
Enabling the Archival Storage of Signed Documents

Petros Maniatis Mary Baker
Computer Science Department, Stanford University

Stanford, CA 94305, USA
{maniatis,mgbaker}@cs.stanford.edu
http://identiscape.stanford.edu/

Abstract

Documents in digital formats are increasingly be-
coming a common form of expression for anything
from rants and opinions to transaction records and
contracts. Archiving such documents for the long
term, particularly when their only form is digital,
can be very important. Sadly, the principal digital
expression of an author’s intent, the digital signa-
ture, is not fit for long-term archives of documents;
signing keys can expire or become compromised,
rendering the documents they signed indistinguish-
able from illicit forgeries. We propose KASTS,
an extension of traditional archival storage systems
that enables the long-term storage of signed docu-
ments. KASTS combines time stamping of signed
documents with storage of past signature verifica-
tion keys. We argue that such an extended archival
storage system is feasible and describe one possible
design for it1.

1 Introduction

Documents appear in digital form with growing fre-
quency, and some important documents now appear
only in digital form. When their intended use is
mainly online, as might be the case for a signed
public statement, such documents are increasingly
stored in online archival repositories, most notably
the Web, or in survivable storage systems like
Free Haven [10], Freenet [6], Intermemory [13] or
OceanStore [18].

To endorse a digital document, that is, to estab-
lish the fact that a person believes or promotes the
contents of the document, we use digital signatures.
As with physical paper-and-pen signatures, digital

1Appears in the Proceedings of the USENIX Filesystem
and Storage Technologies Conference (FAST 2002), Mon-
terey, CA, USA. January 2002.

signatures are required to show the intent of the
signer at the time of signing [1].

However, there is a gap between the potential
longevity of digital documents and the longevity of
the signatures used to endorse them. Many docu-
ments, such as service contracts or ownership trans-
fer records, remain valid and useful for a long pe-
riod of time. Yet the signatures used to endorse
them must have a short lifespan for at least two
reasons. First, secret signing keys can be stolen.
Second, older secret signing keys can be recovered
computationally by attackers with increasing ease as
computers become faster and cryptanalytic methods
become more sophisticated.

For both reasons, it is wise to start regarding sig-
natures produced with a given signing key as sus-
pect some time after that signing key was created,
depending on the intended use. Therefore, without
further support, digital signatures are inappropriate
for long-term archives of signed documents; how do
we know if the key used to sign a document was ac-
tually valid—i.e., still secret and used exclusively by
its claimed owner—when the document was signed?

To address this problem, we propose KASTS, an
extension of traditional archival systems to accom-
modate signed documents. The system builds on an
idea by Haber et al. [15], by applying the paradigm
of notarization to signed digital documents online.
KASTS has two components. First, a Time Stamp-
ing Service establishes the real time when a digital
document is signed. Second, a Key Archival Service
allows anyone to request and receive an authorita-
tive record of the appropriate public signature ver-
ification key for a signer at any time in the past.

While the fundamental insight of using notariza-
tion to preserve signatures is not new, we believe
that the contributions of this work—the design of
a Key Archival Service and its combination with
document time stamping—are novel and help solve
one of the most important, still unsolved problems
facing long-term archives of signed documents.

2

In this paper we describe the architecture of
KASTS and the functional specification of its com-
ponents. For clarity, we describe the system in a
simplified setting where there is a single, survivable
and globally trusted service of each kind: one Certi-
fication Authority, one Time Stamping Service and
one Key Archival Service. However, we also describe
design decisions, issues and future work seeking to
lift the assumptions of uniqueness, immortality and
global trust of those services.

Section 2 describes how digital signatures work in
the common case and why they are unfit for long-
term archives. Section 3 proposes KASTS, a so-
lution to the problem. Sections 4 and 5 give an
overview of KASTS from the architectural and func-
tional standpoints, respectively. In Section 6 we de-
tail design considerations for parts of the system we
do not build anew, and for the Key Archival Service,
which we do design from scratch. Section 7 discusses
three thorny deployment issues with KASTS: the
meaning of digital signatures, the effects of certifi-
cate revocation, and the long-term security of cryp-
tographic constructs. Finally, we present related
and future work.

2 The Life Cycle of a Signed
Document

In this section we present the overall context into
which our system fits. We describe at a high level
the steps one must currently take to sign and pub-
lish a document, to set and reset signing and sig-
nature verification keys, and to verify the signature
on a signed document. We use a specific example to
clarify the steps and explain why these steps are in-
sufficient for long-term storage of signed documents.
The essential problem is that there is currently no
way to determine whether a document was signed
while the signing key was still valid, or after that
key became invalid.

In our example, Jane Grammatical has written
a manifesto on “The Societal Perils of Split Infini-
tives.” Jane feels strongly about the subject matter,
so she wishes to publish this manifesto online for the
benefit of future generations, making sure that the
authorship and integrity of the document are never
doubted.

As a first step, Jane needs a digital signing facility
to sign her manifesto. In public-key cryptography,
on which most commercial digital signature schemes
rely, signatures are generated and verified with a
signing key pair. This key pair consists of a secret
signing key, used to generate digital signatures, and

IDENTITY CERTIFICATE

Name: Jane Grammatical

 Verification Key: AB25 E90F ...

Issued On: 04:54 GMT, July 9, 2001

Valid For: 1 Year CA

Figure 1: The identity certificate that Jane has been
issued by the Certification Authority (CA). It certifies
the association of the given verification key with Jane.
The key is valid from 7/9/2001 for a year. The icon
at the lower right represents the CA’s signature on the
certificate.

a public signature verification key, used to verify
signatures produced by the corresponding signing
key. To be able to sign digital documents, Jane must
first generate such a signing key pair, and then she
must publish the signature verification key from her
key pair, so that anyone can verify her signatures.

Signature verification keys are published encap-
sulated within identity certificates. An identity cer-
tificate is issued by a Certification Authority (CA),
such as Verisign, Thawte or Entrust, and certifies
the association between an identity name (i.e., an
identifier for a signer) and the signature verification
key that should be used to verify signatures by that
identity. Identity certificates also contain the time
at which they are issued and the maximum duration
of their validity period. Figure 1 shows a simplified
identity certificate for Jane. It indicates that "AB25
E90F ..." is Jane’s signature verification key for
at most a year starting July 9th of 2001. Jane ac-
quires this certificate by contacting the CA securely
and sending it her signature verification key. Jane
does not, of course, send her secret signing key to
the CA or to anyone else; she keeps it hidden and
well protected.

To indicate the official character of the certificate,
and to protect its integrity, the CA signs every iden-
tity certificate it issues using its own signing key
pair, also called the master signing key pair. Since
the CA lies at the top of the certification totem pole
and there is no one to certify the validity of its sig-
nature verification keys, identity certificates for the
CA are different from those issued to Jane: they
are signed by the CA itself. CA certificates boot-
strap the certification process, which is why they
are sometimes referred to as bootstrapping, or root
CA certificates. Because a CA client cannot verify

3

By Jane Grammatical

The Societal
Perils of Split Infinitives
Thursday, July 12, 2001

This is a quest to mightily smite the destroyers of our
language. My vision is pure and righteous...

J

Figure 2: Jane’s signed document. The icon on the
lower right of the manifesto indicates that the document
is signed with Jane’s signing key. The signature has
been produced by applying the sign operation of Jane’s
favorite digital signing facility with her signing key to
the text of the manifesto.

the validity of a bootstrapping certificate since it
is self-signed, the CA publishes its certificates via
secure channels, for example by postal mail or bun-
dled within store-purchased software, such as web
browsers and email clients.

Once Jane has finished proofreading her mani-
festo, she uses her secret signing key to sign it, pro-
ducing the signed manifesto of Figure 2. Anyone
in possession of the signed manifesto can use the
verify operation of the digital signing facility and
Jane’s verification key to check that the document
was in fact signed by Jane’s signing key.

Jane can now publish her signed manifesto on-
line. As long as her identity certificate is available
to readers of the manifesto and there are no security
breaches, her authorship of the document is indis-
putable.

The validity of Jane’s signature on the document
relies on a “validation chain” consisting of two links.
The first link is between Jane and her signing key
pair. Unless a verifier knows for a fact that "AB25
E90F ..." is Jane’s signature verification key, he
has no reason to believe that the signature on the
manifesto identifies Jane as the signer, even if it is a
mathematically correct signature. The second link
is between the CA and its master signing key pair.
Again, unless a verifier knows for a fact the master
verification key, he has no reason to believe that a
correct signature on Jane’s identity certificate comes
from the CA.

Unfortunately, the validation chain can break in
two ways (refer to Figure 3 for the relevant time-
line). First, any one of the links may become com-
promised ; in this scenario, a burglar enters the head-
quarters of the CA, stealing backup tapes that con-
tain the master signing key, on November 28th,
2001. The break-in is discovered on the following

SII breaks
Jane's old

key

CA creates
master key

pair

CA issues
Jane a new
certificate

Jane
publishes her

manifesto

CA replaces
master key

pair

Jane's
signing key

expires

1/1/2000

7/9/2001

7/12/2001

11/29/2001

7/9/2002

8/8/2002

Time

Figure 3: The timeline of the scenario in Section 2.

day, so the CA promptly publicizes the event on
November 29th. On the same day, a new master
signing key pair is generated, and published widely.
This burglary breaks the validation chain on Jane’s
document since, once the CA’s key pair is compro-
mised, it is not clear to a verifier of Jane’s signatures
whether her certificate was signed by the CA’s mas-
ter signing key before or after November 28th. The
burglar could have easily issued new certificates on
November 28th, claiming an earlier issuance date;
there is nothing anyone can do to distinguish such
illicit certificates from legitimate ones.

A second way the validation chain for Jane’s man-
ifesto can break is when any one of the links expires;
in our scenario, Jane’s key expires on July 9th, 2002
and the CA’s original key would have expired, if it
had not been compromised, at the end of its two-
year validity period, on January 1st, 2002. One of
the reasons that expiration dates are set on iden-
tity certificates is to limit the possible amount of
damage (i.e., illegitimate signatures produced) that
a compromised key can cause, especially if the com-
promise goes unnoticed. Certificate lifetimes can
be set according to the importance of the enclosed
key (a master CA key versus the key of a relatively
unimportant individual), expected key usage (more
signatures mean more fodder for cryptanalysis), and
other factors [19].

Sadly, key expiration only compounds the prob-
lem for Jane’s documents. Once a key expires, all
verifiers are expected to assume the key is compro-
mised or “compromisable,” and should no longer
trust it. In this scenario, Split Infinitives Inc. (SII),
a powerful organization favoring the avid use of
split infinitives, has devoted large computational re-
sources to discovering Jane’s signing key. Since Jane
was careful when requesting her certificate, her key
expires before SII can possibly recover it. Yet even if
SII recovers Jane’s signing key after July 9th, 2002,

4

they can still write a contradictory manifesto, sign it
with the expired recovered signing key and publish
it. After Jane’s key expires, it is not easy to deter-
mine whether the new, illicit manifesto was signed
before Jane’s key expired or after. Therefore a ver-
ifier has no reason to believe as authentic any doc-
ument signed by that key, whether Jane’s original
manifesto, or the counterfeit one.

This makes it hard for Jane to publish her mani-
festo for posterity. Unless Jane is available and will-
ing to keep resigning and republishing her manifesto
every time its validation chain is broken through
compromise or expiration, there is nothing she can
do to have her document archived meaningfully for
long periods of time.

3 Time Stamping Digital
Signatures

In this section we explain how combining time
stamping and the storage of old signature verifica-
tion keys helps solve the problem described above.

Time stamping allows a signer to create a proof
of when he signed a particular item. In general,
the purpose of time stamping is to build a time-
line of documents. This is done by a Time Stamp-
ing Service (TSS), a trusted but accountable third
party whose function is to maintain and be able to
prove temporal ordering relationships among sub-
mitted documents. A time stamp for a document
contains the time when the document was stamped
and a proof that the document was in fact stamped
then. A verifier can check the veracity of a time
stamp on a document with the help of the TSS,
by checking that the included proof matches the
claimed time. Accountability means that, although
the service is generally trusted, it can be caught if
it “cheats.” Cheating in the case of a time stamp-
ing service amounts to post-dating, pre-dating, or
forgetting about a document. We present how time
stamping services are designed in more detail in Sec-
tion 6.1.

The main idea that helps us solve the problem
described in the previous section is to time stamp
a signature at the time it is produced [15]. Now a
verifier can know whether a signature was generated
before or after the event that breaks the validation
chain of that signature, such as a discovered com-
promise or a certificate expiration.

However, time stamping by itself is not sufficient.
A verifier who seeks to check the authorship of
Jane’s manifesto, long after the signing key pair she
used has changed, needs to find the appropriate sig-

nature verification key. Consequently, we also need
some method to archive and retrieve old signature
verification keys to enable the long-term archival
storage of signed documents.

Two types of keys must be archived. The
first type consists of CA-certified keys, that is,
keys whose association with a particular identity is
vouched for by the signature of the CA on an iden-
tity certificate. This is the case with Jane’s identity
certificate: In July 2001, the CA vouched with its
signature that the signature verification key "AB25
E90F ..." belongs to Jane. In this respect, Jane’s
certificate is just a special case of a signed docu-
ment, and as such, it can be archived in a manner
similar to how Jane’s manifesto is archived (except
for the complications described in Section 7.2).

The second type of key consists of bootstrapping
keys, which are traditionally self-certified by the
very entity to which they are issued. The master
verification key of the CA belongs to this type. A
verifier must acquire this key through a secure dis-
tribution channel, perhaps by picking it up in person
or by receiving it as part of a software distribution.
Though this kind of procedure might be practical
for obtaining the current master verification key of a
unique CA, it can be impractical and unscalable for
archived old master keys of perhaps multiple CAs.

For this reason, the need for a Key Archival
Service (KAS) becomes clear. This is a trusted,
accountable service intended for archiving specifi-
cally bootstrapping keys. Nothing precludes con-
ventional, CA-certified keys from being archived at
the KAS, but this is not necessary, since conven-
tional keys, encapsulated in identity certificates, can
be archived as regular documents.

The system presented in this work, KASTS, ex-
tends traditional archival storage systems to accom-
modate signed documents, using accountable key
archival storage and time stamping services.

4 Architectural Overview

Here we present a high-level view of KASTS. Besides
the conventional archival storage service it extends,
KASTS consists of a TSS, a KAS, and a small client-
side library. All certificates are issued by a CA.

The storage service is untrusted, and maintains
arbitrary documents submitted to it. KASTS sub-
mits signed, time stamped documents, including
certificates issued by the CA, to the storage service
for long-term storage.

The TSS maintains a timeline of all the docu-
ments that it time stamps. It is trusted by everyone

5

within its scope to maintain a unique, tamper-proof
timeline, although it remains accountable (see Sec-
tion 6.1). Anyone who verifies the validity of a time
stamp on a document can be convinced that the doc-
ument was signed no later than the time indicated
in the time stamp.

The KAS maintains an archive primarily of CA
master certificates, but also of any other identity
certificates submitted to it. Furthermore, it main-
tains time stamped snapshots of its archive, with
the help of the TSS; in that respect, it is a client of
the TSS. It is trusted to maintain a unique, tamper-
proof archive, although it remains as accountable as
the TSS (see Section 6.2). Anyone who verifies the
existence of a certificate in a particular timed snap-
shot of the KAS can be convinced that the certifi-
cate was current and not revoked at the time indi-
cated in the archive snapshot.

Although not a part of KASTS, the CA is an im-
portant entity for the system, since it is the issuer
of all certificates. It is trusted to maintain a unique,
tamper-proof name space at any one time, mapping
names to identity certificates.

Clients make use of KASTS via a small client-
side library. The interface presented by the library
includes the following operations:

1. publish(identity, document, signature). The
signed document is time stamped and archived.
If no associated archived identity certificate for
the given identity exists, one is requested.

2. rekey(identity, new certificate). The current
identity certificate for the given identity, if one
exists in the system, is marked as revoked. The
new certificate is time stamped and archived.

3. lookup(identity, time). The identity certificate
associated with the given identity at the given
time, if one exists, is returned.

All interactions of the library with the TSS, KAS
and CA take place over authenticated and reliable,
though not always encrypted channels. As done for
CAs, the public keys of the TSS and the KAS are
distributed either bundled in purchased software or
via other secure media. Interactions of the library
or the services with the storage substrate follow the
conventions of that substrate; they need not be se-
cured beyond what the substrate itself mandates,
since data stored there are self-securing.

In the interest of clarity, we assume the existence
of a single TSS, KAS and CA in the remainder of
this paper. However, in parallel ongoing work [20],
we explore how this design can be ported to a more
complex setting where multiple competing TSSes,

KASes and CAs coexist. Some of our design de-
cisions are biased by our experiences in that more
realistic setting.

5 KASTS in Action

In this section we demonstrate how to use this sys-
tem, both for publication of signed documents and
for later verification of those documents. We explain
each of the following steps:

• Following the timeline from Figure 3, on
1/1/2000 the CA publishes a new master veri-
fication key, using the process we describe in
Section 5.1. This same process is used on
11/29/2001 when a compromise of the master
signing key is discovered.

• On 7/9/2001, Jane creates a new signing key
pair and, with the help of the CA, a new iden-
tity certificate. She then archives the certificate
using the process we describe in Section 5.2.
She repeats this process on 7/9/2002, when her
previous key pair expires.

• On 7/12/2001, Jane signs and publishes “The
Societal Perils of Split Infinitives,” using the
process we describe in Section 5.3.

• On 9/1/2002, a reader wishes to verify the au-
thorship of Jane’s manifesto. By that time,
both the key pair with which Jane signed the
manifesto and the master key pair with which
Jane’s identity certificate was signed have been
replaced. The reader uses the process we de-
scribe in Sections 5.4 and 5.5 to retrieve the
appropriate old master verification key and
then Jane’s old identity certificate, respectively,
which were current at the time indicated in the
manifesto time stamp. With this information,
and with the help of the TSS, the reader can
now verify the validity of Jane’s signature on
the manifesto.

5.1 Master Key Storage

The primary objective of this task is to allow the
storage of the different master signature verification
keys used to verify the CA’s signature on individual
identity certificates. Every time the CA changes
master keys, it updates the key archive, as shown in
Figure 4.

First the CA generates a new master signing key
pair for itself. It keeps the secret master signing

6

Key
Archival
Service

Certificate
Authority

VCA

2

1

t

Archived att

Figure 4: The CA master key storage process, described
in Section 5.1.

Archival
Storage
System

Time
Stamping
Service

Certificate
Authority

J:VJ

CA

t

Ja
ne

1

2

VJ

3
CA

4 t

5

A

t

Signed by

Time
stamped at

J:VJ

CA

Figure 5: The identity certificate publication process,
described in Section 5.2.

key away from prying eyes, but publishes widely the
master verification key (VCA in the figure).

The CA also submits VCA, along with its maxi-
mum validity period to the KAS for storage (step
1). Once the storage of the key at the KAS has been
completed, the CA may request an optional proof of
storage from it. The proof consists of a time stamp
of the entire KAS archive after the insertion, and
a proof of inclusion of the new key in the archive
(step 2). This only serves as an enforcement of the
accountability of the KAS. We explain the details
of such proofs and the reasoning behind them in
Section 6.2.

5.2 Certificate Publication

Jane goes through this process to create and archive
her signature verification key. The process is illus-
trated in Figure 5.

First, Jane generates a new signing key pair. She
keeps the secret signing key SJ safe, but submits the
public verification key, VJ (or "AB25 E90F ...") to

Archival
Storage
System

Time
Stamping
Service

M

M
J

t

SJ

Ja
ne

1

2

J

3

J

4

t

5

A

t

Signed by

Time
stamped at

Figure 6: The document publication process, described
in Section 5.3.

the CA for registration (step 1). The CA returns a
new signed identity certificate (marked J : VJ in
the figure) to Jane (step 2). This is the certificate
shown in Figure 1.

Jane then submits the CA’s signature on her
newly acquired certificate to the TSS for time
stamping (step 3). The TSS responds with a time
stamp on the CA’s signature (step 4).

Finally, Jane bundles together her certificate
along with the time stamp and publishes them both
in the archival storage system (step 5).

It is worth pointing out that, although Jane time
stamped the signature of her certificate instead of
the entire signed certificate, the result is the same.
This is because signatures are cryptographically de-
pendent on the documents for which they are gener-
ated, by means of a one-way hash function. There-
fore, by time stamping the signature, the TSS effec-
tively also time stamps the entire signed certificate
as well.

5.3 Document Publication

Now Jane follows a publication process to place her
manifesto in the extended archival storage system.
See Figure 6 for an illustration.

First, Jane signs the manifesto (shown as M in
the figure) with her secret signing key SJ (steps 1
and 2). She submits the resulting signature to the
TSS for time stamping (step 3). Once she receives
the time stamp back from the TSS (step 4), Jane
submits the bundle consisting of her manifesto, her
signature on it, and the time stamp on her signa-
ture to the archival storage system (step 5). Again,
time stamping the signature is equivalent to time
stamping the signed document.

7

Key
Archival
Service

M
J

t

R
ea

de
r

1
2

3

lookup(CA, t)

VCA

tA Signed by

Archived att

Figure 7: The master verification key retrieval process,
described in Section 5.4.

M
J

t

R
ea

de
r

1 2
3

Archival
Storage
System

lookup(J, t)

J:VJ

CA

t'
A

t

Signed by

Time
stamped at

J:VJ'
CA

t''

Figure 8: The certificate retrieval process, described in
Section 5.5. The inequality t′ ≤ t < t′′ holds for the
times of the time stamps shown.

5.4 Master Key Retrieval

To verify the authenticity and authorship of the
manifesto, a reader first needs to find the applicable
master verification key, i.e., the CA signature verifi-
cation key that was current at the time at which the
manifesto claims to have been signed. See Figure 7
for an illustration.

Given the time indicated in the time stamp of
the manifesto (step 1), the reader requests a CA
verification key from the KAS (step 2).

The KAS returns the applicable master verifica-
tion key if one is found, along with a proof of its
(non)existence there (step 3).

5.5 Certificate Retrieval

Finally, the reader must retrieve the appropriate
identity certificate for Jane, given the time at which
the manifesto was time stamped, as shown in Fig-
ure 8.

The reader searches the archival storage system
for identity certificates for Jane around the time at
which the manifesto was stamped (step 1). The cer-
tificates whose time stamps come immediately be-
fore and after the point in time shown in the mani-
festo time stamp are sought (step 2).

The earlier certificate (J : VJ) is the one whose
key is applicable to the signature on the manifesto,
and its validity extends until the date of issuance of
the later certificate (J : V ′

J) (step 3). If no certificate
is returned that was time stamped after the mani-
festo, then the verifier presumes that the maximum
duration of the earlier certificate has been used up in
full, i.e., he presumes that the key in the certificate
was not compromised before the expiration time of
that certificate. Section 7.2 discusses some poten-
tial complications with this approach and ways to
avoid them.

6 Design Issues

In this section we explore the design of the two
KASTS components in more detail and we evalu-
ate their viability.

6.1 Time Stamping Service

Centralized TSSes have existed and operated for
many years [3, 16, 27]. Their basic functionality
allows clients to submit document digests for time
stamping at a preset granularity called a round
(typically one second long) and to submit a time
stamped document for subsequent verification. In
this section we describe how a TSS works. We use
this information to describe how we extend the time
stamping model to build a timed archive of keys, in
Section 6.2.

The prevalent design for TSSes is based on
collision-resistant hash functions [9]. A linking data
structure is used to aggregate all document digests
submitted for time stamping during the same round.
The data structure traditionally used is the Merkle
tree [22]. A Merkle tree is a regular k-ary tree,
whose contents are all stored in the leaves, sorted
using a predetermined total order. Every inter-
nal tree node is labeled by concatenating in order
the labels of its k children (or nil values for miss-
ing children) and applying to the result a one-way,
collision-resistant hash function. The label of the
root is sometimes called the root hash of the tree.
The root hash “represents” exactly the ordered set
of the leaves of the tree. No digest may be added
into or removed from the tree without altering the
value of the root hash, unless a k-way collision for
the hash function can be found, which is believed to
be computationally intractable (see Section 7.3 for
more details). Figure 9 shows a binary Merkle tree,
where g(.) is the hash function, a, b, c and d are the
linked data and z the root hash.

8

root hash

data a b c d

e=g(a|b) f=g(c|d)

w=g(e|f)x

z=g(x|w)

previous
root hash

Figure 9: A binary Merkle linking tree containing data
a, b, c and d, and the previous round hash x. The con-
catenation operation is indicated by —.

A time stamp for a digest consists of the time
at which its round was created and a proof of in-
clusion of the digest in the associated linking data
structure. This proof allows a verifier to determine
definitively whether a digest is contained within a
linking data structure given the root hash of the
structure. Therefore, verifying a time stamp on a
document amounts to requesting from the TSS the
root hash for the time at which a document claims
to have been time stamped and then verifying that
the time stamp proves the inclusion of the document
digest in the associated linking data structure.

In Merkle trees, the proof of inclusion for a digest
consists of all those values that can help recompute
the root hash of the tree from that digest. Those val-
ues are the labels and locations of the sibling nodes
of the digest and of all of its ancestors in the tree.
In Figure 9, the proof of inclusion for c consists of
the values d, e and x and their locations right , left
and left , respectively. Using these, a verifier can
compute z = g(x|g(e|g(c|d))), and then compare z
to the root hash reported by the TSS for the linking
data structure. Assuming that the tree in the figure
is created by the TSS at time t, the time stamp for
c looks like [t; right/d, left/e, left/x].

A newly created linking data structure depends
on the data structure created during the previous
second. This dependency is effected by including the
root hash of the previous round into the newly cre-
ated tree. Consequently, a document digest in previ-
ous linking data structures cannot change, be added
or removed, since that would result in a changed
root hash for the associated data structure, which
transitively results in a changed root hash for sub-
sequent data structures. In the example of Fig-
ure 9, value x is the root hash from the previous
time stamping round.

Chaining together linking data structures from
older to more recent ones allows TSSes to claim
the property of accountability. A TSS is account-
able if it cannot cheat, by back- or post-dating a
document. This is accomplished by periodically—
usually, once a week—widely publishing the root
hash created during normal time stamping opera-
tions on a newspaper or other paper journal with
wide distribution. A skeptical TSS client can verify
the honesty of the TSS by requesting all intervening
root hashes between a given, unpublished root hash
and the closest published one. If the hash link is
verified, then it is extremely unlikely that the TSS
has inserted, modified or deleted digests in its data
structures after it published its root hashes.

The feasibility of practical time stamping is no
longer questionable. Current commercial services
time stamp a few million digests per hour in second-
long rounds (and can be configured to do much
more), using under 10 conventional, off-the-shelf
PC-grade computers [7]. The archive of root hashes
for continuous operations of almost a decade so far
do not surpass 50 GB, which bodes well for the scal-
ability of the service over time.

6.2 Key Archival Service

The Key Archival Service maintains the timed his-
tory of signature verification keys, most notably the
master verification keys used and published by the
CA, as well as other keys submitted to it for stor-
age. Maintaining this history and making it widely
available is essential to the orderly operation of the
system we describe here. The functionality of the
KAS can be bundled together with the CA or the
TSS, although we present it here separately for clar-
ity.

Although the KAS is absolutely necessary only
for the storage of the master verification keys of the
CA, we have designed it with a much larger data
set in mind, for two reasons. First, we want our
design to be usable in a more complex setting, where
multiple CAs (in the thousands) coexist. Second, we
expect that storing non-root keys in the KAS may
be advisable, especially given the concerns described
in Section 7.2.

In the next three sections we detail the basic data
structures used in the KAS, the actual design of the
service and, finally, its expected storage complexity.

6.2.1 Data Structures of the KAS

Similarly to the TSS, the KAS accumulates key
updates—arriving to KASTS client libraries via

9

c,C0

h(Ø|c|Ø)

b,B0

h(A0|b|D0)

d,D0

h(C0|d|Ø)
a,A0

h(Ø|a|Ø)

x

Y0

h(X0|B0)

Figure 10: The binary authenticated search tree with
the same data as the tree of Figure 9 (rooted at node
B0). Data nodes contain the document digest, and the
label of the node. On the second line, the hashing opera-
tion that yields the label of the node is shown. h(.) is the
hash function. The root hash of the previous tree is x
and the root hash for this tree is Y0. The concatenation
operation is indicated by —.

a,A0

h(Ø|a|Ø)
g,G0

h(Ø|g|Ø)
k,K0

h(Ø|k|Ø)
s,S0

h(Ø|s|Ø)

j,J0

h(D0|j|P0)

p,P0

h(K0|p|S0)
d,D0

h(A0|d|G0)

g,G1

h(A0|g|Ø)
p,P1

h(Ø|p|S0)

j,J1

h(G1|j|P1)

b,B2

h(A0|b|G0)

n,N2

h(Ø|n|Ø)

p,P2

h(N2|p|S0)

j,J2

h(B2|j|P2)

a,A0

h(Ø|a|Ø)
g,G0

h(Ø|g|Ø)
s,S0

h(Ø|s|Ø)

a,A0

h(Ø|a|Ø)
s,S0

h(Ø|s|Ø)

V
er

si
on

 0

V
er

si
on

 1

V
er

si
on

 2

Figure 11: A versioned, balanced authenticated search
tree. Gray nodes are only references to the original
nodes to which gray arrows point. The concatenation
operation is indicated by —.

rekey(identity, new certificate) requests—for a pre-
determined time period called the key storage round.
At the end of the key storage round, the archive is
modified and time stamped to reflect the updates
that arrived since the previous round, as well as
any expirations of previously archived keys. Based
on common frequency of key change policies and an-
ticipating the use of the KAS by not only the CA,
we currently set the duration of a KAS round to two
weeks. Note that durations of TSS and KAS rounds
differ by several orders of magnitude.

The simplest design for the KAS would em-
ploy a centralized—or centrally administered—
database of tuples of the form <time, identity,
verification key, maximum validity period>.
However, to provide the same level of accountability
that is offered by the TSS, as seen in Section 6.1,
we rely heavily for the design of our KAS on Merkle
trees. By using a linking data structure, the KAS
can return a proof of storage of the result every
time it handles a lookup or rekey request. The first
part of that proof is a time stamp on the particular
key storage round of the KAS. The latter part of
the proof is a linking tree existence proof of the
result in the KAS, similar to proofs described in
the previous section.

For the KAS we use a variation of Merkle trees
proposed by Buldas et al. [4], called authenticated
search trees. Buldas et al. suggest this modification
to thwart attempts by the maintaining party to keep
an inconsistent, unsorted tree linking structure. In
authenticated search trees, data occupy not only leaf
nodes, but also internal tree nodes. Furthermore,
the computation of a node label takes as input the
search key of the node in addition to the labels of
the node’s children. The principal contribution of
authenticated search trees is that they allow clients
who receive an existence or non-existence proof from
the tree maintainer to verify that the maintainer is
keeping the tree sorted. Figure 10 shows an authen-
ticated search tree containing the same data as the
Merkle tree of Figure 9. Again, the root hash of the
previous round is x.

Authenticated search trees, like all trees, can be
efficiently versioned, so as to preserve different snap-
shots of the set of stored data without excessive re-
dundancy. Figure 11 shows an example of that. The
top tree shows the initial version (version 0) of an
authenticated search tree. The middle tree shows
version 1, resulting from removing the nodes con-
taining d and k from the tree of version 0. The bot-
tom tree is version 2, which results from inserting
nodes containing b and n into the tree of version 1.
The grayed out nodes are merely references to the

10

original nodes in version 0, and need not be copied
for each subsequent snapshot, unless they change
in content or label. Versioning is not useful in the
Merkle trees used in time stamping, since in that
case all contents of the tree change entirely from
version to version.

Note that in Figure 11, tree operations are bal-
anced. This is another welcome property of trees
that we use in archiving. Since existence and non-
existence proofs have maximum length proportional
to the height of the tree, balancing the tree helps
such proofs to remain short in the worst case. Bal-
anced trees in our preliminary prototype of the KAS
are on-disk B-trees, and are similar to those intro-
duced by Naor et al. [23]. However, no balancing
is applied to the topmost level of the tree, so that
the previous round hash is always one hash opera-
tion away from the new round hash. In Figure 10,
only the subtree rooted at the node labeled B0 is
balanced.

6.2.2 KAS Design

There are two kinds of authenticated search trees
used in the KAS, Archive Snapshots and Time
Trees. Archive Snapshots store one node for each tu-
ple of the type <time, identity, verification
key, maximum validity period>, ordered by the
identity attribute. There is an Archive Snapshot
tree for each distinct version of the KAS archive,
i.e., one for each round. Therefore, a single Archive
Snapshot contains all the valid keys known to the
KAS at the end of the associated round.

Every Archive Snapshot has a distinct root node,
as long as it has at least one node difference from
the preceding round (we do not alter the archive
during rounds with no key updates). This is because
inserting, modifying or removing a node results in
creating a new version of its parent node, and the
changes iteratively percolate up to the root.

The roots of every Archive Snapshot ever built by
the KAS are archived in a Time Tree, which is also
an authenticated search tree based on B-trees. Time
Tree nodes store tuples of the form <round time,
snapshot root>, ordered by the round time at-
tribute. There is only one current Time Tree within
a KAS. At the end of a round, after the new Archive
Snapshot is created, a new node for the root of that
snapshot is inserted into the Time Tree. See Fig-
ure 12 for an illustration of the different trees used
in the KAS.

The root Gn of the current Time Tree can be seen
as a digest of the history of operations of the KAS up
to the end of the previous round, since no Archive

TimeTreen

...

...

Gn

T0

A0

Tn

An

Figure 12: The relationship between Archive Snap-
shot trees and the Time Tree. A0 through An are all
the different Archive Snapshot trees built by the KAS.
The thick gray arrow symbolizes the fact that differ-
ent Archive Snapshots share nodes, as in Figure 11. T0

through Tn are the corresponding Time Tree nodes, and
may be leaves or internal nodes, as per authenticated
search trees. The root Gn of the current, n-th ever Time
Tree “summarizes” the entire KAS archive.

Snapshot can change without causing a change to
the latest Time Tree root. At the end of round n,
Gn is submitted to the TSS for time stamping.

To respond to a lookup(identity, time) request,
the KAS first locates the appropriate Archive Snap-
shot in the Time Tree, searching on the time entry
of the request. The appropriate snapshot is the one
whose round time immediately precedes the time in
the lookup request. Then, the KAS locates the ap-
propriate key entry in the Archive Snapshot, search-
ing on the identity entry of the request. The result
(found or not found) is returned along with a proof
of storage that consists of the time stamp on the
current Time Tree root hash, a proof of existence
of the snapshot in the Time Tree and the proof of
(non)existence of the returned key in the selected
snapshot tree.

6.2.3 Storage Complexity of the KAS

Storage and computation costs incurred by the op-
eration of the KAS are reasonable, even if we an-
ticipate heavy storage of keys other than those of
the CA, or even if there are many CAs. Tree op-
erations on Archive Snapshot trees create O(log N)
new tree nodes for each identity certificate event
(insertion, modification or removal), if the previous
snapshot had N total nodes. This is the worst case
space increase per certificate, since it only occurs if
an insertion, modification or removal affects a node
at the bottom of the balanced tree, thereby requir-
ing copy-on-modify changes along every tree level
to the root. Therefore, the storage required for all
Archive Snapshots should be in the worst case on

11

the order of N log N if a total of N identity cer-
tificates are archived. All balanced tree operations
take time log M in the number M of keys in the cur-
rent snapshot, which is much smaller than the total
number N of archived keys. Even if every one of the
clients of the extended archival storage system uses
the KAS to store their signature verification keys, as
opposed to storing their identity certificates in the
storage substrate, the size of the KAS would still re-
main in achievable orders of magnitude. An archive
of 1 billion verification keys would require roughly
300 TB (assuming minimal disk block fragmentation
within B-tree nodes), which is not astronomical for
a high-performance service today.

The size of the Time Tree is exactly K nodes, if
the KAS contains archives for K distinct snapshots.
This, of course, is dependent on the length of the
KAS round. Tree operations in the Time Tree take
time on the order of log K.

We expect the KAS to receive significantly less
traffic than a CA would, for two reasons. First,
KAS responses are immutable during a single KAS
round, and only change slightly after the passage of
each subsequent round in an incremental fashion, to
accommodate the increasing size of the Time Tree.
Therefore they can be cached very efficiently away
from the KAS. In contrast, traffic to CAs usually
includes “repeat customers” who check for online
certificate revocations. In summary, we expect the
long term deployment and operation of a KAS to be
at least as feasible as a CA—if not more so.

7 Discussion

In describing KASTS so far we have assumed that a
valid signature is one that was time stamped during
the validity period of the associated identity certifi-
cate. Section 7.1 touches on the distinction between
a valid signature and a valid indication of the pur-
ported signer’s intent.

In Section 7.2 we explain how the use of a conven-
tional storage substrate to store identity certificates
can, in some cases, lead to forgery attacks against
our system, and we propose a solution.

Finally, in Section 7.3 we describe why we con-
sider time stamping “stronger” than digital signa-
tures.

7.1 Digital Signatures and the Signer’s
Intent

A fundamental issue that affects what KASTS guar-
antees and what it does not is the semantic content

of a digital signature.
Although real-world, paper-and-pen signatures

have enjoyed for centuries often unwarranted abso-
lute trust, digital signatures do not establish beyond
doubt the identity of the signer. Instead, digital sig-
natures establish beyond doubt whether or not the
signer had in his possession a particular secret sign-
ing key. The link from a digital signature to the
intent of its purported signer is strong only as long
as the key used to produce the signature is known
exclusively to the individual with whom that key is
associated by the CA. The strength of this link has
long been considered significantly weaker than that
between a paper signature and its signer.

However, digital signatures are slowly becoming
legally binding [11]. Although the legal guidelines
for their use are fairly specific [1], they have yet to
face a significant challenge in court. In the mean-
time, assuming that the party to whom a signing
key is issued bears the liability for anything signed
by that key during its validity period, proactive key
changes seem to be the only measure against un-
noticed key compromise. By changing signing keys
frequently and making them short-lived, a signer
limits the amount of damage that can be done with
any single compromised key.

7.2 No News is Not Good News

In KASTS, all regular identity certificates and other
signed documents coexist independently in the same
archival storage system. The reason for decoupling
a signed document from the identity certificate nec-
essary to verify the signature on that document is
efficiency, especially in the case of very short doc-
uments. Otherwise redundancy would be unavoid-
able, since, in general, many documents are signed
by the same key.

This means that each complete retrieval and ver-
ification of a signed document requires the retrieval
of at least two pieces of information from the un-
trusted storage substrate: the document itself and
the corresponding identity certificate needed to ver-
ify it. The corresponding identity certificate to a
signed document is that whose validity period con-
tains the signing time of the document. This va-
lidity period is the minimum of the nominal valid-
ity period indicated on the certificate itself and the
time difference until a newer certificate for the same
identity is registered. In other words, a verifier as-
cribes a validity period shorter than the nominal to
Jane’s year-long certificate issued on 7/9/2001 once
he finds a newer certificate for Jane issued before
7/9/2002.

12

SII kills
record

carrying VJ'

Jane registers
verification

key VJ

Jane publishes
her manifesto,
signed with SJ

SII recovers SJ and
publishes counter-

manifesto signed with SJ

7/9/2001

7/12/2001 9/17/2001

7/20/2005

Jane registers
verification

key VJ'

9/1/2001

Time

Figure 13: A timeline illustrating how an adversary
can kill an identity certificate record and thereby enable
the successful verification of a document signed using a
compromised signing key.

However, if an adversary has a non-negligible
probability of causing individual documents—and
therefore individual identity certificates—in the
storage system to disappear or be delayed during
retrieval, then he can cause a verifier to consider a
signature verification key valid at a time when it
was not. Figure 13 illustrates a modification of the
earlier scenario from Figure 3. In this scenario, Jane
decides to get a new signing key pair on 9/1/2001,
long before her old one expires on 7/9/2002. By
installing a new identity certificate for herself, Jane
essentially revokes the validity of her previous veri-
fication key VJ , which would otherwise remain valid
until 7/9/2002. Between the issuance of her replace-
ment key pair and the expiration of the old key
pair, evil Split Infinitives Inc. successfully recovers
her old, now revoked signing key SJ , and uses it to
sign and publish a contradicting manifesto. Clearly,
this contradicting manifesto should not be consid-
ered valid by a verifier, since it is signed after the
signing key has been revoked.

Assume now that long into the future, on
7/20/2005, SII manages to kill Jane’s newer cer-
tificate or temporarily hamper its retrieval. An
unaware verifier who retrieves SII’s counter mani-
festo after this time is forced to consider it valid,
since he can only find the year-long certificate for
VJ whose uncontested validity period contains the
signing time of the counter-manifesto.

This attack is dependent on the properties of
the archival storage substrate used in the particular
implementation. Some systems (e.g., Freenet [6]),
while not “trusted” in theory, do have measures
to combat directed attacks against specific docu-
ments. In the absence of such a storage substrate
though, identity certificates should either be stored
at a separate storage system offering stronger safe-

guards against denial of service, be bundled with
the associated document at some storage cost, or
be decapsulated and stored at the KAS. Given our
expected performance characteristics of the KAS,
the third option seems attractive.

7.3 Is Time Stamping Unbreakable?

Time stamping digital signatures to extend their
lifetime relies on a fundamental premise: that it is
harder to break a time stamp than it is to break a
digital signature. In fact, this is not trivially true.
Time stamping and digital signatures rely on similar
cryptographic constructs that build on the conjec-
tured intractability of certain mathematical prob-
lems (e.g., discrete logarithms in cyclical groups,
factorization of large numbers) or on the conjec-
tured irreversibility of complex one-way algorithms
(e.g., the SHA1 hash function [24]). None of these
basic building blocks is proven to be secure against
arbitrary computational attacks in all realistic set-
tings, even though their security is supported by
overwhelmingly strong evidence [21, p. 87].

The difference, however, lies in that digital sig-
natures employ a secret component, a signing key,
which can be stolen, leaked, or (with great difficulty)
recovered via brute computational force. Instead,
the hashing schemes used in most time stamping
systems have no such vulnerability, since they do
not have a secret key component (also called a
trapdoor). The only possible attack against such
schemes is finding an algorithmic way to annul their
computational intractability assumptions.

One technique used to safeguard TSSes against
even such groundbreaking attacks is best described
as “hedging.” Surety, Inc. [27] has patented the
practice of concurrently using two different, inde-
pendent hashing schemes. The hope is that if one
of the two hashing schemes is found to have de-
bilitating vulnerabilities, the strength of the other
hashing scheme will last until the TSS can take
counter-measures, e.g., reissue all time stamps us-
ing a new pair of hashing schemes that are still con-
sidered impenetrable. The low rate at which com-
putational advances occur against state-of-the-art
hashing schemes seems to support the adequacy of
this technique.

8 Related Work

Although the basic idea on which KASTS is founded
is simple [15], we are not aware of a system de-
sign that actually takes advantage of it and works

13

out the details, incorporating both time stamping
of signatures and timed storage of old verification
keys. The secure archival storage work we are aware
of (for example, OceanStore [18], Cooper et al. [8],
SFS-RO [12]) addresses mostly issues of data surviv-
ability, format redundancy, confidentiality on-the-
wire or on disk, and authentication/authorization of
clients and servers. Rosenthal et al. [26] describe a
system for preservation of online scientific journals
against malicious destruction. The authors voice
their concern over the storage of signed documents,
but give no definite solutions. We believe that the
increasing preference of the business world towards
electronic transaction records will only compound
the necessity for a design such as ours.

Time stamping seems to be essential to conduct
secure transactions with lasting effects in the dig-
ital world of the Internet. However, the number
of researchers exploring this topic is surprisingly
small. Haber and Stornetta [16] introduced the time
stamping problem and suggested ways to build link-
ing data structures among documents. Benaloh and
de Mare [3], Buldas et al. [5], Goodrich et al. [14]
and Naor et al. [23] explored more efficient linking
schemes, in the time stamping setting or in that of
authenticated dictionaries. A very detailed specifi-
cation of a time stamping service was produced in
the TIMESEC project [25].

Our KAS shares characteristics with earlier work
using authenticated data structures, such as Merkle
trees and their derivatives. Most notably, the work
done by Kocher on the distribution of certificate re-
vocation records [17] relies on this basic idea to dis-
tribute certificate revocation records inexpensively.
A trusted server creates a binary linking data struc-
ture (a Certificate Revocation Tree or CRT) out
of all current certificate revocation records. Then,
the digest of the tree is distributed securely by that
trusted server, but the tree itself is distributed in-
securely by untrusted servers. A verifier can always
check the validity of a revocation record, as long
as a proof of that record’s existence in the tree is
available and the signed digest of the tree can be re-
trieved securely. The KAS is more general than the
CRT mechanism, in that it maintains timed snap-
shots of certificates and their revocation or expira-
tion status, to allow the validation of old signatures
produced with now-defunct signing keys.

The system we propose is complementary to the
basic idea of the Eternity Service [2], for a surviv-
able, incorruptible archive of documents, though in-
tended for a much “tamer” environment. We ap-
proach the more hostile environment foreseen by
Anderson [2] in future work.

9 Future Work

The basic assumptions throughout this paper are
that only one TSS and CA exist, that they are both
trusted by everyone, and that they are expected to
live forever, as far as the stored documents are con-
cerned. This, unfortunately, is neither practical nor
realistic.

Many distinct, competing Certification Author-
ities exist at the time of this writing. They make
revenue out of issuing certificates to their clients and
remaining online so as to verify those certificates at
a later time. They also capitalize on reputation, how
much they are trusted to do their job well, and by
how many people.

However, CAs are also corporate entities, which
may not be trusted by everyone. They must abide
by the laws of the land in which they are incorpo-
rated and they are staffed by humans who may abide
by the same or different laws and who may be co-
erced to act in ways that do not necessarily parallel
the common good, or the good of every single poten-
tial client. In that sense, a single CA is not bound to
be trusted by everyone in the world. As long as all
the participants in a transaction requiring identity
certification trust the same CA, all is well. However,
in the increasing diversity of electronic transactions,
expecting all participants in all transactions to trust
the same third party might be considered utopistic.
Although fewer commercial TSSes than CAs are in
operation today, we expect the same argument to
hold for time stamping.

Finally, both CAs and TSSes must obey the laws
of business, under which companies come, and very
frequently, go. In light of the big market upheaval
of the late 1990’s and the early 2000’s, it would be
unreasonably optimistic to assume that any single
CA or TSS is going to exist with certainty for a long
period of time.

Without the assumptions of CA and TSS unique-
ness, global trust and immortality, building a sys-
tem equivalent to KASTS as described in this paper
becomes significantly less straightforward. We mo-
tivate, describe and design such a system in [20], us-
ing randomized Byzantine fault-tolerant agreement
protocols. However, it remains future work to build,
evaluate and prove correct a system of such com-
plexity.

10 Conclusions

In this paper we motivate, design and argue for the
use of time stamping and timed storage of signature

14

verification keys to enable the long-term archival
storage of signed documents.

The need for time stamping and storage of sig-
nature verification keys arises from the inherently
short life of digital signatures, especially compared
to long-lived documents such as contracts, property
titles, transaction records or even works of art.

We design KASTS, an extension to conventional
archival storage systems for signed documents, using
a Time Stamping Service, and a Key Archival Ser-
vice that maintains timed snapshots of valid signa-
ture verification keys at different times in the past.

We argue that building and operating KASTS is
feasible, based on experience with existing TSSes,
CAs and archival storage services. In addition, the
KAS has low storage requirements (on the order of
N log N , where N is the number of different key
records being archived) and has expected request
rates similar to those of a CA or TSS.

11 Acknowledgments

This work is supported by the Stanford Networking
Research Center, by DARPA (contract N66001-00-
C-8015) and by Sonera Corporation. Petros Ma-
niatis is supported by a USENIX Scholar Fellow-
ship. We would like to thank Ed Swierk for sev-
eral close reads of our drafts, Mema Roussopoulos,
Henry Tirri and the anonymous reviewers for their
helpful comments on this paper, as well as Mahadev
Satyanarayanan, our paper shepherd, for his guid-
ance.

References

[1] American Bar Association. Digital Signa-
ture Guidelines. Jan. 1997.

[2] Anderson, R. J. The Eternity Service. In
Proceedings of the 1st International Confer-
ence on the Theory and Applications of Cryp-
tology (PRAGOCRYPT 1996) (Prague, Czech
Republic, 1996).

[3] Benaloh, J., and de Mare, M. Efficient
Broadcast Time-stamping. Tech. Rep. TR-
MCS-91-1, Clarkson University, Department
of Mathematics and Computer Science, Apr.
1991.

[4] Buldas, A., Laud, P., and Lipmaa, H. Ac-
countable Certificate Management using Unde-
niable Attestations. In Proceedings of the 7th

ACM Conference on Computer and Communi-
cations Security (CCS 2000) (Athens, Greece,
Nov. 2000), pp. 9–17.

[5] Buldas, A., Laud, P., Lipmaa, H., and
Villemson, J. Time-stamping with Binary
Linking Schemes. In Advances on Cryptology
(CRYPTO 1998) (Santa Barbara, USA, Aug.
1998), H. Krawczyk, Ed., vol. 1462 of Lecture
Notes in Computer Science, Springer, pp. 486–
501.

[6] Clarke, I., Sandberg, O., Wiley, B., and
Hong, T. W. Freenet: A Distributed Anony-
mous Information Storage and Retrieval Sys-
tem. In Proceedings of the Workshop on De-
sign Issues in Anonymity and Unobservability
(Berkeley, CA, USA, July 2000), H. Federrath,
Ed., vol. 2009 of Lecture Notes in Computer
Science, Springer, pp. 46–66.

[7] Clements, J. Surety, Inc. Personal Commu-
nication, July 2001.

[8] Cooper, B., Crespo, A., and Garcia-
Molina, H. Implementing a Reliable Digital
Object Archive. In Fourth European Confer-
ence on Digial Libraries (ECDL 2000) (Lis-
bon, Portugal, Sept. 2000), J. Borbinha and
T. Baker, Eds., vol. 1923 of Lecture Notes in
Computer Science, Springer, pp. 128–143.

[9] Damg̊ard, I. Collision Free Hash Functions
and Public Key Signature Schemes. In Proceed-
ings of the Workshop on the Theory and Ap-
plication of Cryptographic Techniques (EURO-
CRYPT 1987) (Amsterdam, The Netherlands,
Apr. 1987), D. Chaum and W. L. Price, Eds.,
vol. 0304 of Lecture Notes in Computer Science,
Springer, pp. 203–216.

[10] Dingledine, R., Freedman, M. J., and
Molnar, D. The Free Haven Project: Dis-
tributed Anonymous Storage Service. In Pro-
ceedings of the Workshop on Design Issues
in Anonymity and Unobservability (Berkeley,
CA, USA, July 2000), H. Federrath, Ed.,
vol. 2009 of Lecture Notes in Computer Sci-
ence, Springer, pp. 67–95.

[11] Dornin, R. House Passes Digital Signa-
ture Bill. CNN (Jan. 2000). Available
online at http://www.cnn.com/2000/TECH/
computing/01/31/esignatures/.

[12] Fu, K., Kaashoek, M. F., and Mazières,
D. Fast and Secure Distributed Read-only File

15

System. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementa-
tion (OSDI 2000) (San Diego, CA, USA, Oct.
2000), USENIX Association, pp. 181–196.

[13] Goldberg, A., and Yianilos, P. N. To-
wards an Archival Intermemory. In Proceedings
of IEEE Advances in Digital Libraries (ADL
1998) (Santa Barbara, CA, 1998), pp. 147–156.

[14] Goodrich, M. T., Tamassia, R., and
Schwerin, A. Implementation of an Authen-
ticated Dictionary with Skip Lists and Commu-
tative Hashing. In 2001 DARPA Information
Survivability Conference and Exposition (DIS-
CEX 2001) (Anaheim, CA, USA, June 2001).

[15] Haber, S., Kaliski, B., and Stornetta, S.
How do Digital Time-stamps Support Digital
Signatures? CryptoBytes, RSA Laboratories 1,
3 (Autumn 1995), 14–15.

[16] Haber, S., and Stornetta, W. S. How
to Time-stamp a Digital Document. Jour-
nal of Cryptology: the Journal of the Interna-
tional Association for Cryptologic Research 3,
2 (1991), 99–111.

[17] Kocher, P. On Certificate Revocation and
Validation. In Financial Cryptography (FC
1998) (1998), vol. 1465 of Lecture Notes in
Computer Science, Springer, pp. 172–177.

[18] Kubiatowicz, J., Bindel, D., Chen, Y.,
Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon,
H., Weimer, W., Wells, C., and Zhao, B.
OceanStore: An Architecture for Global-Scale
Persistent Storage. In Proceedings of the 9th in-
ternational conference on Architectural support
for programming languages and operating sys-
tems (ASPLOS 2000) (Cambridge, MA, USA,
Nov. 2000), pp. 190–201.

[19] Lenstra, A. K., and Verheul, E. R.
Selecting Cryptographic Key Sizes. http:
//www.cryptosavvy.com/cryptosizes.pdf,
Nov. 1999.

[20] Maniatis, P., Giuli, T., and Baker, M.
Enabling the Long-Term Archival of Signed
Documents through Time Stamping. Technical
report, Computer Science Department, Stan-
ford University, Stanford, CA, USA, June 2001.
Available at http://www.arxiv.org/abs/cs.
DC/0106058.

[21] Menezes, A. J., van Oorschot, P., and
Vanstone, S. Handbook of Applied Cryptog-
raphy. CRC Press, 1996.

[22] Merkle, R. C. Protocols for Public Key
Cryptosystems. In Proceedings of the 1980
Symposium on Security and Privacy (Oakland,
CA, U.S.A., Apr. 1980), IEEE Computer Soci-
ety, pp. 122–133.

[23] Naor, M., and Nissim, K. Certificate Revo-
cation and Certificate Update. In Proceedings
of the 7th USENIX Security Symposium (San
Antonio, TX, USA, Jan. 1998), pp. 217–228.

[24] National Institute of Standards and
Technology (NIST). Federal Information
Processing Standard Publication 180-1: Secure
Hash Standard. Washington, D.C., USA, Apr.
1995.

[25] Quisquater, J. J., Massias, H., Avilla,
J. S., Preneel, B., and Van Rompay, B.
TIMESEC: Specification and Implementation
of a Timestamping System. Technical Report
WP2, Université Catholique de Louvain, 1999.

[26] Rosenthal, D. S. H., and Reich, V.
Permanent Web Publishing. In Proceedings
of the USENIX Annual Technical Conference,
Freenix Track (Freenix 2000) (San Diego, CA,
USA, June 2000), pp. 129–140.

[27] Surety, Inc. Secure Time/Date Stamping in
a Public Key Infrastructure. Available at http:
//www.surety.com/.

