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ABSTRACT

As organizations with high system availability requirements move to UNIX, the
elimination of down-time in the UNIX environment becomes a more important issue.
Designing for fast recovery, rather than crash prevention, can provide low-cost highly-
available systems without sacrificing performance or simplicity. In Sprite, a UNIX-like
distributed operating system, we accomplish this fast recovery in part through the use of a
recovery box: a stable area of memory in which the system stores carefully selected pieces
of system state, and from which the system can be regenerated quickly. Error detection
using checksums allows the system to revert to its traditional reboot sequence if the recovery
box data is corrupted during system failure. Recent statistics about the types and frequencies
of operating system failures indicate that fast recovery using the recovery box will be
possible most of the time. Using our recovery box implementation, a Sprite file server
recovers in 26 seconds and a database manager with ten remote client processes recovers in
six seconds – fast enough that many users and applications will not care that the system
crashed.

Introduction

Increasing workstation performance is making
UNIX and related operating systems more attractive
in environments that also value high system availa-
bility. Unfortunately, measurements from Internet
sites [12] indicate that UNIX machines fail on aver-
age once every two weeks. To maintain high availa-
bility, these systems must either reduce the failure
rate substantially or recover very quickly after errors.

Traditional fault tolerant systems strive for high
availability by eliminating or masking failures, so
that the system never goes down. In doing so, they
sacrifice some combination of the traditional
strengths of the UNIX environment: low hardware
cost, high performance during normal execution, and
simplicity. For example, Tandem [5] and Stratus
[23] provide non-stop processing through hardware
redundancy and sometimes software redundancy.
Auragen [7] applies redundant hardware and a
modified process pair scheme to the UNIX environ-
ment. The hardware support is costly, and redundant
software techniques either reduce normal perfor-
mance or increase implementation complexity.
Harp’s [11] application of replicated hardware and
software to NFS file servers suffers no performance
degradation, but it increases system complexity.
HA-NFS [6] improves the availability of NFS file
servers through specialized, redundant hardware.

Other fault-tolerant systems provide high avai-
lability through recovery schemes that are
significantly more complex than the usual UNIX
recovery path. Integrity-S2 [10] detects system
errors as they occur and attempts to correct affected
internal data structures while the system is running.
MVS [3] uses a multi-level recovery scheme in
which different portions of the system can fail and
recover independently. In contrast, UNIX system
designers have generally chosen a simple recovery
paradigm that is easy to understand and test: when
UNIX detects a serious error, the system just shuts
down and reboots from scratch (a ‘‘hard reboot’’).

To provide relatively high availability while
retaining UNIX strengths, we have built a system
that allows failures but recovers quickly using a sim-
ple, two-tiered recovery mechanism. After a failure,
the system first tries to recover quickly from backup
data that it stored in main memory during regular
execution. If this fast recovery fails, the system just
reverts to the traditional disk-based hard reboot.
Existing failure statistics [9, 21, 22] show that most
common failures will not corrupt the main memory
backup data, so the fast recovery path should be suc-
cessful most of the time. As long as corrupted data
is detected, the traditional recovery path will allow
us to retain current reliability.

In order to preserve system state across
failures, we have designed and implemented a
recovery box in Sprite [15], a distributed UNIX-
compatible operating system. The recovery box is
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an area of memory used to store recovery informa-
tion. It can be implemented using non-volatile RAM
for protection from power failures. During execution,
the operating system stores backup copies of system
data in the recovery box. For example, the Sprite
file server stores data about files open or cached on
its client workstations. After a failure, the system
retrieves these items from the box. If any errors are
encountered during recovery, the recovery box is
cleared and the system reboots from scratch in the
traditional fashion. If no errors are detected, the
retrieved items are used to regenerate the system
state quickly. Computing and storing checksums on
items inserted into the recovery box helps detect
memory corruption caused by software.

We have provided a data insertion and retrieval
interface that allows the recovery box to be used by
both the operating system and application programs.
The recovery box has been used for fast recovery in
the Sprite distributed file system and in an experi-
mental version of POSTGRES [19], a database
management system (DBMS) with clients running on
different machines. Using the recovery box and
other techniques, we have reduced the combined
recovery time for a Sprite file server and the
POSTGRES DBMS from many minutes to a total of
32 seconds. Other applications could use the
recovery box to reduce down time if they have state
that is: (1) slow to regenerate after failures, (2) small
enough to fit in main memory, (3) updated fre-
quently enough that it should not be stored on disk,
and (4) unlikely to propagate the error that caused
the system to fail.

This paper describes the motivation for the
recovery box, its implementation, and some prelim-
inary performance results. The first section gives
statistics on the types of failures that occur in
operating systems. It is these statistics on system
failure types that lead us to believe the recovery box
memory will be undamaged after the majority of
software failures. If the recovery box memory has
not been corrupted, then the system need not resort
to a hard reboot. The section on implementation
shows how Sprite and POSTGRES use the recovery
box and explains the implementation and its memory
layout. Finally, an evaluation section presents meas-
urements of the recovery box’s impact on recovery
speed and regular execution performance.

Failure Statistics

New statistics on the frequencies of different
types of system outages indicate that the recovery
box will be intact and able to provide fast recovery
from most failures. These statistics suggest that
most failures are due to software errors, and that the
most common types of software errors will leave the
recovery box data undamaged.

Published data about the frequency of different
kinds of outages is scarce, but a study of Tandem
systems shows that faulty software is responsible for
most failures [9]. Over time, Tandem systems have
experienced fewer outages caused by hardware
failures, environment failures, and operator errors.
Software failures, on the other hand, have remained
constant. Table 1 shows the percentages of each
source of outage. In 1990, software errors accounted
for 62% of Tandem system failures, while only 7%
were caused by hardware. The trend towards faster
increases in hardware reliability than in software
reliability holds true in other environments as well.

Outage Sources Percent
Software failures 62
Operator errors 15
Hardware failures 7
Environment failures 6
Scheduled maintenance 5
Unknown 5
Total 100

Table 1: Distribution of outage types. The table
shows the distribution of types of outages occur-
ring in Tandem systems between 1985-1990.
Environment failures are caused by floods, fires,
and long power outages.

Two studies that categorize the types of operat-
ing system software errors indicate that most such
errors will not corrupt the recovery box [21, 22].
These two studies, summarized in Table 2, focus on
the frequency of addressing errors, which are the
errors that cause programs to corrupt memory. The
BSD UNIX study divides errors into synchronization
(47%), exception-handling (12%), addressing (12%),
and miscellaneous (29%) errors. Exception-handling
errors are those that occur in code for handling other
errors, including transient hardware errors. The
MVS study classifies errors in terms of low-level
programming errors, of which 41% were ‘‘control’’
problems, 30% were addressing errors, 21% were
miscellaneous, and 8% were data miscalculations.
Control errors include such problems as deadlock, in
which the program stops without corrupting anything
but transient state. Data miscalculations include
errors in which the wrong variable is used or a func-
tion returns the wrong value. Most of the errors
classified as miscellaneous are related to perfor-
mance or denial of service. Addressing problems do
not cause the majority of software errors in either
UNIX or MVS.

In addition, the MVS study shows that most
memory corruption due to addressing errors is local
to the data structure being manipulated. As shown
in Table 3, at least 57% of addressing errors either
corrupt the data structure the operating system
intends to modify, or else corrupt memory
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immediately following the data structure. Only 19%
of the MVS addressing errors covered in the study
damaged parts of the system unrelated to the one
where the error occurred. For example, a common
type of addressing error in MVS is copy overrun in
which a copy transfers too many bytes from one
buffer into another, overwriting the data structure
that follows the intended destination. A second
common addressing error, called an allocation
management error, occurs when the operating system
continues to use a structure after deallocating it.

Error Classes BSD UNIX MVS
Addressing-related
errors 12 30

Control-related
errors NA 41

Data miscalculation
errors NA 8

Synchronization-related
errors 47 NA

Exception-related
errors 12 NA

Miscellaneous
errors 29 21

Total 100 100

Table 2: Software error type distributions. The table
shows the distribution of software errors
analyzed in studies of error reports from the
IBM MVS and 4.1/4.2 BSD UNIX operating
systems. The results columns give the percen-
tage of errors that fall into each category. The
two studies used different classification schemes,
but both list addressing errors – the errors most
likely to corrupt recovery box memory. The
other error classes are described in the text.

With these statistics in mind, we have designed
an interface to the recovery box that reduces the pos-
sibility of corruption from software failures. For
example, corruption is unlikely if we use the
recovery box to store back up copies of critical data
structures, rather than allow clients to access
recovery box memory directly. Also, an interface
that does strict length checking when items are
copied into recovery box memory will prevent copy
overruns.

Unfortunately, the failure statistics do not give
us enough information that we can protect against
complex faults involving error propagation. If the
system fails due to a logical error in one of its data
structures, then storing this data in the recovery box
could cause us to suffer the same failure after
recovery. The only way we can protect the system
from it is to choose data structures for insertion in
the recovery box that have proven themselves over
time to be relatively error-free. In commercial sys-
tems using a recovery box (and eventually in Sprite),

data gathered from error reports would help indicate
which data structures are prone to these propagated
errors.

Implementation

To test the effectiveness of the recovery box,
we have implemented it in Sprite and have used it
for failure recovery of a Sprite file server and a
POSTGRES database manager. POSTGRES runs as
an application program on the file server and
responds to requests from client programs running on
other Sprite machines. Both Sprite and POSTGRES
have features that allow fast recovery of disk data,
so the recovery box experiments focus on recovery
of distributed state. We first describe how Sprite
and POSTGRES make use of the recovery box.
Then we describe the interface through which the
kernel and applications access the recovery box.
Finally, we show the organization of the recovery
box in memory.

Location of Percent of
Damaged Area MVS Errors

Near intended data 57
Anywhere in storage 19
Not evident from
error report 24

Total 100

Table 3: Data corrupted by addressing errors. The
table shows the relationship between the loca-
tion of data corrupted by an addressing error in
MVS and the location of the intended
modification. Usually data corruption occurs
near the data owned by the faulty code. In 24%
of MVS error reports studied, this information
was not evident.

How Sprite Uses the Recovery Box
Although the Sprite distributed operating sys-

tem is UNIX-compatible at the system call interface,
Sprite differs in some important ways from an NFS-
style distributed UNIX system [17]. Unlike NFS file
servers, Sprite file servers are not stateless. To
achieve higher file system performance than NFS,
Sprite caches file data on both client workstations
and file servers. To maintain cache consistency,
Sprite file servers keep information (in handles) for
files that are open or cached on each client. In addi-
tion, the server keeps handles for objects other than
files that are accessed through the Sprite file system,
such as remote devices and pseudo-devices [24].
After a file server failure, this information must be
regenerated before clients can continue opening and
closing files. When a file server without a recovery
box reboots, clients send the server a description of
each of the handles for files and other objects that
they have open or cached. The server regenerates its
state information from this data sent to it by clients.
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Handling this recovery information from the clients
can overwhelm the server’s processing capabilities,
resulting in a recovery storm [4]. For a single Sun
4/280 file server with 40 clients, it currently takes
over two minutes for all the clients to recover their
distributed state.

Using the new recovery box eliminates this
recovery-related client/server communication. Dur-
ing normal operation the server maintains structures
containing data about each file or other object
currently open or cached on each client. On aver-
age, the server maintains 10,000 to 15,000 such han-
dles, or about 300 handles per client. From each of
these structures the server preserves 52 bytes of
essential information in the recovery box, making
the server’s recovery box space requirements less
than a megabyte. Recovery box items must be
updated every time a client opens or closes a file. In
Sprite, all opens and closes are processed on the file
server anyway, in order to maintain cache con-
sistency, so finding the right place to call the
recovery box functions was straightforward. We do
not expect increased problems with error propaga-
tion, because the data stored in the recovery box for
each handle is a subset of data that the server gath-
ers from its clients during a hard reboot. When the
server reboots using the recovery box, it rebuilds its
tables of cache and file information with the data it
retrieves from the recovery box. Without the
recovery box, these tables would be regenerated by
communicating with the client workstations.

An alternative to storing recovery information
in main memory is to store it on the file server’s
disk. For instance, changes to the file handle infor-
mation could be written to disk. However, it would
be necessary to make these updates synchronously,
since the file handle changes affect Sprite’s distri-
buted cache consistency protocol. Since this infor-
mation changes on every file open or close, all open
and close operations would incur the increased
latency of a disk write. Furthermore, measurements
of Sprite file system activity have shown bursts of
file open and close requests as high as 100 per
second – a rate too high to handle using disk storage
without a group commit mechanism. Although a
group commit would amortize the cost of the disk
write across several opens and closes, it would still
greatly increase the latency of some of the opens and
closes. Another approach, used in Spritely-NFS
[14], is to store information about active clients on
the server’s disk. After a failure, the server only
needs to contact these active clients to regenerate the
distributed file system state. The state of active
clients changes slowly enough that there is no prob-
lem maintaining this information on disk, however,
the recovery communication with clients could still
be significant. The recovery box allows fast
recovery without any conversations between client
and server, without the complexity of a group

commit, and without generating disk traffic on opens
and closes.

The recovery box requires the addition of a
small amount of new bookkeeping code in the Sprite
file system. This code understands the contents of
file handles and copies the relevant portions into
items to store in the recovery box. It currently uses
a hash table to map between file handles and their
items. Since files can be open more than once
simultaneously on the same client machine, the file
system code also maintains reference counts in the
hash table entries and in the recovery box items
corresponding to file handles. This extra bookkeep-
ing could be largely eliminated if we had the free-
dom to restructure Sprite’s file handles to include the
reference count and the ID that refers to the recovery
box item.
How POSTGRES Uses the Recovery Box

Recovery performance in the POSTGRES data-
base management system is dominated by the cost of
reinitializing the DBMS server’s connections with
clients. In a conventional database management sys-
tem, recovery includes the cost of write-ahead log
processing (recovering disk state) in addition to
client connection reestablishment. POSTGRES has
an unconventional storage manager that maintains
consistency of data on disk without requiring write-
ahead log processing [20], so it does not need the
recovery box to avoid this costly recovery step.

Without the recovery box, connection reestab-
lishment is driven by the clients. When the database
manager fails, all transactions executing on behalf of
clients are aborted and all connection state held at
the server is lost. Connection state includes, e.g.,
authentication information (secret keys or authentica-
tion tokens), client addresses, packet sequence
numbers, and any packets queued at the DBMS.

When the server recovers, it must wait for the
clients to detect that it has failed. After a connec-
tion times out, the client must reopen a connection
with the DBMS and reauthenticate itself.
POSTGRES can establish and authenticate
(application-level) connections with only three mes-
sages, because it uses a sequenced packet protocol
built on top of a datagram protocol (UDP), rather
than a protocol based on streams (TCP/IP). After
establishing the connection, each client must query
the database to find out if its last transaction com-
mitted. Then, it must resubmit the transaction or
take some other recovery action.

In a system with a recovery box, the DBMS
stores authentication information and the client
address associated with each connection in a
recovery box item. The DBMS also stores the tran-
saction ID of the last transaction it was executing on
behalf of each client. Every time the DBMS begins
a new transaction, it updates the recovery box item
with the new transaction ID. Storing this transaction
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ID on disk would be a bad idea, since POSTGRES
is already disk bound for workloads with high tran-
saction rates.

After a failure, the DBMS reinitializes its con-
nection data structures from the backup data stored
in the recovery box. Once the connections are reini-
tialized, the DBMS sends a message to each client
indicating that (a) recovery has occurred (a new
DBMS server ID is sent), and (b) a new sequence
number has been chosen by the DBMS. The restart
message also indicates the status of the last transac-
tion that the DBMS executed on behalf of the client.
If the message initiating the transaction was lost in
the failure or if the transaction was aborted, the
client must either resubmit the transaction or take
some other recovery action. Authentication of the
client is reverified when the DBMS receives the next
message from the client.

POSTGRES does not use the recovery box to
store any of the state associated with its storage sys-
tem. Storage system performance optimizations
requiring non-volatile RAM are discussed in [20];
for example, to reduce commit latency, committed
data can be stored in non-volatile RAM instead of
on disk. But this technique requires the operating
system to guarantee that data stored in non-volatile
memory be permanent. The recovery box does not
make this guarantee, because if the system detects
any errors during the fast recovery path, it will
revert to the traditional disk-based recovery path and
will discard the contents of the recovery box.
Interface

The recovery box interface is designed to help
Sprite and its application programs manage backup
data without exposure to some of the common
software errors that corrupt main memory. For this
reason we chose a structured and relatively inflexible
interface; clients of the recovery box must explicitly
insert, delete, and update recovery box items. In the
structured interface, each item belongs to a type, and
all items of the same type have common characteris-
tics, such as size and checksum calculation routine.
When a client creates a new type or a new item, the
recovery box manager generates a unique ID (typeID
and itemID, respectively). An itemID consists of the
typeID and an itemNumber. Clients refer to types
and items using these IDs.

We chose a structured interface over a more
flexible one in which clients directly allocate and
manage data structures in a reserved area of
memory, because the structured interface provides
more opportunity to avoid and detect recovery box
corruption. Maintaining item size in the recovery
box helps prevent the copy overruns that often
caused storage corruption in MVS. Also, the
recovery box can detect allocation management
errors, because clients explicitly delete items when
done with them. The structured interface also makes

it easy for the recovery box to provide atomicity of
operations. Atomic updates ensure that a system
failure that interrupts an update will not cause
checksum failure (and a hard reboot).

When an application program begins fast
recovery, it must be able to find its recovery box
items and begin regenerating state from them. To
find these items, the application must be able to
remember, across reboots, the type and item IDs
assigned to its items by the recovery box. So that
the application does not have to store the IDs on
disk, the recovery box allows the application to
choose its own well-known IDs and map from them
to the system-assigned IDs. The application
specifies its IDs when it initializes a type or inserts a
new item. On recovery, the program maps from its
application IDs to the system IDs once, at initializa-
tion, and not every time it accesses recovery box
items. Allowing applications to specify their own
IDs also facilitates sharing of recovery box items
between cooperating UNIX processes.

The Sprite kernel and its applications use the
same interface to the recovery box, except that appli-
cations call the recovery box routines via a system
call. Table 4 lists the available functions. In order
to initialize a new type of item, the system or appli-
cation must call InitItemType. As parameters to
this function, the caller specifies the maximum
number of items that can be valid simultaneously,
the item size, an optional applicationItemID, and a
flag that signals whether checksums should be calcu-
lated and stored for items of this type. Applications
can free an item type with the DeleteItemType
function, but we do not expect applications to delete
types often, except perhaps when a new application
is being tested.

If creating and deleting types occurs frequently,
these operations will have poor performance. Free-
ing a type from the middle of other allocated types
can result in a fragmentation problem. The space
consumed by the freed type may not be enough for
any type allocated subsequently. If this occurs, all
the item information and storage arrays can be
shifted down (copied) in memory to leave enough
space for the new type. The addresses in the per-
type information must be updated to point to the
new location of the item arrays. This shift operation
does not affect clients of the recovery box, because
the clients have no direct pointers to internal
recovery box data. Shifting the item data may be
costly, but it will only occur on type initialization.
Another problem is that the shift is not an atomic
operation. It is necessary to put a code in the
current operation field of the header to signal
whether a crash occurred in the middle of a shift. If
so, the recovery box is unusable and the system will
resort to a hard reboot. If clients of the recovery
box need to delete types frequently, a different
recovery box design will be necessary.
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Operations InitType
on types DeleteType
Operations InsertItem
on single DeleteItem
items UpdateItem

ReturnItem
Operations InsertItemArray
on multiple DeleteItemArray
items UpdateItemArray

ReturnItemArray
ID mapping GetTypeIDMapping
operations GetItemIDMapping

Table 4: Recovery box operations. This table lists
the operations available through the recovery
box interface. The first set of functions applies
to item types; the second set applies to indivi-
dual items, and the third to multiple items. The
last set of functions returns the recovery box
typeID or itemID when given an application’s
typeID or itemID.

Interface functions for operating on individual
recovery box items include: InsertItem,
DeleteItem, UpdateItem, and ReturnItem.
To insert an item in the recovery box, the caller pro-
vides the item’s typeID, a pointer to the data for the
item, and an optional application itemNumber.
DeleteItem frees the space in the recovery box allo-
cated for an item. To update the contents of an item
in the recovery box, the caller must provide the
itemID and a pointer to the new data for the item.
ReturnItem returns a copy of the specified item in a
buffer provided by the caller.

Additional interface functions, such as Inser-
tItemArray and ReturnItemArray, allow
applications to operate on multiple items, avoiding
the system call overhead that would be incurred by
multiple operations on individual items. To insert
multiple items the caller must provide the typeID,
the number of items it wishes to insert, an optional
array giving the application’s itemIDs for each item,
and an array of items to insert. The function returns
an array giving the new system-assigned itemIDs for
the inserted items. ReturnItemArray returns copies
of all the items for an item type and an array of
itemIDs. If there is insufficient space in the buffers
given to it as parameters, the function returns an
error and the amount of room required for each of
the buffers.
Recovery Box Structure

The recovery box is organized in memory to
provide fast insert and delete operations and fast
access to items and their type information. Figure 1
shows the layout in memory. There are three sec-
tions of the recovery box: a header, followed by an
array of per-type information, followed by the item
area. In the item area there are two arrays for each
item type: an array of per-item information and an

array storing the items themselves. The type infor-
mation, item information and item storage are all
implemented as arrays for fast access given an array
index; the recovery box typeIDs and itemNumbers
are actually indices into the per-type and per-item
information arrays, respectively. As described
below, a portion of the per-item information array
implements a free list of unallocated items for each
type, providing constant-time item insertion and
deletion.

Header
nextTypeID
currentOperation
info for type 0
info for type 1

info for max type

item storage array
for type 0

for type 0
item info array

item info array
for type 1

for type 1

item info array
for max type

item storage array
for max type

item storage array

Array of per-type
information starts

Per-item info arrays &
item storage starts

Figure 1: Layout of recovery box in memory. The
recovery box layout in memory starts with a
header that gives the next typeID to allocate,
and provides a code for the current operation.
The current operation code is used to ensure
atomicity of recovery box insertions, deletions,
and updates. The header is followed by an
array that gives information about each type of
item stored in the table. The per-type informa-
tion is followed by the per-item information
array for the first item type. Following the per-
item information for each item type is the array
of the items themselves, shown as a shaded
entry in the figure.

The header at the very beginning of the of the
recovery box contains information that must be
saved across fast reboots. The first field in the
header, nextTypeID, gives the index of the next
typeID to be allocated. The second field in the
header specifies the current operation on the
recovery box in order to ensure that insert, delete,
and update item operations are atomic. (Other func-
tions, except those operating on multiple items, are
already assured of being atomic.) At the beginning
of an insert, delete or update operation, this field is
set with a code for the current operation. In
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free item

application item # unused

index of next

currentNumItems

itemSize

firstFreeItem

checksumFunc (optional)

address of item storage array

address of item info array

applicationTypeID

maxNumItems

checksum

(-1 if none)

Per-item info

Per-type info

if allocated if free

Figure 2: Contents of type and item information
arrays. The top half of the figure shows the
contents of an entry in the per-type array. This
array lists, for each type, the size of the items,
the maximum number of items that can be allo-
cated, the current number of allocated items, the
itemNumber of the first free item, the memory
address for the per-item information array, the
memory address for the item storage array, and
a possible checksum routine. The lower half of
the figure shows the contents of an entry in the
per-item information array. This array lists, for
each item, the application itemNumber, if one
exists, and a possible checksum value for the
item. If the item is not allocated, the checksum
field instead gives the itemNumber of the next
unallocated item.

the case of a delete or update operation, it also
includes the target itemID. The field is not cleared
until the operation completes, making it possible to
detect and back out of incomplete operations. At the
beginning of an update, the original value of the
item is copied to an extra item space at the end of
the item storage array. If the machine crashes dur-
ing the update, the original value of the item can be
retrieved.

The recovery box header is followed by an
array, accessed by typeID, that gives information
about each item type. The top half of figure 2
shows the information stored in an entry in this
array. Each entry lists the item size, the maximum
possible number of items, the current number of
items, the application typeID, if any, the index in the
item storage array of the first free item, the memory
address of the per-item information array, the
memory address of the item storage array, and a
pointer to a checksum routine. If a type’s checksum
routine field is zero, then no checksums are calcu-
lated for that type’s items. The generic checksum

routine must take as a parameter the size in bytes of
the item to be checksummed. However, the check-
sum routine for the type containing the Sprite
kernel’s file handle items uses a checksum routine
unrolled to optimize checksumming the 52-byte file
handle items.

The per-item information arrays are used for
fast item allocation and for storing checksums and
application itemNumbers. The lower half of figure 2
shows the contents of an entry in such an array.
Each entry in the array consists two fields. The first
is only valid if the item has been allocated. It con-
tains the application itemNumber, if the application
provided one while inserting the item, or a −1 if
there is no application itemNumber. The second
field has a different meaning depending on whether
the item has been allocated or not. If the item has
been allocated with a checksum performed on it, the
field contains the checksum result. If the item has
not been allocated, the field contains the index of the
next unallocated item in the array, thus implement-
ing a free list of items. For the last item on the free
list, this field is −1. The index of the first free item
in the list is stored in the per-type information.
Upon deleting an item, its itemNumber is added to
the beginning of the list. The free list makes finding
free spaces in which to insert new items fast.

Storing the application itemNumbers in the
per-item array provides quick mapping from the
recovery box system’s itemIDs to the application’s
itemIDs; however, mapping from application IDs to
system IDs is not particularly fast. This is why none
of the functions in the recovery box interface take
the application itemID, except for the function that
returns the system itemID given the application
itemID. Applications can maintain their own tables
to do this mapping quickly, but we leave this func-
tionality outside of the recovery box for the sake of
simplicity.

Besides considering the internal memory struc-
ture of the recovery box, we must also be able to
find the recovery box’s memory location after a fast
reboot. Our recovery box is always allocated at the
same virtual address, so it is easy to locate. Also,
the addresses inside the recovery box (specifying the
per-item information arrays and storage areas)
remain valid without modification across fast
reboots. The virtual address of the recovery box
must also map to the same physical address upon
every fast reboot so that it points to the physical
memory containing the recovery box data. The
operating system must avoid clearing and initializing
this area of memory on a fast reboot. The memory
for the recovery box could be battery-backed RAM,
but in the absence of non-volatile memory it can be
any reserved area of system memory.

We chose to locate the recovery box in a spe-
cial area of the kernel text segment in order to
minimize damage due to memory corruption. The
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memory pages for the recovery box are marked writ-
able as well as readable, in contrast to the rest of the
text segment. We chose the text segment because it
reduces the sources of possible system address errors
that could overwrite the recovery box. Except for
the recovery box, there are no writable data struc-
tures in the text segment and no sources of pointer
manipulation using text segment addresses. Since
error statistics show that most addressing errors are
localized around the intended data structures, this
should eliminate most addressing errors except for
any caused by manipulation of the recovery box
itself.

The three main shortcomings in our current
recovery box implementation are its lack of access
protection, its static memory allocation, and its lack
of atomicity for operations on multiple items. At
present, there is no security provided by the recovery
box, except that only applications with root privilege
can access items allocated by the kernel. The static
memory allocation imposes a limit on the number of
item types that can be initialized and a limit on the
overall size of the recovery box. This is why the
maximum number of items that will be valid simul-
taneously for a type must be specified when that
type is initialized. The type initialization function
returns an error if there is insufficient space for the
desired number of items. Currently, the size of the
recovery box is compiled into the operating system.
If the recovery box resides in non-volatile memory,
such as battery-backed RAM, it is likely that the
amount of non-volatile memory will already impose
a size restriction. Even without such a restriction,
placing the recovery box in a static area of system
memory, such as the text segment, makes it difficult
to expand the recovery box in physical and virtual
memory while guaranteeing the same virtual/physical
address mapping across reboots. Finally, operations
on multiple items are currently not atomic. It would
be easy to change our implementation to provide
atomicity of multiple item inserts, but providing
atomicity of multiple updates and deletes would
significantly increase the complexity. While neither
the operating system nor the applications we con-
sidered would benefit from atomicity of multiple
updates, this could be a worthwhile problem to
tackle in other environments.

Evaluation

In this section we evaluate the recovery box
implementation based on its effect on reboot times
and on regular execution performance. To improve
reboot times, we use the recovery box to rebuild the
operating system and DBMS distributed state, but
we have also used a variety of techniques to improve
other steps in the reboot sequence. With the recovery
box, combined recovery time of Sprite and
POSTGRES is about 32 seconds. If the recovery
box has been corrupted by a software error or power

failure, recovery time will still take many minutes.
The effect of the recovery box on regular execution
is not large, about 5% overhead on Sprite open/close
file operations and less than 1% on POSTGRES
debit/credit transactions. The Sprite overhead could
be reduced to 2% with optimizations that are not
possible in our current development environment.
Unless otherwise specified, all measurements were
done on a SPARCstation 2 file server (40 Megahertz,
20 integer SPECmarks).
Sprite/POSTGRES Recovery Speed

Although the most lengthy step in rebooting
Sprite is distributed recovery, to which we can apply
the recovery box, the server must also load the sys-
tem text and initialized heap, initialize the kernel
modules, check its disks, and initialize the daemon
processes. To provide fast reboot and recovery, we
have reduced the time consumed by all of these
steps. Below, we list the steps in the reboot and
recovery sequence, along with our improvements and
the reduction in time consumed by each step.

(1) Retrieve operating system text and data –
The first step in the reboot sequence ensures that an
undamaged copy of the operating system text and
initialized data is in system memory. Reading the
Sprite operating system text and initialized heap
from disk into memory requires approximately 20
seconds on a Sun 4/280. This is because the pro-
gram that loads the kernel image from the disk only
manages to read about 50 kilobytes per second.
Other systems’ disk boot programs might be more
efficient. We reduce this cost to much less than 1
second, on both the Sun 4/280 and the SPARCsta-
tion 2, by using a technique similar to the recovery
box. The operating system text lies in a write-
protected area of memory, namely the text segment.
Upon fast reboot, we simply reuse the text segment
already in memory. Because the initialized data
(heap segment) is not write-protected, we must do
some extra work to preserve a non-writable copy of
it. The hard reboot startup code makes a copy of the
kernel initialized data in an area of the text segment
that it then write-protects. The fast reboot startup
code then copies this initialized heap data from its
write-protected storage to the correct address in its
heap segment. The system initiates a fast reboot
sequence by jumping to a special text address and
starting execution at that point rather than down-
loading a new kernel image and starting execution at
the very beginning of the text segment. Because the
text segment and copy of the initialized heap data
are write-protected, no checksum is performed on
this data. Preserving the kernel text and initialized
heap data in memory also speeds recovery of
machines that ordinarily download the kernel image
over the network.

(2) Initialize kernel modules – In addition to
the initialized heap data stored in a special area of
the text segment, we also store information that
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would otherwise need to be recomputed when kernel
modules are initialized, for example, the machine’s
internet address. Storing these items shortens our
module initialization from about 7 seconds to less
than 2.

(3) Check disks – We have converted our
disks over to use the Log-Structured File System
(LFS) [16]. Without LFS, a hard reboot of a file
server with 5 gigabytes of storage using a traditional
UNIX file system such as the 4.2 BSD Fast File
System [13] can take up to 40 minutes to restore the
consistency of file system metadata. LFS does not
require a file system check (fsck) during system
initialization, because it leaves its disk-resident file
system metadata consistent even after a crash. LFS
recovers from failures by rolling forward from a log
on disk which is checkpointed at least every 30
seconds. The cost of rolling forward depends on the
number and type of I/O operations written to the log
since the last checkpoint; two seconds is a conserva-
tive estimate of LFS recovery time given current
workloads. While LFS does not need a file system
check to make its metadata consistent after a failure,
it could use one to check that its directory structure
has not been damaged by errors. A version of LFS
to be included in a future BSD UNIX release [18]
uses fsck to check the consistency of essential
directories on reboot, such as those on the root file
system.

(4) Recover distributed state – The Sprite file
servers must regenerate the distributed file system
state they were using prior to a crash. For 40 clients
accessing a single Sun 4/280 file server, this
recovery takes more than two minutes depending on
how heavily-used the system is at the time of the
crash. Using the recovery box on a SPARCstation 2
file server with 20,000 pieces of distributed state,
this portion of the recovery time is ten seconds. We
chose 20,000 pieces of distributed state for our tests,
because this amount is greater, by one-third to one-
half, than the number of file handles needed by
Sprite’s main file server with 40 clients. The ten-
second recovery time includes the cost of some disk
accesses to retrieve descriptor information such as
file permissions and last access times. If we added
the necessary descriptor information to the recovery
box file handle items, or if we recovered the infor-
mation in a lazy fashion as needed, then we could
eliminate the disk accesses and reduce this portion
of our recovery times further. A direct comparison
of our measurements for distributed state recovery
times with and without the recovery box is not fair,
because the Sun 4/280 file server is a slower
machine than the SPARCstation 2. We are currently
unable to substitute a SPARCstation 2 for our Sun
4/280 file server. However, the recovery box
reduces distributed state recovery by at least an
order of magnitude, even on the SPARCstation 2.

(5) Kernel and daemon processes – The
start-up of internal kernel processes and various sys-
tem daemons, such as sendmail, inetd and lpd,
currently requires about 40 seconds. Although we
could potentially store some of the state of necessary
processes in the recovery box, we currently just start
up the most crucial processes (such as POSTGRES
and login) first, consider the system to be "up" at
that point, and then start up the other daemons in a
lazy fashion. This has reduced the process start-up
time for necessary processes to less than 10 seconds.

The total time required for a fast reboot after
our improvements is about 26 seconds on a
SPARCstation 2. This includes 10 seconds for dis-
tributed state recovery, 2 seconds for disk initializa-
tion and 14 seconds for the other steps. This com-
pares with the several minutes required for a hard
reboot.

The most lengthy step for POSTGRES recovery
is reinitializing the server’s connections with client
applications. Without the recovery box, POSTGRES
clients discover failures using timeouts. After the
timeout, each client must query the database to find
out whether its last transaction committed. The
timeout alone requires several seconds since it must
allow for worst-case queueing delays before assum-
ing that the DBMS is down.

To measure POSTGRES recovery times, we
ran a debit/credit benchmark based on TP1 [2], but
to expedite the measurements we used a much
smaller database than TP1 requires. A single
POSTGRES DBMS managed the database from a
Sprite file server. Ten POSTGRES client processes
running on a single Sprite client machine generated
the transactions. For our experiments, we used a
version of the DBMS that was single-threaded.
While the DBMS executes a transaction for one
client, transactions sent by the others are queued in
the DBMS address space. Single-threaded execution
means that adding POSTGRES clients increases
recovery time (due to client connections) without
increasing the overall transaction rate of the DBMS.

Breaking down DBMS recovery into its com-
ponent parts, we get the following recovery times:

(1) Demand page DBMS code and load sys-
tem catalogs from disk – We have made no optimi-
zations here so far, although both the DBMS text
segment and some parts of the catalogs could be
cached in the recovery box. The cost of this initiali-
zation is about one second.

(2) Initialize internal memory data struc-
tures – POSTGRES must initialize many hash
tables and linked lists. Together, all of this initiali-
zation only takes 0.4 seconds, so we have made no
optimizations here.

(3) Restore consistency of database – Using
the POSTGRES storage system, POSTGRES ensures
that disk data is always consistent; updates caused
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by committed transactions are reflected in the data-
base and updates caused by uncommitted transac-
tions are not. As a result, it does not have a step
analogous to Sprite’s disk check. A conventional
DBMS does have such a step and can spend many
minutes restoring the consistency of its disk data
from a write-ahead log, depending on the length of
time between checkpoints and the DBMS transaction
rate.

(4) Recover client connections – With a fast
reconnect protocol that relies on the recovery box,
POSTGRES clients are notified immediately of a
DBMS failure and can resubmit lost transactions
with a single message exchange. The time to
recover 10 client connections using this protocol is
less than a second. Other systems have implemented
client recovery with add-hoc mechanisms involving
several message exchanges, queries of the database,
and sometimes human intervention (including the
original POSTGRES implementation). The times
required by these mechanisms vary widely but all
will be longer than a single message exchange per
client.

Using the recovery box, total recovery time for
POSTGRES and 10 clients (ignoring operating sys-
tem recovery time) is about six seconds. Most of
this cost comes from reloading the database into
main memory.
Regular Execution Performance

Using the recovery box has not significantly
reduced the regular execution performance of Sprite
or POSTGRES. Table 5 shows the breakdown of
time required for the Sprite file system recovery box
operations. The table gives measurements for the
recovery box code itself, for the file system layer
that calls the recovery box code, and for the file
open and close times seen by a SPARCstation 2
client of the file server, with and without the
recovery box. The file open/close measurements
include the time for the kernel-to-kernel remote pro-
cedure calls between the client and file server. We
report measurements in terms of pairs of operations
– recovery box item insert/delete operations and file
open/close operations.

For a SPARCstation 2 Sprite file server, the
time to insert, checksum and delete a file handle
item in the recovery box is 28 microseconds on
average. The checksum calculations require 4
microseconds per file handle. The open/close test
performs two insert operations during file open and
performs two delete operations during file close for
reasons explained below.

The file system bookkeeping code that calls the
recovery box requires more time for an insert/delete
operation: 72.3 microseconds on average. In part,
this is due to the time to set up the items to insert in
the recovery box, but it is also due to a problem in
our current implementation. Inserts and deletes of

file handle items currently require some extra book-
keeping and a hash table lookup. The hash table
maps from file handles to itemNumbers and recovery
box item reference counts. Much of this extra code
would be unnecessary if we could avoid the mapping
by changing the format of the file handle structure in
Sprite to include the itemNumber and recovery box
reference count. Unfortunately this modification
would require recompiling and rebooting the entire
Sprite cluster. The resulting outage would affect
dozens of irritable graduate students and several
aggressive faculty members. We have postponed
making these changes until the recovery box proto-
type has proven itself to be stable.

Avg time in StandardOperation microseconds deviation
Recovery box
insert/delete
with checksum

28 ± 0.0

Recovery box
insert/delete
with no checksum

24 ± 0.0

FS insert/delete
with checksum 73 ± 1.9

FS insert/delete
with no checksum 72 ± 2.3

Open/close with
with recovery box 3616 ± 55.0

Open/close without
recovery box 3450 ± 86.6

Table 5: Sprite recovery box performance. The first
two entries give the time to insert and delete a
file handle item in the recovery box, with and
without a checksum. The second two entries
give the time to insert and delete a file handle,
including the extra overhead in the file system
(‘‘FS’’) bookkeeping code. The last two entries
give the time to execute a file open/close opera-
tion from a client workstation, with and without
a recovery box running on the file server. This
time includes the kernel-to-kernel remote pro-
cedure calls between the client and file server.
The results columns give the average and stan-
dard deviation of 10 sets of measurements.
Each measurement executed 100 iterations of 50
open/close or 50 insert/delete operation pairs.
The recovery box already contained 1000 file
handle items before the measurements started.

The latency experienced by a client opening
and closing a file on a server with a recovery box
includes twice the cost of the file system bookkeep-
ing code, because each file open/close pair requires
inserting and deleting two file handle structures in
the recovery box. One file handle contains data
about the file on disk; this is similar to a UNIX
inode but also includes distributed cache consistency
information. The other handle is a reference to the
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open file and contains information similar to a UNIX
open file table entry. This second handle is called a
stream handle. The ability of processes in Sprite to
migrate to idle machines [8] means that two
processes on different machines may share the same
reference to an open file. The server maintains the
shared file offset in the stream handle and must be
able to regenerate this information after a reboot.

Average time in StandardOperation microseconds deviation
Recovery box
update 55 ± 2.3

System call
overhead 19 ± 0.3

Checksum
92 bytes 10 ± 0.0

Copy
92 bytes 8 ± 0.1

Table 6: POSTGRES recovery box performance.
The first entry shows the time to update a
POSTGRES client connection in the recovery
box. The last three entries give the major com-
ponents of this cost – system call overhead,
checksum calculation, and copying costs. The
results columns give the average and standard
deviation of 10 sets of measurements. Each
measurement is the average cost of 100,000
operations.

While the recovery box adds a 5% latency to
the open/close times seen by a client workstation,
the effect on file server throughput is not as large.
On average, the main Sprite file server for 40 clients
receives two file open/close pairs per second. The
current recovery box implementation thus adds, on
average, an extra 332 microseconds of server pro-
cessing per second, or less than a 0.1% increase in
processing demand at the server. However, file sys-
tem activity is bursty, and the server sometimes sees
as many as 50 file open/close pairs in a second.
During peak activity, the recovery box would thus
add 8.3 milliseconds of server processing per second,
for a potential 0.8% reduction in server throughput.
If we were able to eliminate much of the overhead
in the file system bookkeeping code on the file
server, the overhead, including increased latency
seen by the clients, could be cut in half. We believe
this means the recovery box overhead would be
acceptable, even in a high performance system.

POSTGRES updates a 92-byte item in the
recovery box on each transaction; the entire connec-
tion structure is updated even though only the tran-
saction ID changes. Table 6 shows the breakdown
of times for POSTGRES recovery box operations.
Individual POSTGRES recovery box operations are
slower than the ones made by Sprite. POSTGRES
must pay the overhead of system calls. Because it is
inserting larger objects into the recovery box, the

cost of copying data and computing checksums also
increases. The operating system is able to use an
optimized checksum routine for file handles (with an
unrolled loop) while application programs must use a
generalized one. POSTGRES could, of course, com-
pute and check its own checksums if the difference
in performance were critical. In fact, the measured
cost of the recovery box operations is much smaller
than the standard deviation between POSTGRES
transaction execution times, so there is no reason to
further optimize checksum calculation.
Availability and Reliability Impact

Our testbed has shown that the recovery box
has acceptable performance, but its impact on sys-
tem availability and reliability will determine the
viability of the technique. We have just finished the
implementation and initial test runs of the recovery
box. We hope to have it in general use in the next
couple of months. After that, collecting data on its
effectiveness should take six to twelve months, given
our current system failure rate of about once a week.
If the recovery box provides fast recovery from our
most common failures without reducing the reliabil-
ity of the system, then we will consider it to be a
successful tool.

Conclusion

We can provide high availability in the UNIX
environment without great expense or performance
degradation by using a recovery box to store state
that would otherwise be regenerated from scratch by
a system reboot. Failure statistics indicate that
memory used for the recovery box is unlikely to
suffer corruption due to system failure. The system
can fall back to the traditional, slower, recovery path
if it detects any problems with the backup recovery
data during reboot. This reduces down-time while
avoiding the complexity of more sophisticated fault-
tolerant techniques. The recovery box concept can
be applied to any system in which it is possible to
identify and isolate the data structures that (1) are
expensive to regenerate from scratch, (2) are small,
(3) are updated too frequently to store on disk, and
4) do not have a history of causing system failures.
As long as memory requirements do not become
outrageous, the recovery box should scale well to
large distributed systems, since it substitutes local
memory accesses for extra network communication
or disk accesses during restart.

Currently, we have only used the recovery box
for Sprite and POSTGRES, but we believe that it
would be useful in many applications with state that
is expensive to regenerate. The internet name
servers and programs with TCP connections are
examples of applications with distributed state that
could be stored in the recovery box. The recovery
box might also be an inexpensive way to limit the
number of editing changes lost in a vi session due to
a system failure. Especially when implemented with
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non-volatile RAM, the recovery box could help elim-
inate file system consistency checks in non-LFS file
systems. It should also be possible to apply it to
user-level servers, such as those running on top of
the Mach microkernel [1], and to other distributed
application programs.
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