitude of identities, to invite
victims into as many frivolous polls as possible to crowd
out the legitimate poll requests and thereby reduce the
ability of loyal peers to audit and repair their content. A
vote flood adversary seeks to supply as many bogus votes
as possible to exhaust loyal pollers’ resources in useless
but expensive proofs of invalidity.

Peers defend against all these adversaries by setting
their rate limits autonomously, not varying them in re-
sponse to other peers’ actions. Responding to adversity
(inquorate polls or perceived contention) by calling polls
more frequently could aggravate the problem; backing
off to a lower rate of polls would achieve the adversary’s
aim of slowing the detection and repair of damage. Kuz-
manovic et al. [26] describe a similar attack in the context
of TCP retransmission timers. Because peers do not re-
act, the poll rate adversary has no opportunity to attack.
The price of this fixed rate of operation is that, absent
manual intervention, a peer may take several interpoll in-
tervals to recover from a catastrophic storage failure.

The poll flood adversary tries to get victims to over-
commit their resources or at least to commit excessively
to the adversary. To prevent over-commitment, peers
maintain a task schedule of their promises to perform ef-
fort, both to generate votes for others and to call their
own polls. If the effort of computing the vote solicited
by an incoming Poll message cannot be accommodated
in the schedule, the invitation is refused. Furthermore,
peers limit the rate at which they even consider poll invi-
tations (i.e., establishing a secure session, checking their
schedule, etc.). A peer sets this rate limit for considering
poll invitations according to the rate of poll invitations
it sends out to others; this is essentially a self-clocking
mechanism. We explain how this rate limit is enforced in
the first-hand reputation description below. We evaluate
our defenses against poll flood strategies in Section 7.3.

The vote flood adversary is hamstrung by the fact that
votes can be supplied only in response to an invitation
by the putative victim poller, and pollers solicit votes at

a fixed rate. Unsolicited votes are ignored.
First-hand reputation: A peer locally maintains and

uses first-hand reputation (i.e., history) for other peers.
For each AU it preserves, each peer P maintains a
known-peers list containing an entry for every peer Q
that P has encountered in the past, tracking P ’s exchange
of votes with Q. The entry holds a reputation grade for
Q, which takes one of three values: debt, even, or credit.
A debt grade means that Q has supplied P with fewer
votes than P has supplied Q. A credit grade means P
has supplied Q with fewer votes than Q has supplied P .
An even grade means that P and Q are even in their re-
cent exchanges of votes. Entries in the known-peers list
“decay” with time toward the debt grade.

In a protocol interaction, the poller and a voter each
modify the grade assigned to the other depending on their
respective behaviors. If the voter supplies a valid vote
and valid repairs for any blocks the poller requests, then
the poller increases the grade it assigns to the voter (from
debt to even, from even to credit, or from credit to credit)
and the voter correspondingly decreases the grade it as-
signs to the poller. If either the poller or the voter mis-
behave (e.g., the voter commits to supplying a vote but
does not, or the poller does not send a valid evaluation
receipt), then the other peer decreases its grade to debt.
This is similar to the reciprocative strategy of Feldman
et al. [17], in that it penalizes peers who do not recipro-
cate. This reputation system thus reduces free-riding, as
it is not possible for a peer to maintain an even or credit
grade without providing valid votes.

Peers randomly drop some poll invitations arriving
from previously unknown peers and from known pollers
with a debt grade. To discourage identity whitewash-
ing the drop probability imposed on unknown pollers is
higher than that imposed on known indebted pollers. In-
vitations from known pollers with an even or credit grade
are not dropped.

Invitations from unknown or indebted pollers are sub-
ject to a rigid rate limit; after it admits one such invita-
tion for consideration, a voter enters a refractory period.
Like the known-peers list, refractory periods are main-
tained on a per AU basis. During a refractory period, a
voter automatically rejects all invitations from unknown
or indebted pollers. Consequently, during every refrac-
tory period, a voter admits at most one invitation from
unknown or indebted peers, plus at most one invitation
from each of its fellow peers with a credit or even grade.

Since credit and even grades decay with time, the total
“liability” of a peer in the number of invitations it can
admit per refractory period is limited to a small constant
number. The duration of the refractory period is thus
inversely proportional to the rate limit imposed by the
peer on the per AU poll invitations it considers.

If a victim peer’s clock could be sped up over several



poll intervals then the refractory period could be short-
ened, increasing the effectiveness of poll flood attacks.
The victim would call polls at a faster rate, indebting the
victim to its peers and making its invitations less likely
to be accepted. However, halving the refractory period
from 24 to 12 hours has little effect (see Section 7.4).
Doubling the rate of issuing invitations does not affect
other peers significantly since the invitations are not ac-
cepted. Further, an attack via the Network Time Proto-
col [32] that doubles a victim’s clock rate for months on
end would be easy to detect.

Continuous triggering of the refractory period can stop
a victim voter from accepting invitations from unknown
peers who are loyal; this can limit the choices of voters
a poller has to peers that know the poller already. To
reduce this impediment to diversity, we institute the con-
cept of peer introductions. A peer may introduce to oth-
ers those peers it considers loyal; peers introduced this
way bypass random drops and refractory periods. Intro-
ductions are bundled along with nominations during the
regular discovery process (Section 4.2). Specifically, a
poller randomly partitions the peer identities in a Vote
message into outer circle nominations and introductions.
A poll invitation from an introduced peer is treated as
if coming from a known peer with an even grade. This
unobstructed admission consumes the introduction such
that at most one introduction is honored per (validly vot-
ing) introducer, and unused introductions do not accu-
mulate. Specifically, when consuming the introduction
of peer B by peer A for AU X , all other introductions
of other introducees by peer A for AU X are “forgot-
ten,” as are all introductions of peer B for X by other
introducers. Furthermore, introductions by peers who
have entered and left the reference list are also removed,
and the maximum number of outstanding introductions
is capped.

Effort Balancing: If a peer expends more effort to re-
act to a protocol message than did the sender of that mes-
sage to generate and transmit it, then an attrition attack
need consist only of a flow of ostensibly valid protocol
messages, enough to exhaust the victim peer’s resources.

Real-world attackers may be very powerful but their
resources are finite; markets have arisen to allocate pools
of compromised machines to competing uses [19]. Rais-
ing the computational cost of attacking one target system
both absolutely and relative to others will reduce the fre-
quency of attacks. Our simulations are conservative; the
unconstrained adversary has ample power for any attack.
But our design is more realistic. It adapts the ideas of
pricing via processing [15] to discourage attacks from
resource-constrained adversaries by effort balancing our
protocol. We inflate the cost of a request by requiring
it to include a proof of computational effort sufficient to
ensure that the total cost of generating the request ex-

ceeds that imposed on the receiver both for verifying
the effort proof and for satisfying the request. We favor
Memory-Bound Functions (MBF) [14] rather than CPU-
bound schemes such as “client puzzles” [12] for this pur-
pose, because the spread in memory system performance
is smaller than that of CPU performance [13].

Applying an effort filter at each step of a multi-step
protocol defends against three attack patterns: first, de-
sertion strategies in which the attacker stops taking part
some way through the protocol, having spent less effort
in the process than the effort inflicted upon his victim;
second, reservation strategies that cause the victim to
commit resources the attacker does not use, making those
resources unavailable to other, useful tasks; and, third,
wasteful strategies in which service is obtained but the
result is not “consumed” by the requester as expected by
the protocol, in an attempt to minimize the attacker’s to-
tal expended effort.

Pollers could mount a desertion attack by cheaply so-
liciting an expensive vote. To discourage this, the poller
must include provable effort in its vote solicitation mes-
sages (Poll and PollProof) that in total exceeds, by at least
an amount described in the next paragraph, the effort re-
quired by the voter to verify that effort and to produce
the requested vote. Producing a vote amounts to fetching
an AU replica from disk, hashing it, and shipping back
to the poller one hash per block in the Vote message.

Voters could mount a desertion attack by cheaply gen-
erating a bogus vote in response to an expensive solicita-
tion, returning garbage instead of block hashes to waste
not merely the poller’s solicitation effort but also its ef-
fort to verify the hashes. Because the poller evaluates the
vote one block at a time, it costs the effort of hashing one
block to detect that the vote disagrees with its own AU
replica, which may mean either that the vote is bogus,
or that the poller’s and voter’s replicas of the AU differ
in that block. The voter must therefore include in the
Vote message provable effort sufficient to cover the cost
of hashing a single block and of verifying this effort. The
extra effort in the solicitation messages referred to above
is required to cover the generation of this provable effort.

Pollers could mount a reservation attack by sending a
valid Poll message to cause a voter to reserve time for
computing a vote in anticipation of a PollProof message
the poller never sends. When a voter accepts a poller’s
invitation, it reserves a block of time in the future to com-
pute the vote. When it is time to begin voting, the voter
sets a timeout and waits for the poller to send a PollProof
if it has not done so already. If the timeout expires, the
voter can reschedule the remainder of the block of time
as it pleases. The attack exploits the voter’s inability to
reallocate the timeout period to another operation by ask-
ing for a vote and then never sending a PollProof. To dis-
courage this, pollers must include sufficient introductory
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Figure 2: The effects of the logical filters on the incoming stream of poll invitations at a single peer. Rectangles
represent poll invitation streams from the different peers a, b, c, etc., during the same time interval [0, t]. We show the
streams as shaped by the combination of filters, adding one filter at a time, to illustrate each filter’s incremental effect.
Within a peer’s poll invitation stream, vertical gray bands represent individual invitation requests.

effort in Poll messages to match the opportunity cost the
voter experienced while waiting for the timeout.

Pollers could mount a wasteful attack by soliciting ex-
pensive votes and then discarding them unevaluated. To
discourage this we require the poller, after evaluating a
vote, to supply the voter with an unforgeable evaluation
receipt proving that it evaluated the vote. Voters generate
votes and pollers evaluate them using very similar pro-
cesses: generating or validating effort proofs and hashing
blocks of the local AU replica. Conveniently, generating
a proof of effort using our chosen MBF mechanism also
generates 160 bits of unforgeable byproduct. The voter
remembers the byproduct; the poller uses it as the evalua-
tion receipt to send to the voter. If the receipt matches the
voter’s remembered byproduct the voter knows the poller
performed the necessary effort, regardless of whether the
poller was loyal or malicious.

Section 7.4 shows how effort balancing fares against
all three types of attacks mounted by pollers. We omit
the evaluation of these attacks by voters, since they are
rendered ineffective by the rate limits described above.

The Filters Revisited: Figure 2 illustrates how the de-
fenses of rate limitation, first-hand reputation, and effort
balancing, enforced as serial filters over incoming traffic
(see Section 3.3), can protect LOCKSS peers from attri-
tion attackers. Among the peers with an initially good
standing (a through e), a and c maintain a steady balance
of requested votes throughout the time interval 0 to t.
Note that a asks for two votes in close succession; this is
an instance of a peer expending its “credit.” In contrast,
b requests many more votes in close succession than jus-
tified by its grade and is downgraded to the debt grade by
the reciprocity filter, eventually becoming subject to the
refractory period. d behaves with ostensible legitimacy
with regards to the rate of invitations it sends, but misbe-
haves by deserting (e.g., by not supplying correct effort

proofs) and, as a result, is downgraded to the debt grade
by the effort filter. d’s subsequent invitations are subject
to the refractory period. g is initially unknown and there-
fore subject to the refractory period, but behaves ostensi-
bly legitimately and is upgraded to even or credit grade,
freeing itself from the refractory period. Peers f , h, i,
and j request many more votes than reasonable and oc-
casionally send simultaneous traffic spikes which exceed
link capacity; they are thinned out by the volume filter
along with other peers’ traffic. These peers, as well as
misbehaving peers b and d, share the same refractory pe-
riod and therefore only one invitation from them can be
accepted per refractory period.

5.2 Desynchronization

The desynchronization defense avoids the kind of in-
advertent synchronization observed in many distributed
systems, typically by randomization. Examples include
TCP sender windows at bottleneck routers, clients wait-
ing for a busy server, and periodic routing messages [18].
Peer-to-peer systems in which a peer requesting service
must find many others simultaneously available to supply
that service (e.g., in a read-one-write-many fault-tolerant
system [28]) may encounter this problem. If they do,
even absent an attack, moderate levels of peer busyness
can prevent the system from delivering services. In this
situation, a poll flood attacker may only need to increase
peer busyness slightly to have a large effect.

Simulations of poll flood attacks on an earlier version
of the protocol [29] showed this effect. Loyal pollers
suffered because they needed to find a quorum of voters
who could simultaneously vote on an AU. They had to be
chosen at random to make directed subversion hard for
the adversary. They also needed to have free resources
at the specified time, in the face of resource contention



from other peers competing for voters on the same or
other AUs. Malign peers had no such constraints, and
could invite victims one by one into futile polls.

Peers avoid this problem by soliciting votes individu-
ally rather than synchronously, extending the period dur-
ing which a quorum of votes can be collected before they
are all evaluated. A poll is thus a sequence of two-party
interactions rather than a single multi-party interaction.

5.3 Redundancy

If the survival of, or access to, an AU relied only on a few
replicas, an attrition attack could focus on those replicas,
cutting off the communication between them needed for
audit and repair. Each LOCKSS peer preserving an AU
maintains its own replica and serves it only to its local
clients. This massive redundancy helps resist attacks in
two ways. First, it ensures that a successful attrition at-
tack must target most of the replicas, typically a large
number of peers. Second, it forces the attrition attack to
suppress the communication or activity of the targeted
peers continuously for a long period. Unless the attack
does both, the targeted peers recover by auditing and re-
pairing themselves from the untargeted peers, as shown
in Section 7.2. This is because massive redundancy al-
lows peers at each poll to choose a sample of their ref-
erence list that is bigger than the quorum and continue
to solicit votes from them at random times for the entire
duration of a poll (typically 3 months) until the voters ac-
cept. Further, the margin between the rate at which peers
call polls and the rate at which they suffer undetected
damage provides redundancy in time. A single failed poll
has little effect on the safety of its caller’s replica.

6 Simulation

In this section we give details about the simulation envi-
ronment and the metrics we use to evaluate the system’s
effectiveness in meeting its goals.

6.1 Evaluation Metrics

We measure the effectiveness of our defenses against the
attrition adversary using four metrics:

Access failure probability: To measure the success of
an attrition adversary at increasing the probability that a
reader obtains a damaged AU replica, we compute the
access failure probability as the fraction of all replicas
in the system that are damaged, averaged over all time
points in the experiment.

Delay ratio: To measure the degradation an attrition
adversary achieves, we compute the delay ratio as the
mean time between successful polls at loyal peers with

the system under attack divided by the same measure-
ment without the attack.

Coefficient of friction: To measure the cost of an attack
to loyal peers, we measure the coefficient of friction, de-
fined as the average effort expended by loyal peers per
successful poll during an attack divided by their average
per-poll effort absent an attack.

Cost ratio: To compare the cost of an effortful attack
to the adversary and to the defenders, we compute the
cost ratio, which is the ratio of the total effort expended
by the attackers during an attack to that of the defenders.

6.2 Environment and Adversaries
We run our experiments using Narses [20], a discrete-
event simulator that provides facilities for modeling
computationally expensive operations, such as comput-
ing MBF efforts and hashing documents. Narses allows
experimenters to pick from a range of network models
that trade off speed for accuracy. A simplistic network
model that accounts for network delays but not conges-
tion, except for the side-effects of a pipe stoppage ad-
versary’s artificial congestion, suffices for our current fo-
cus on application-level effects. Peers’ link bandwidths
are uniformly distributed among three choices: 1.5, 10,
and 100 Mbps, and latencies are uniformly distributed
between 1 and 30 ms.

Nodes in the system are divided into two categories:
loyal peers and the adversary’s minions. Loyal peers are
uncompromised peers that execute the protocol correctly.
Adversary minions are nodes that collaborate to execute
the adversary’s attack strategy.

We conservatively simulate the adversary as a cluster
of nodes with as many IP addresses and as much compute
power as he needs. Each adversary minion has complete
and instantaneous knowledge of all adversary state and
has a magically incorruptible copy of all AUs. Other as-
sumptions about our adversary that are less relevant to
attrition can be found in [30].

To distill the cost of an attack from other efforts the
adversary might have to shoulder (e.g., to masquerade
as a loyal peer), in these experiments he is completely
outside of the network of loyal peers. Loyal peers never
ask his minions to vote in polls and he only asks loyal
peers to vote in his polls. This differs from LOCKSS
adversaries we have studied before [30].

6.3 Simulation Parameters
We evaluate the preservation of a collection of AUs dis-
tributed among a population of loyal peers. For simplic-
ity in this stage of our exploration, we assume that each
AU is 0.5 GBytes (a large AU in practice). Each peer
maintains 50 to 600 AUs. All peers have replicas of all



AUs; we do not yet simulate the diversity of local col-
lections we expect will evolve over time. These simpli-
fications allow us to focus our attention on the common
performance of our attrition resistance machinery, ignor-
ing for the time being how that performance varies when
AUs vary in size and popularity. Note that our 600 sim-
ulated AUs total about 10% of the size of the annual AU
intake of a large journal collection such as that of Stan-
ford University Libraries. Adding the equivalent of 10
of today’s low-cost PCs per year and consolidating them
as old PCs are rendered obsolete is an affordable deploy-
ment scenario for such a library. We set all costs of primi-
tive operations (hashing, encryption, L1 cache and RAM
accesses, etc.) to match the capabilities of a low-cost PC.

All simulations have a constant loyal peer population
of 100 nodes and run for 2 simulated years, with 3 runs
per data point. Each peer runs a poll on each of its AUs
on average every 3 months. Each poll uses a quorum of
10 peers and considers landslide agreement as having a
maximum of 3 disagreeing votes. These parameters were
empirically determined from previous iterations of the
deployed beta protocol. We set the fixed drop probability
to be 0.90 for unknown peers and 0.80 for indebted peers.

We set the fixed drop probability for indebted peers
and the cost of verifying an introductory effort so that the
cumulative introductory effort expended by an effortful
attack on dropped invitations is more than the voter’s ef-
fort to consider the adversary’s eventually admitted invi-
tation. Since an adversary has to try with indebted iden-
tities on average 5 times to be admitted (thanks to the
1 − 0.8 = 0.2 admission probability), we set the intro-
ductory effort to be 20% of the total effort required of a
poller; by the time the adversary has gotten his poll invi-
tation admitted, even if he defects for the rest of the poll,
he has already expended on average 100% of the effort
he would have, had he behaved well in the first place.

Memory limits in the Java Virtual Machine prevent
Narses from simulating more than about 50 AUs/peer in
a single run. We simulate 600-AU collections by layer-
ing 50 AUs/peer runs, adding the tasks caused by one
layer’s 50 AUs to the task schedule for each peer accu-
mulated during the preceding layers. In effect, layer n is
a simulation of 50 AUs on peers already running a real-
istic workload of 50(n − 1) AUs. The effect is to over-
estimate the peer’s busyness for AUs in higher layers and
under-estimate it for AUs in lower layers; AUs in a layer
compete for the resources left over by lower layers, but
AUs in lower layers are unaffected by the resources used
in higher layers. We have validated this technique against
unlayered simulations in smaller collections, as well as
against simulations in which inflated per-AU preserva-
tion costs cause similar levels of peer load; we found
negligible differences.

We are currently exploring the parameter space but

use the following heuristics to help determine parame-
ter values. The refractory period of one day allows for
90 invitations from unknown or indebted peers to be ac-
cepted per 90-day interpoll interval; in contrast, a peer
requires an average of 30 votes per poll and, because of
self-clocking, should be able to accept at least an aver-
age of 30 poll invitations per interpoll interval. Conse-
quently, the one-day refractory period allows up to a total
of 120 invitations per poll period, four times the rate of
poll invitations that should be expected in the absence of
attacks.

7 Results

The probability of access failure summarizes the success
of an attrition attack. We start by establishing a baseline
rate of access failures absent an attack. We then assess
the effectiveness against this baseline of the effortless at-
tacks we consider: network-level flooding attacks on the
volume filter in Section 7.2, and Sybil attacks on the reci-
procity filter in Section 7.3. Finally, in Section 7.4 we
assess against this baseline each of the effortful attacks
corresponding to each effort filter.

In each case we show the effect of increasing scales of
attack on the access failure probability, and relevant sup-
porting graphs including the delay ratio, the coefficient
of friction, and for effortful attacks the cost ratio.

Our mechanisms for defending against an attrition
adversary raise the effort required per loyal peer. To
achieve a bound on access failure probabilities, one must
be willing to over-provision the system to accommodate
the extra effort. Over-provisioning the system by a con-
stant factor defends it against application-level attrition
attacks of unlimited power (Sections 7.3 and 7.4).

7.1 Baseline

The LOCKSS polling process is intended to detect and
recover from storage damage that is not detected locally,
from causes such as “bit rot,” human error and attack.
Our simulated peers suffer such damage at rates of one
block in 1 to 5 disk years (50 AUs per disk). This is an
aggressively inflated rate of undetected damage, given
that, for instance, it is 125-400% the rate of detected
failures in Talagala’s study of IDE drives in a large disk
farm [45]. Experience with the IDE drives in deployed
LOCKSS peers covers about 10 times as many disk years
but with less reliable data collection; it suggests much
lower detected failure rates.

Figure 3 plots access failure probability versus the in-
terpoll interval. It shows that as the interpoll interval in-
creases relative to the mean interval between storage fail-
ures, access failure probability increases because damage
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Figure 4: The access failure probability (y axis in log
scale) observed during repeated pipe stoppage attacks of
varying duration (x axis in log scale), covering between
10 and 100% of the peers.

takes longer to detect and repair. The access failure prob-
ability is similar for a 50-AU collection all the way up
to a 600-AU collection (we omit intermediate collection
sizes for clarity).

For comparison purposes in the rest of the experi-
ments, the baseline access failure probability of 4.8 ×

10−4 for a 50-AU collection and of 5.2 × 10−4 for a
600-AU collection correspond to our interpoll interval of
3 months and a storage damage rate of one block per 5
disk years. With these parameters, a machine preserv-
ing 600 AUs has an average load of 9%, and a machine
preserving 50 AUs has a 0.7% average load.

7.2 Targeting the Volume Filter

The “pipe stoppage” adversary models packet flooding
and more sophisticated attacks [26]. This adversary
suppresses all communication between some proportion
of the total peer population (its coverage) and other
LOCKSS peers. During a pipe-stoppage attack, local
readers may still access content. The adversary subjects
a victim to a period of pipe stoppage lasting between 1
and 180 days. Each attack is followed by a 30-day recu-
peration period, during which communication is restored
to the victim; this pattern is repeated for the entire ex-
periment. To lower the probability that a recuperating
peer can contact another peer, the adversary schedules
his attacks such that there is little overlap in peers’ re-
cuperation periods. We performed experiments with an
adversary that schedules his attacks so that all victims’
recuperation periods completely overlap, but found that
the low-overlap adversary caused more damage, so we
present results from the low-overlap adversary.

Figure 4 plots the access failure probability versus the
attack duration for varying coverage values (10 to 100%).
As expected, the access failure probability increases as
the coverage of the attack increases, though the attack
covering 70% of the peer population is almost as effec-
tive as the 100% attack. In the extreme, the 180 day at-
tack over 100% of the 600-AU collection raises the ac-
cess failure probability to 3.5 × 10−3; this is within tol-
erable limits for services open to the Internet.

For attacks between 20% and 60% coverage, the ac-
cess failure probability peaks at an attack duration of 60
days and decreases for larger durations. The 180 day at-
tack is less damaging for these coverage values because,
while the adversary focuses on a smaller number of peers
for a longer time, the rest of the peers continue polling.
The 30 to 60 day attacks cycle across more victims and
interrupt more polls, wasting peers’ time and tarnishing
their reputations, while 1 to 10 day attacks are too short
to interrupt many polls. As the attack coverage grows
from 70%, the 180 day attack disables such a significant
portion of the network that the peers free of attack have
great difficulty finding available peers and the access fail-
ure probability increases beyond the 60 day attack.

Figures 5 and 6 plot the delay ratio and coefficient of
friction, respectively, versus attack duration. We find that
attacks must last longer than 30 days to raise the delay
ratio by an order of magnitude. Similarly, the coefficient
of friction during repeated attacks that last less than a
few days each is negligibly greater than 1. For very long
attacks that completely shut down the victim’s Internet,
the coefficient can reach 6700, making pipe stoppage the
most cost-effective strategy for the attrition adversary.

As attack durations grow to 30 days and beyond, the
adversary succeeds in decreasing the total number of suc-



 1
 5

 20
 150

 1000
 6700

 33000

1 5 10 30 60 90 180

D
el

ay
 ra

tio

Attack duration (days)

10%
40%
70%

100%
100% 600 AUs

Figure 5: The delay ratio (y axis in log scale) imposed
by repeated pipe stoppage attacks of varying duration (x
axis in log scale) and coverage of the population. Absent
an attack, this metric has value 1.

 1
 5

 20
 150

 1000
 6700

 33000

1 5 10 30 60 90 180C
oe

ffi
ci

en
t o

f f
ric

tio
n

Attack duration (days)

10%
40%
70%

100%
100% 600 AUs
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imposed by pipe stoppage attacks of varying duration (x
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cessful polls. For example, attacks against 100% of the
population with a 30 day duration reduce the number of
successful polls to 1/5 the number absent attack. How-
ever, the average machine load during recuperation re-
mains within 2 to 3 times the baseline load — a result of
designing the protocol to limit increases in resource con-
sumption while under attack. Fewer successful polls and
nearly constant resource consumption for increasing at-
tack durations drives up the average cost of a successful
poll, and with it the coefficient of friction.

7.3 Targeting the Reciprocity Filter
The reciprocity adversary attacks our admission control
defenses aiming to reduce the likelihood of a victim ad-
mitting a loyal poll request by triggering that victim’s
refractory period as often as possible. This adversary
sends cheap garbage invitations to varying fractions of
the peer population for varying periods of time separated
by a fixed recuperation period of 30 days. The adversary
sends invitations using poller addresses unknown to the
victims. These, when eventually admitted, cause those
victims to enter their refractory periods and drop all sub-
sequent invitations from unknown and indebted peers.

Figure 7 shows that these attacks have little effect. The
access failure probability is raised to 5.9 × 10−4 when
the duration of the attack reaches the entire duration of
our simulations (2 years) for full population coverage
and a 600-AU collection. At that attack intensity, loyal
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Figure 7: The access failure probability (y axis in log
scale) for attacks of increasing duration (x axis in log
scale) by the admission control adversary over 10 to
100% of the peer population. The scale and size of the
graph match Figures 3 and 4 to facilitate comparison.

peers no longer admit poll invitations from unknown or
indebted loyal peers, unless supported by an introduc-
tion. This causes discovery to operate more slowly; loyal
peers waste their resources on introductory effort proofs
that are summarily rejected by peers in their refractory
period. This wasted effort, when sustained over years,
raises the coefficient of friction by 33%, (much less than
the friction caused by pipe stoppage), and raises average
machine load from 9% to 11%. The delay ratio is largely
unaffected by this adversary. Consequently, the first ef-
fect of this adversary, increasing load in loyal peers, is
tolerable given a practical level of over-provisioning.

We switch our attention to the other effect of this ad-
versary, namely, the suppression of invitations from un-
known or indebted peers, which introductions are in-
tended to mitigate. We have repeated the experiments
with 600 AUs, in which the adversary attacks 100% of
the peer population, with introductions disabled. With-
out introductions, the shorter attacks cause a higher co-
efficient of friction, much closer to pipe stoppage attacks,
whereas longer attacks are largely unaffected. For com-
parison, suppressing introductions for attack durations
of 10 days raises the coefficient of friction from 1.03 to
1.16, vs. 1.51 for pipe stoppage; in contrast, suppressed
introductions for attack durations of six months raises the
coefficient of friction from 1.34 to 1.36, vs. 6700 for pipe
stoppage. The absence of introductions does not make
this attack markedly worse in terms of load increase.

The major consequence of unknown and indebted in-
vitation suppression without introductions is that victims
call polls almost exclusively composed of voters from
their friends list, who are more likely to accept a poll in-
vitation from a fellow friend. This reliance increases as
the attack lasts longer. It is undesirable because it allows
an adversary to predict closely the membership of a poll
(mostly the poller’s friends), promoting focused poll dis-



Defection Coeff. Cost Delay Access
friction ratio ratio failure

INTRO 1.40 1.93 1.11 4.99 × 10−4

1.31 2.04 1.10 6.35 × 10−4

REMAIN- 2.61 1.55 1.11 5.90 × 10−4

ING 2.50 1.60 1.10 6.16 × 10−4

NONE 2.60 1.02 1.11 5.58 × 10−4

2.49 1.06 1.10 6.19 × 10−4

Table 1: The effect of the brute force adversary defect-
ing at various points in the protocol on the coefficient of
friction, the cost ratio, the delay ratio, and the access fail-
ure probability. For each point, the upper numbers cor-
respond to the 50-AU collection and the lower numbers
correspond to the 600-AU collection.

ruptions. The main function of introductions is thus to
ensure the unpredictability of poll memberships.

Note that techniques such as blacklisting, commonly
used to defeat denial-of-service attacks in the context of
email spam, or server selection [17] by which pollers
only invite voters they believe will accept, could signif-
icantly reduce the friction caused by the admission con-
trol attack. However, we have yet to explore whether
these defenses are compatible with our goal of protect-
ing against subversion attacks that operate by biasing the
opinion poll sample toward corrupted peers [30].

7.4 Targeting the Effort Filters

To attack filters downstream of the reciprocity filter, the
adversary must get through as fast as possible. We con-
sider an attack by a “brute force” adversary who contin-
uously sends enough poll invitations with valid introduc-
tory efforts to get past the random drops; such invitations
cannot arrive from credit or even identities at the steady
attack state, because they are more frequent than what is
considered legitimate. Since unknown peers suffer more
random drops than peers in debt, the adversary launches
attacks from indebted addresses. We conservatively ini-
tialize all adversary addresses with a debt grade at all
loyal peers. We also give the adversary an oracle that al-
lows him to inspect all the loyal peers’ schedules. This
avoids his wasting introductory efforts due to scheduling
conflicts at loyal peers.

Once through the reciprocity filter, the adversary can
defect at any stage of the protocol exchange: after pro-
viding the introductory effort in the Poll message (IN-
TRO) by never following up with a PollProof, after pro-
viding the remaining effort in the PollProof message (RE-
MAINING) by never following up with an EvaluationRe-
ceipt, or not defecting at all (NONE).

Table 1 shows that the brute force adversary’s most
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cost-effective strategy (i.e., with the lowest cost ratio
metric) is to participate fully in the protocol; doing so
he can raise loyal peers’ preservation cost (i.e., their co-
efficient of friction) to a factor of 2.60 (2.49 for the large
collection, which equates to an average machine load of
21%). To defend against this increase in cost, LOCKSS
peers must over-provision their resources by a reason-
able amount. The baseline probability of access failure
rises to 6.19 × 10−4 at a cost almost identical to that
incurred by the defenders (a cost ratio of 1.06). For-
tunately, this continuous attack even from a brute force
adversary unconcerned by his own effort expenditure is
unable to increase the access failure probability of the
victims greatly; the rate limits prevent him from bring-
ing his advantage in resources to bear. Similar behavior
in earlier work [30] prevents a different unconstrained
adversary from stealthily modifying content.

We measured the effectiveness of the refractory period
in rate limiting poll flood attacks against the brute force
adversary that does not defect, since this strategy has the
best cost/benefit ratio among the brute force strategies.
Figure 8 shows the coefficient of friction during a brute
force attack on 50 AUs where the refractory period varies
from 1 to 96 hours. With a shorter refractory period, poll
invitations from the attacker are accepted by the victims
at a greater rate, driving up the coefficient of friction.
With the refractory period at one hour, the average ma-
chine load at the victim peers is 21%. If only 50 AUs
consume 21% of a peer’s processing time, an average
peer cannot support 600 AUs while under attack. With
the refractory period of 24 hours, the peers’ average load
supporting 50 AUs is only 2%.

On the other hand, the graph shows that lengthening
the refractory period beyond 24 hours would not greatly
reduce the coefficient of friction. Furthermore, increas-
ing the refractory period decreases the probability of a
peer accepting legitimate poll invitations from unknown
or indebted peers, since voters accept fewer of these in-
vitations per unit time. A very long refractory period sti-
fles the discovery process of pollers finding new voters
and causes increased reliance on a poller’s friends list.
Similar behavior occurs when introductions are removed



from the protocol (see Section 7.3).
Thus a shorter refractory period increases the proba-

bility of voters accepting invitations from legitimate, un-
known pollers, but it also increases damage during a poll
flood attack. Our choice of 24 hours limits the harm an
attacker can do while accepting enough legitimate poll
invitations from unknown or indebted peers for the dis-
covery process to function.

In the analysis above, we conservatively assume that
the brute force adversary uses attacking identities in the
debt grade of their victims. Space constraints lead us to
omit experiments with an adversary whose minions may
be in either even or credit grade. This adversary polls
a victim only after he has supplied that victim with a
vote, then defects in any of the ways described above.
He then recovers his grade at the victim by supplying an
appropriate number of valid votes in succession. Each
vote he supplies is used to introduce new minions that
thereby bypass the victim’s admission control before de-
fecting. This attack requires the victim to invite minions
into polls and is sufficiently rate-limited to be less effec-
tive than brute force. It is further limited by the decay of
first-hand reputation toward the debt grade. We leave the
details for an extended version of this paper.

8 Related Work

In this section we first describe the most significant ways
in which the new LOCKSS protocol differs from our pre-
vious efforts. We then list work that describes the nature
and types of denial of service attacks, as well as related
work that applies defenses similar to ours.

The protocol described here is derived from earlier
work [30] in which we covered the background of
the LOCKSS system. That protocol used redundancy,
rate limitation, effort balancing, bimodal behavior (polls
must be won or lost by a landslide) and friend bias
(soliciting some percentage of votes from peers on the
friends list) to prevent powerful adversaries from modi-
fying the content without detection, or discrediting the
system with false alarms. In this work, we target the
protocol’s vulnerability to attrition attacks by reinforc-
ing our previous defenses with admission control, desyn-
chronization, and redundancy.

Another major difference between our prior work and
the protocol described in this paper is our treatment of
repair. In the previous protocol voting and repair were
separated into two phases. When pollers determined re-
pair was necessary, they requested a complete copy of the
document from the publisher, if still available, or from a
peer for whom they had previously supplied votes. This
had at least three problems. First, pollers requested re-
pairs only when needed, signaling the vulnerability of
those pollers’ content to an adversary. Second, the repair

mechanism was only exercised when content recovery
was needed. Mechanisms exercised only during emer-
gencies are unlikely to work [35]. Finally, this left the
system more vulnerable to free-riding, since a peer could
supply votes but later defect when the poller requested
a costly repair. We address all three problems through
restructuring the repair mechanism (as described in Sec-
tion 4.3) to integrate block repairs, including “frivolous”
repairs, into the actual evaluation of votes.

A third significant difference in the protocol supports
our desynchronization defense. In the previous proto-
col, loyal pollers needed to find a quorum of voters who
could simultaneously vote on an AU. Instead, the poller
now solicits and obtains votes one at a time, across the
duration of a poll, and only evaluates the outcome of a
poll once it has accumulated all requisite votes.

Our attrition adversary draws on a wide range of work
in detecting [23], measuring [33], and combating [2, 27,
41, 42] network-level DDoS attacks capable of stopping
traffic to and from our peers. This work observes that
current attacks are not simultaneously of high intensity,
long duration, and high coverage (many peers) [33].

Redundancy is a key to survival during some DoS at-
tacks, because pipe stoppage appears to other peers as
a failed peer. Many systems use redundancy to mask
storage failure [25]. Byzantine Fault Tolerance [7] is re-
lated to the LOCKSS opinion polling mechanism in its
goal of managing replicas in the face of attack. It pro-
vides stronger guarantees but requires that no more than
one third of the replicas are faulty or misbehaving. In a
distributed system, such as the LOCKSS system, that is
spread across the Internet, we cannot assume an upper
bound on the number of misbehaving peers. We there-
fore aim for system performance to degrade gracefully
with increasing numbers of misbehaving peers, rather
than fail suddenly when a critical threshold is reached.
Routing along multiple redundant paths in Distributed
Hash Tables (DHTs) has been suggested as a way of in-
creasing the probability that a message arrives at its in-
tended recipient despite nodes dropping messages due to
malice [6] or pipe stoppage [24].

Rate limits are effective in slowing the spread of
viruses [43, 48]. They have also been suggested for lim-
iting the rate at which peers can join a DHT [6, 47] as a
defense against attempts to control part of the hash space.
Our work suggests that DHTs will need to rate limit not
only joins but also stores to defend against attrition at-
tacks. Another study [40] suggests that the increased la-
tency this causes will not affect users’ behavior.

Effort balancing is used as a defense against spam,
which may be considered an application-level DoS at-
tack and has received the bulk of the attention in this
area. Our effort balancing defense draws on pricing via
processing concepts [15]. We measure cost by memory



cycles [1, 14]; others use CPU cycles [4, 15] or even
Turing tests [44]. Crosby et al. [10] show that worst-
case behavior of application algorithms can be exploited
in application-level DoS attacks; our use of nonces and
the bounded verification time of MBF avoid this risk. In
the LOCKSS system we avoid strong peer identities and
infrastructure changes, and therefore rule out many tech-
niques for excluding malign peers such as Secure Over-
lay Services [24].

Related to first-hand reputation is the use of game-
theoretic analysis of peer behavior by Feldman et al. [17]
to show that a reciprocative strategy in admission control
policy can motivate cooperation among selfish peers.

Admission control has been used to improve the us-
ability of overloaded services. For example, Cherkasova
et al. [8] propose admission control strategies that help
protect long-running Web service sessions (i.e., related
sequences of requests) from abrupt termination. Pre-
serving the responsiveness of Web services in the face
of demand spikes is critical, whereas LOCKSS peers
need only manage their resources to make progress at the
necessary rate in the long term. They can treat demand
spikes as hostile behavior. In a P2P context, Daswani et
al. [11] use admission control (with rate limiting) to miti-
gate the effects of a query flood attack against superpeers
in unstructured file-sharing peer-to-peer networks.

Golle and Mironov [21] provide compliance enforce-
ment in the context of distributed computation using a
receipt technique similar to ours. Random auditing us-
ing challenges and hashing has been proposed [9, 47] as
a means of enforcing trading requirements in some dis-
tributed storage systems.

In DHTs waves of synchronized routing updates
caused by joins or departures result in instability during
periods of high churn. Bamboo’s [36] desynchronization
defense using lazy updates is effective.

9 Future Work

We have three immediate goals for future work. First,
we observe that although the protocol is symmetric, the
attrition adversary’s use of it is asymmetric. It may be
that adaptive behavior of the loyal peers can exploit this
asymmetry. For example, loyal peers could modulate the
probability of acceptance of a poll request according to
their recent busyness. The effect would be to raise the
marginal effort required to increase the loyal peer’s busy-
ness as the attack effort increases. Second, we need to
understand how our defenses against attrition work in a
more dynamic environment, where new loyal peers con-
tinually join the system over time. Third, we need to con-
sider combined adversary strategies; an adversary could
weaken the system with an attrition attack in preparation
for some other type of attack.

10 Conclusion

The defenses of this paper equip the LOCKSS system to
resist attrition well. First, application-level attrition at-
tacks, even from adversaries with no resource constraints
and sustained for two years, can be defeated with reason-
able over-provisioning. Such over-provisioning is nat-
ural in our application, but further work may signifi-
cantly reduce the required amount. Second, the strategy
that provides an unconstrained adversary with the great-
est impact on the system is to behave as a large num-
ber of new loyal peers. Third, network-level attacks do
not affect the system significantly unless they are (a) in-
tense enough to stop all communication between peers,
(b) widespread enough to target all of the peers, and (c)
sustained over months.

Digital preservation is an unusual application, in that
the goal is to prevent things from happening. The
LOCKSS system resists failures and attacks from pow-
erful adversaries without normal defenses such as long-
term secrets and central administration. The techniques
that we have developed may be primarily applicable to
preservation, but we hope that our conservative design
will assist others in building systems that better meet so-
ciety’s need for more reliable and defensible systems.

Both the LOCKSS project and the Narses simulator
are hosted at SourceForge, and both carry BSD-style
Open Source licenses. Implementation of this protocol
in the production LOCKSS system is in progress.
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