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Distributed systems that span large geographic distances or manage large numbers of
objects are already common place. In such systems, programming applications with

even modest reliability requirements to run correctly and efficiently is a difficult task
due to asynchrony and the possibility of complex failure scenarios. In this paper, we
describe the architecture of the �������
	
� communication subsystem that constitutes

the microkernel of a layered approach to reliable computing in large-scale distributed
systems. �����
��	
� is designed to be highly portable and implements a very small

number of abstractions and primitives that should be sufficient for building a variety
of interesting higher-level paradigms.

1 Introduction
Traditionally, global networks such as the Internet have been thought of ex-
actly as that — networks. With recent gains in bandwidth and connectivity,
these networks increasingly resemble the communication infrastructures of
large-scale distributed systems. As such, it is tempting to deploy distributed
reliable applications on them that permit higher levels of cooperation between
geographically-distant sites than the traditional electronic mail exchanges or
file transfers.

The principal impediment to exploiting the potential of large-scale dis-
tributed systems is the possibility of failures. In a system that spans large
geographic distances, failures may result in complex scenarios with respect
to communication patterns and network partitions. Furthermore, transient
failures and unpredictable communication and computation delays make rea-
soning based on time and timeouts impractical. Developing and reasoning
about applications to be deployed in wide-area distributed systems would be
an extremely difficult task if all of the above complexities had to be confronted
directly.

Over the last decade, process groups and group-based communication have
emerged as appropriate technologies for reliable computing in traditional dis-
tributed systems [5]. Process groups were initially introduced by the V Kernel
as a convenient structuring and naming mechanism [11]. Subsequently, the
paradigm has been extended by the inclusion of multicast communication
primitives with powerful consistency guarantees even in the presence of fail-
ures [7, 17, 1, 16]. Experience with these systems has confirmed the adequacy
�
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of process groups in greatly simplifying the construction of reliable distributed
applications [6].

In this paper we examine the problem of designing communication infras-
tructures that enable reliable computing in distributed systems with dimensions
considerably larger than previously considered. We believe that the process
group approach remains a valid paradigm even in such large-scale distributed
systems. To investigate this claim, we have implemented �������
	
� , a system
explicitly designed to support group-based communication over wide-area
networks. The system is based on off-the-shelf technologies for both communi-
cation (Internet UDP service) and computation ( ������� boxes). We describe the
architecture of �����
��	
� , the design issues we faced, and why we believe the
system should scale efficiently to very large dimensions.

�����
��	
� can be considered the microkernel of a layered architecture for the
full suite of group mechanisms [4].1 It implements a very small set of primi-
tives that allow user applications to join, leave and multicast messages within
groups. The consistency guarantees provided by �����
��	
� are based on the no-
tion of view synchrony [22, 21].2 Informally, view synchrony cleanly transforms
failures into group membership changes and provides global guarantees about
the messages that have been delivered by a group as a function of changes
to the group’s composition. Higher-level services and abstractions, such as
total-order and causal-ordered message delivery, uniformity, and atomic trans-
actions, can be easily built on top of �������
	
� [20]. Being able to reason even
with just view synchrony should greatly simplify application development.
For example, in [3] Babaoğlu et al. describe how an interface very similar to
�����
��	
� can be used to manage replicated files in a large-scale system with
one-copy serializability semantics.

A number of other systems have goals similar to those of �����
��	
� . His-
torically, the Isis system [7] has been one of the most influential sources for
ideas in applying group-based technology to reliable distributed computing.
Our microkernel approach for structuring group mechanisms is shared by the
more recent incarnation of Isis as Horus [19]. These systems, however, are still
oriented towards local-area network environments and do not deal adequately
with large scale. Transis [1] and Newtop [14] are perhaps the systems that are
closest to �������
	
� with respect to large scale. Both systems, like �������
	
� , are
able to deal with network partitions and mergers. Starting from a system model
that is quite similar to �������
	
� , Newtop guarantees total-order message deliv-
ery within a highly-flexible group architecture. The Transis system model is
composed of broadcast domains representing local-area networks that are in turn
interconnected through point-to-point links. Our system model, on the other
hand, is motivated by applications that result in uniformly distributed groups
spanning large geographic distances. Thus the architecture of �����
��	
� does
not distinguish local-area segments, but rather, treats the system uniformly
as a network of point-to-point links. Furthermore, �������
	
� and Transis differ
with respect to the multicast primitives that they implement. Whereas � �����
	
�
provides only view synchrony and leaves ordering guarantees to higher layers,
Transis offers the full suite of ordering semantics.

The next sections describe the assumptions made by �������
	
� about the
underlying communication layer, the semantics of view synchrony in a large-
scale system, and the architecture of �����
��	
� in light of these assumptions and
considerations. We conclude by describing the current state of the system and

1 RELACS corresponds to the core layer of the architecture described in [4].
2 In [21], the abstraction is called virtual synchrony. We are reluctant to use this term since it is

loaded with other semantics, including causal- and total-order delivery that are associated with
the Isis system.
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outlining directions for future work.

2 The System Model
The system characteristics and services that �������
	
� builds upon are those typ-
ical of distributed systems. Abstractly, the system can be modeled as a collec-
tion of processes executing at potentially remote sites. Processes communicate
through a message exchange service provided by the network. Informally, the
consequences of large scale on the system are the following. The network is
not fully connected and is typically quite sparse. Both processes and com-
munication links may fail by crashing. Furthermore, the network may allow
delivery of duplicate messages and it provides no message sequencing guaran-
tees. Given that the computing and communication resources may be shared
by large numbers of processes and messages, the load on the system will be
highly variable and unpredictable. Thus, it is not possible to place bounds on
communication delays or relative speeds of processes. As such, the system is
adequately modeled as an asynchronous distributed system.

Asynchronous systems place fundamental limits on what can be achieved
by distributed computations in the presence of failures [15, 5]. In particular, the
inability of some process � to communicate with another process � cannot be
attributed to its real cause — � may have crashed, � may be slow, communication
to � may have been disconnected or it may be slow. From the point of view of
� , all of these scenarios result in process � being unreachable.

What further distinguishes communication in the presence of failures in
large-scale asynchronous distributed systems are the resulting properties of
reachability. Formally, we can define reachability as follows: given two pro-
cesses � and � , let � be a binary relation such that � ��� if and only if � is
reachable from � in the sense that if � were to send a message to � , � would even-
tually receive it. Note that as defined, reachability is a non-stable predicate on
the evolving global state of the system. As such, in an asynchronous system,
the reachability relation can never be known accurately but can only be approx-
imated. The system service that is typically used for deriving approximations
of reachability is called a failure suspector [10, 9]. Informally, failure suspec-
tors generate suspicions of failures by relying on timeouts to detect missing
responses to either application-generated messages or forced messages from
periodic “pings”. The resulting information can only be classified as suspi-
cions since timeouts in an asynchronous system can never be set perfectly.
Furthermore, information that is obtained through communication can only
reflect some past state of the system due to message delays. By deriving it
directly from suspicions (processes that are suspected are declared unreachable
while all others are reachable), we obtain approximations for reachability.

In an asynchronous system, no matter what mechanism is used, conclusions
regarding reachability derived by individual processes can never be totally ac-
curate and may be mutually inconsistent. Furthermore, in a large-scale system,
communication delays could be comparable to inter-failure times. This may
result in significant periods during which symmetry and transitivity of the
reachability relation are not satisfied due to inconsistencies either among the
failure suspectors or the network routing tables. Despite these possibilities,
we assume that the communication layer we are building upon satisfies the
following properties for the reachability relation (the symbols � and � denote
the temporal operators “always” and “eventually”, respectively):
� Eventual symmetry. If process � is reachable from process � and there

are no new failures for a sufficiently long time, then process � will be
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eventually reachable from process � :

�
� � � ����� � � � � � ���

� Eventual transitivity. If process � is reachable from process � , process � is
reachable from process � and there are no new failures for a sufficiently
long time, then process � will be eventually reachable from process � :

�
� � � ���	� � � � �
����� � � � �
�����

Achieving these properties requires two conditions. First, the failure-free
communication structure must be fully connected. Second, the failure suspec-
tors must be constructed such that if the interval between failures is sufficiently
long, then a process that has not crashed and remains connected should even-
tually not be suspected.

Note that the above properties do not exclude the possibility of network par-
titions [18]. It may be that the set of processes is partitioned into several disjoint
islands that are mutually unreachable. In addition to these so-called clean parti-
tions, periods during which symmetry or transitivity are not satisfied may lead
to more complex scenarios with partitions that have non-empty intersections.
In �����
��	
� we are able to cope even with these cases as discussed in the next
section.

3 View Synchrony
The basic abstractions of view synchrony are process groups, views and messages.
A group is a named set of processes that can be treated as a single unit from the
outside. Processes may join a group by naming it or may leave the group they
are currently in. Once a member of the group, a process may communicate with
the other group members through multicasts of messages. View synchrony
guarantees that the delivery of these messages are totally ordered with respect
to changes in the group’s membership.

At the level of �������
	
� , our design does not allow groups to overlap in
membership. As discussed in [4], this restriction is not limiting in that over-
lapping group structures may be permitted by higher levels of the architecture
that do not require view synchrony. Given that a process is a member of at
most one group, we will omit the group name from our notation for simplicity.
Furthermore, issues related to the interaction between a group and processes
external to it are beyond the scope of this paper [4].

3.1 Views and View Changes
At any given time, each process in the group has its own perception of which
other known group members are reachable. For each process � , this perceived
reachability set is called its view of the group, and denoted ��
 . Views are
assigned unique names such that they can be distinguished even if their com-
position is identical.3 View synchrony tracks relevant system events and trans-
forms them into view changes that are delivered to processes for installation.
View changes are triggered by process crashes and recoveries, communication
failures and repairs, network partitions and mergers, or explicit requests to join
or leave the group.

At each process, the set of installed views forms a sequence, with the suc-
cessor view relation defined as follows:
3 For notational simplicity, we use the view name also when referring to the set of its members.
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Definition 3.1 View � � is called the successor of view � � , denoted � ��� � � , if and
only if there exists some process � at which � � is installed immediately after � � . Let

��

denote the transitive closure of this successor view relation.

The last view in this sequence at process � is called � ’s current view. Two
processes � and � may share the same current view, which we denote as � 
���� .

One of the problems in asynchronous systems is that the reachability sets
perceived by individual processes may be mutually inconsistent and inaccurate
with respect to the actual system state. View synchrony renders the reacha-
bility information encoded within views nevertheless useful. In particular, it
guarantees that views installed at individual processes (i) have some relation
to the actual state of the system with respect to failures, and (ii) are mutually
consistent. We can formalize these ideas through the following definition:

Definition 3.2 View installation.
1. If no new failures occur for a sufficiently long time, the current view ��
 of each

process � that has not crashed is such that
(a) �

� � � ��� � � � �
	 � 
 �
(b) �

� ����
��� � � � � �	 � 
 �
(c) �

��
 	 � 
 � � � � � 
�� ��� ���
2. For any pair of installed views � 1 and � 2

� � � � 1
�� � 2 �	� � � 2

�� � 1 � ���

In other words, view synchrony guarantees that installed views are closed
under reachability and maximally shared. Furthermore, views are installed

so as to preserve the partial order structure defined by the
��

relation on the
global set of views. Note that the maximal sharing property of views would
be sufficient to guarantee that partitions result in non-overlapping concurrent
views. The property, however, can only be guaranteed only during sufficiently
long periods without failures. Thus, there may be transient periods where
the property does not hold, resulting in overlapping views. In �����
��	
� , view
installations are not performed as atomic actions since the resulting cost in a
large-scale system would be prohibitive. Thus, failures that occur during the
view agreement phase may cause a process to install a view that is different
from the one it initially agreed upon. The consequences of this possibility are
discussed further below.

Another problem in large-scale distributed systems is the possibility of
network partitions. In terms of view synchrony, network partitions result in
concurrent views, which are views unrelated through

�
. As a simple example,

consider the scenario depicted in Figure 1 where two processes � and � initially
belong to and share the view � 1
���� . Due to a partition, they become mutually
unreachable and install two different successor views � 2
 and � 3� .

More complex failure scenarios, such as the one depicted in Figure 2, may
cause a given view to partition into multiple concurrent views that overlap.
Initially, four processes � , � , � and



all belong to and share the same view � 1.

Process � is partitioned from the rest, provoking a view change. The successor
view of � 1 for � is � 2 which includes only � . The remaining processes agree on a
new reachable set

� ��� � � 
 � , and processes � and



install this as their new view � 3.
However, before having a chance to install this view itself, � is partitioned from
the others, resulting in � installing � 4, which includes only � , as the successor
view of � 1. According to their views, � and



believe � to be reachable, but � ’s
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Figure 1. Partitioned processes install distinct views.

view indicates that � and



are not. The situation may seem bothersome, in that
� appears to participate in two views simultaneously. But in fact, at any given
time, � has a unique current view; it simply appears in some other view ( � 3)
that it does not share. Furthermore, Property 1(b) of view installation ensures
that overlapping concurrent views cannot persist, since there will always be
future views that exclude the overlapping elements. In the example, if � and


try to communicate with � , they will realize that � is in fact unreachable and
will trigger a new view change to exclude it, leading to � 5.

Partition mergers result in view changes in which several processes with
distinct current views all install a common successor view. In Figure 2, if
processes � and � , which were partitioned with current views � 4 and � 2, once
again become mutually reachable, they will both install view � 6 including
themselves. �������
	
� does not specify any special action when view mergers
occur. Appropriate handling of these situations is application-specific and is
left to higher layers which may implement primitives such as state transfer [7].

3.2 Message Delivery
In addition to managing views, �������
	
� implements a reliable multicast prim-
itive for communication among group members. Informally, reliable multicast
within a group ensures that the message is received by all or none of the group
members. In defining the exact semantics of reliable multicast, we distinguish
between a process receiving and delivering a message. Whereas the first primitive
is provided by the underlying network transport services, delivery is imple-
mented by �����
��	
� by invoking an application-specified handler routine. A
message � is said to be delivered by process � during view � 
 if � 
 is the current
view at � when the handler is invoked with message � .

The real power of view synchrony is not in its individual components —
view changes and reliable multicasts — but in their integration. Informally,
view synchrony permits a process to reason globally about the set of messages
other processes have delivered based on local information maintained as the
sequence of installed views. In particular, view synchrony guarantees that for
each path in the partial order of views, message deliveries are totally ordered
with respect to view changes. Thus, during the phase when some view �
is being terminated and the successor view � �

is being established, processes
must agree not only on the composition of � �

but also on the set of messages
that need to be delivered during � .

Ultimately, the semantics of view synchrony should allow an application
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Figure 2. Failures during view agreement may result in overlapping concurrentviews.

process to reach useful conclusions regarding the set of messages delivered by
other processes during a given view. As it turns out, formalizing the above
ideas in a manner that can be implemented leads to decisions about what the
agreed-upon set of messages should be,and to refinements of view membership
semantics.

One decision concerning the message set agreement arises due to network
partitions. As illustrated in Scenario 1 of Figure 3, suppose three processes � ,
� , and � initially belong to and share the common view � 1. Process � becomes
partitioned from � and � , provoking a view change. Processes � and � construct a
new view � 3. To do so, they agree both on the new view and the set of messages
that must be delivered during � 1. Thus, once they have installed � 3, they may
be sure of the messages delivered by each other. In deciding upon the set of
messages, however, two semantics are possible. Processes � and � may either
agree on the set of messages that have already been delivered during � 1, or that
should be delivered during � 1. The former semantics allows � and � to know for
certain that they have delivered exactly the same set of messages. Achieving
such a guarantee, however, requires additional communication (essentially,
the second phase of a 2-phase commit protocol) during the agreement phase.
The latter semantics guarantees only that � and � will deliver the same set of
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Figure 3. Scenarios that illustrate choices between possible message delivery seman-
tics.

messages provided that they survive the view change. In �������
	
� we currently
adopt this weaker semantics since incurring the additional cost for each view
change may not be practical in a large-scale system.

A second issue arises from the fact that concurrent views may intersect
in arbitrary ways. As an example consider the second scenario presented in
Figure 3. As before, process � becomes partitioned from � and � , provoking a
view change. Process � does not realize that the partition has occurred, and
continues executing and delivering a set of messages

�
. Meanwhile, � and �

initiate a view change to exclude � and agree to deliver a set of messages �
while constructing � 2. Process � installs � 2 as the successor to � 1. Yet another
partition between � and � causes � to abandon view � 2 and initiate a new view
change. While doing so, � and � become mutually reachable while � remains
partitioned. So when constructing � 3 together, � and � agree to deliver a set of
messages that is the union of � (those known to � ) and

�
(those known to � ).

Process � , on the other hand, delivers the set of messages � and installs view
� 2 as the successor to � 1.

The guarantees provided by view synchrony in this situation are unsatis-
factory for two reasons. First, process � is forced to deliver a set of messages
( � ) that are potentially from a process (e.g., � ) extraneous to its successor view
� 3. Second, process � can only know about the message set � delivered by �
while � actually delivers more messages ( ��� � ). In other words, a process
is constrained to reason about another process in its view having delivered at
least a set of messages as opposed to exactly the set of messages. In particular,
views � 2 and � 3 have � as a common member but they include other disjoint
members (� and � ). The common member acts as a bridge between the two
views and causes undesirable message deliveries with respect to the disjoint
members.

To handle this problem we impose the following restrictions on view evo-
lutions to define a membership semantics that is intermediate between weak-
and strong-partial [21]:

Property 3.1 Quasi strong-partial membership service.
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1. (Partitioning Rule:) If � 1, � 2 and � 3 are three views such that
� � 1

� � 2 �	� � � 1
� � 3 �	� � � 2 �� � 3 � �

then
� � 2 � � 3 ��� � � 3 � � 2 ��� � � 2 � � 3 ��� ���

2. (Merging Rule:) If � 1, � 2 and � 3 are three views such that
� � 1

� � 3 �	� � � 2
� � 3 �	� � � 1 �� � 2 � �

then
� � 1 � � 2 ��� ���

In other words, two concurrent views that result from the partitioning of
a common view may overlap only if one is a proper subset of the other; two
concurrent views that merge to form a single common view cannot intersect.
�����
��	
� guarantees these properties for view evolutions by not allowing un-
reachable processes to become reachable during view termination. The conse-
quence of this restriction is a potential increase in the number of view changes.
The benefit, on the other hand, is a stronger guarantee.

In light of these considerations, we can finally define view synchronous
communication as implemented by � �����
	
� .

Definition 3.3 View-synchronous communication. For each multicast message
� , if there exists some process � that delivers � during view � � , then for all views � �
such that � � � � � and � 	 � � , all processes � 	 � � � � � that have not crashed also
deliver � . Furthermore, if a message is delivered, it is delivered in exactly one view
that must include the sending process as a member.

Note that there is a subtle but important difference between the above
definition and the one given by Schiper and Ricciardi in [21]. The Schiper-
Ricciardi definition requires all processes in � � � � � to deliver the same set of
messages that were multicast in view � � . Our definition does not mention the
view in which the message was multicast. All we require is that if some process
� delivers message � in view � � , then all processes that survive together with �
into the same next view also deliver � . In our case, the message may have been
multicast in view � � or some earlier view since the notion of “multicasting in a
view” as we have defined it, is with respect to the process local state (the last
view installed before issuing the multicast). The alternative definition is made
with respect to the global system state in which the multicast actually occurs.
Unfortunately, asynchrony between applications and the support layer makes
it impossible for a process to know in which (future) view its multicast request
will be serviced.

Finally, note that view synchrony as implemented in �����
��	
� guarantees
nothing about the relative order of messages delivered during a given view.
Applications that require ordering guarantees such as uniform [20], causal [8]
or total [13] will have to rely on layers built on top of �������
	
� .

4 The Application Interface
Applications that require �������
	
� services invoke them through a small set of
library functions. The proposed interface is an attempt to maximize flexibility
while minimizing complexity. The following is an informal description of the
�����
��	
� application programming interface.

v init() global system initialization and data structure allocation.
v join(g name, <handlers>) join the group identified through the

string g name. Attempts to join multiple groups or the same group more
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than once generate an error. If the group to be joined does not exist or has
no members in the current partition, it will be created. For groups represent-
ing a unique global service, ensuring that a single instance is created despite
partitions, requires that the application consult a global naming service in con-
structing the (globally unique) group name. Upon partition mergers, processes
belonging to groups with matching names will be automatically joined. The
call includes optional parameters for associating application-specified handlers
with view change, message delivery and state transfer events. Each handler
invocation is indivisible with respect to others in the sense that future events
do not preempt an active handler. Thus, handler executions are serialized as
defined by view synchrony semantics.

v leave(type) leave the group. Since a process can belong to at most one
group, the group name is implicit. The parameter type selects if the leave is to
be immediate or delayed. In the former case, the call returns immediately and the
leave is treated as if the process crashed. In the latter case, the call returns only
after a new view has been established in which the exiting process is marked
as such. Thus, the exiting process has the same view synchrony guarantees as
those remaining in the view.

v cast(msg) multicast message msg to the current group with view-
synchronous semantics.

v msend(dest list, msg) multisend message msg to the list of pro-
cesses in dest list. The call is equivalent to a sequence of point-to-point
send operations, one for each destination, with best-effort delivery guarantees.
Reception is performed through the same message delivery handler mechanism
as multicasts. The destination process addresses can be extracted from the in-
formation contained in the view. This call is extraneous to the view synchrony
semantics and is included to facilitate group interactions with non-member
processes.

Note that � �����
	
� itself does not include a threads (light-weight processes)
package. If the underlying system supports such a mechanism, then application
programs could be structured so as to associate each event handling within a
separate thread. In this case, the handler terminates with the thread invocation.
Consequently, event management enclosed within a thread cannot rely on view
synchrony.

5 System Architecture
This section briefly describes the current implementation of the �������
	
� system.
Further details can be found in [2]. Whereas the �����
��	
� model treats all pro-
cesses uniformly, for performance reasons, the implementation distinguishes
between processes local to a given site and those that are remote. Architectural
design choices are based on the following assumptionsabout the system model:
� Communication between processes local to a single site is reliable.
� Crashes of local processes can be reliably detected rather than simply

suspected.
� Sites, like processes, may fail by crashing. A site crash is equivalent to

the crash of all processes local to that site.
� While the number of processes that belong to groups may be large, the

number of sites they span is typically small.
The first two assumptionssimplify the management of reachability informa-

tion within a given site since a local process is either reachable or has crashed,
but can never be unreachable while operational.
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Figure 4. Processes do not communicate directly but request �����
��	
� services by
contacting the local server.

Each site runs a single instance of the �������
	
� server. Processes requiring
�����
��	
� services link appropriate library functions and invoke them by sending
requests to the local server. Figure 4 illustrates this organization. It is the
servers that actually perform reachability management, multicasts, message
deliveries, view changes, and communication with other remote sites. For
example, a request to multicast a message is handled as follows: the process
issues the request by invoking the functionv cast(). The �����
��	
� server local
to the site receives the request and delivers the message to all other local group
members. The message is also sent to all other �����
��	
� servers on remote sites
that have at least one member of the group. Each server delivers the message
to its local processes. Delivering the message to a process triggers the process’
message delivery handler function.

The �����
��	
� server has a layered structure with the following logical com-
ponents:
� network: Acts as the interface to the low-level (unreliable) network ser-

vices for communicating with remote sites.
� transport: Implements reliable point-to-point communication on top of

the underlying network services.
� failure suspector: Uses periodic “ping” messages and information passed

up from the transport layer in order to construct reachability information
about remote sites.
� local communication: Handles process/server communication internal to

a single site.
� view change/multicast: Handles view changes, multicasts and delivery of

messages.
� gossip service: Constructs reachability information regarding local pro-

cesses and propagates it to remote sites.
Figure 5 shows the organization of the different layers. Adjacent layers

may exchange information. Since a single server may handle several different
groups that have processes running on the site, the upper layers of the server
are instantiated once for each group. The lower layers are shared by all groups
at the site and are instantiated only once.

The above system architecture reflects our emphasis on sites. In as much as
possible, we strive to achieve costs that are proportional to the number of sites
rather than the number of processes. In particular, reachability information
derived from the failure suspectors is with respect to sites. This information is
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Figure 5. The architecture of the �������
	
� server.

mapped to reachability of individual processes when needed by combining it
with the data received from the gossip services.

Failure suspectors for large-scale systems with highly variable communica-
tion delays must be designed with care. The difficulty is in striking a balance
between responsiveness of view changes to actual failures and overhead due
to false suspicions. The � �����
	
� failure suspector is highly adaptive in that
the timeout periods are established individually for each of the communication
channels based on the mean and variance of observed delay during a window
of recent communication.

6 Status and Conclusions
We have implemented a prototype of �����
��	
� on top of SunOS 4.3 (BSD ������� )
using the Internet UDP datagram service through the socket interface. We
have also built a demonstration program to illustrate major system events
using Tcl/Tk [23] for the graphical interface. We have found the tool useful not
only for observing application behavior, but also for performance tuning and
debugging of � �����
	
� itself.

Figure 6 illustrates a snapshot of the demonstration program. Three sites
have processes in the demonstration group: papageno, fyodor, and boris with
the name of the current coordinator for view agreements (see [2] for details) in
capital letters. The upper right-hand window traces view changes and message
multicasts/deliveries. Below this window, the same events are shown as a bar
graph with black bars representing view changes and grey bars representing
message deliveries. The lower right-hand window shows the processes active
at a given server (here, fyodor) as well as those having executed a delayed leave
(denoted as Defunct).

The current implementation has several limitations both in functionality
and performance. We assume that communication satisfies the eventual sym-
metry and transitivity properties for reachability. Without these, sites may have
conflicting opinions about reachability, and thus engage in a never-ending se-
quence of view agreement steps. In a wide-area network such as the Internet,
there can be extended periods where transitivity is not satisfied. Ideally, the
problem should be solved by modifying the current IP routing algorithms or
inserting a layer on top of the UDP service that can re-route packets through
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Figure 6. The graphical presentation of the �������
	
� demonstration program.

alternative paths. In this manner, even if the underlying infrastructure does not
guarantee transitivity, we may still achieve the property by forwarding mes-
sages between connected sites. Currently we make use of neither hardware
broadcast capabilities of local-area segments nor the IP multicasting facility
over wide-area links of the network [12].

We assume that interprocess communication within a single site is com-
pletely reliable. While this is usually a reasonable assumption, there may be
rare situations of extreme local resource shortages where it does not hold. Sim-
ilarly, on rare occasions (e.g., no more available inodes), our mechanism to
detect local process crashes through file locks may prove unreliable [2].

In the current implementation there are no provisions for flow control. We
assume that the �����
��	
� server has unlimited buffering capability. Processes
performing multicasts at a fast rate may overload the message buffers at a site
with a slow process. One possible solution to this problem is to force the slow
process to leave the group so that it may bring itself up to date through state
transfer when rejoining the group without having to process the back logged
messages.

The current prototype is in too early a stage to draw any conclusions regard-
ing its performance or completeness. When the above shortcomings have been
addressed and the performance enhanced, we will engage in an evaluation
study of the architecture. The raw performance of multicast communication
and view management has to be quantified. We also need to construct several
realistic applications in order to evaluate the ease of use and completeness of the
�����
��	
� programming model. As distributed systems continue to grow in ge-
ographical scale, tools such as �����
��	
� will become indispensable for building
reliable applications to run on them.
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