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Abstract

Measuring the bottleneck link bandwidth along a

path is important for understanding the perfor-

mance of many Internet applications. Existing tools

to measure bottleneck bandwidth are relatively

slow, can only measure bandwidth in one direction,

and/or actively send probe packets. We present

the nettimer bottleneck link bandwidth measure-

ment tool, the libdpcap distributed packet cap-

ture library, and experiments quantifying their util-

ity. We test nettimer across a variety of bottle-

neck network technologies ranging from 19.2Kb/s

to 100Mb/s, wired and wireless, symmetric and

asymmetric bandwidth, across local area and cross-

country paths, while using both one and two packet

capture hosts. In most cases, nettimer has an error

of less than 10%, but at worst has an error of 40%,

even on cross-country paths of 17 or more hops. It

converges within 10KB of the first large packet ar-

rival while consuming less than 7% of the network

traffic being measured.

1 Introduction

Network bandwidth continues to be a critical resource
in the Internet because of heterogeneous bandwidths
of access technologies and file sizes. This can cause an
unaware application to stream a 5GB video file over a
19.2Kb/s cellular data link or send a text-only version
of a web site over a 100Mb/s link. Knowledge of the
bandwidth along a path allows an application to avoid
such mistakes by adapting the size and quality of its
content [FGBA96] or by choosing a web server or proxy
with higher bandwidth than its replicas [Ste99].

Existing solutions to this problem have examined
HTTP throughput [Ste99], TCP throughput [MM96],
available bandwidth [CC96a], or bottleneck link band-
width. Although HTTP and TCP are the current
dominant application and transport protocols in the

Internet, other applications and transport protocols
(e.g. for video and audio streaming) have different
performance characteristics. Consequently, their per-
formance cannot be predicted by HTTP and TCP
throughput. Available bandwidth (when combined
with latency, loss rates, and other metrics) can predict
the performance of a wide variety of applications and
transport protocols. However, available bandwidth de-
pends on both bottleneck link bandwidth and cross
traffic. Cross traffic is highly variable in different places
in the Internet and even highly variable in the same
place. Developing and verifying the validity of an avail-
able bandwidth algorithm that deals with that variabil-
ity is difficult.

In contrast, bottleneck link bandwidth is well un-
derstood in theory [Kes91] [Bol93] [Pax97] [LB00], and
techniques to measure it are straightforward to validate
in practice (see Section 4). Moreover, bottleneck link
bandwidth measurement techniques have been shown
to be accurate and fast in simulation [LB99]. Further-
more, in some parts of the Internet, available band-
width is frequently equal to bottleneck link bandwidth
because either bottleneck link bandwidth is small (e.g.
wireless, modem, or DSL) or cross traffic is low (e.g.
LAN). In addition to bottleneck link bandwidth’s cur-
rent utility, it can help the development of accurate
and validated available bandwidth measurement tech-
niques because of available bandwidth’s dependence on
bottleneck link bandwidth.

However, current tools to measure link bandwidth
1) measure all link bandwidths instead of just the bot-
tleneck, 2) only measure the bandwidth in one direc-
tion, and/or 3) actively send probe packets. The tools
pathchar [Jac97], clink [Dow99], pchar [Mah00], and
tailgater [LB00] measure all of the link bandwidths
along a path, which can be time-consuming and un-
necessary for applications that only want to know the
bottleneck bandwidth. Furthermore, these tools and
bprobe [CC96b] can only measure bandwidth in one di-
rection. These tools, tcpanaly [Pax97], and pathrate
[DRM01] actively send their own probe traffic, which
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can be more accurate than passively measuring existing
traffic, but also results in higher overhead [LB00]. The
nettimer-sim [LB99] tool only works in simulation.

Our contributions are the nettimer bottleneck
link bandwidth measurement tool, the libdpcap dis-
tributed packet capture library, and experiments quan-
tifying their utility. Unlike current tools, nettimer can
passively measure the bottleneck link bandwidth along
a path in real time. Nettimer can measure bandwidth
in one direction with one packet capture host and in
both directions with two packet capture hosts. In addi-
tion, the libdpcap distributed packet capture library
allows measurement programs like nettimer to effi-
ciently capture packets at remote hosts while doing ex-
pensive measurement calculations locally. Our exper-
iments indicate that in most cases nettimer has less
than 10% error whether the bottleneck link technol-
ogy is 100Mb/s Ethernet, 10Mb/s Ethernet, 11Mb/s
WaveLAN, 2Mb/s WaveLAN, ADSL, V.34 modem,
or CDMA cellular data. Nettimer converges within
10308 bytes of the first large packet arrival. Even when
measuring a 100Mb/s bottleneck, nettimer only con-
sumes 6.34% of the network traffic being measured,
and 4.52% of the cycles on the 366MHz remote packet
capture server and 57.6% of the cycles on the 266MHz
bandwidth computation machine.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the packet pair property of FIFO-
queueing networks and show how it can be used to
measure bottleneck link bandwidth. In Section 3 we
describe how we implement the packet pair techniques
described in Section 2, including our distributed packet
capture architecture and API. In Section 4, we present
preliminary results quantifying the accuracy, robust-
ness, agility, and efficiency of the tool. In Section 6,
we conclude.

2 Packet Pair Technique

In this section we describe the packet pair property of
FIFO-queueing networks and show how it can be used
to measure bottleneck link bandwidth.

2.1 Packet Pair Property of FIFO-
Queueing networks

The packet pair property of FIFO-queueing networks
predicts the difference in arrival times of two packets
of the same size traveling from the same source to the
same destination:

t1n − t0n = max
(
s1

bl
, t10 − t00

)
(1)

where t0n and t1n are the arrival times of the first and
second packets respectively at the destination, t00 and
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Figure 1: This figure shows two packets of the same size
traveling from the source to the destination. The wide part
of the pipe represents a high bandwidth link while the nar-
row part represents a low bandwidth link. The spacing
between the packets caused by queueing at the bottleneck
link remains constant downstream because there is no ad-
ditional downstream queueing.

t10 are the transmission times of the first and second
packets respectively, s1 is the size of the second packet,
and bl is the bandwidth of the bottleneck link.

The intuitive rationale for this equation (a full proof
is given in [LB00]) is that if two packets are sent close
enough together in time to cause the packets to queue
together at the bottleneck link ( s1bl > t10− t00), then the
packets will arrive at the destination with the same
spacing (t1n − t0n) as when they exited the bottleneck
link ( s1bl ). The spacing will remain the same because
the packets are the same size and no link downstream
of the bottleneck link has a lower bandwidth than the
bottleneck link (as shown in Figure 1, which is a vari-
ation of a figure from [Jac88]).

This property makes several assumptions that may
not hold in practice. First, it assumes that the two
packets queue together at the bottleneck link and at
no later link. This could by violated by other packets
queueing between the two packets at the bottleneck
link, or packets queueing in front of the first, the sec-
ond or both packets downstream of the bottleneck link.
If any of these events occur, then Equation 1 does not
hold. In Section 2.2, we describe how to mitigate this
limitation by filtering out samples that suffer undesir-
able queueing.

In addition, the packet pair property assumes that
the two packets are sent close enough in time that they
queue together at the bottleneck link. This is a prob-
lem for very high bandwidth bottleneck links and/or
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for passive measurement. For example, from Equa-
tion 1, to cause queueing between two 1500 byte pack-
ets at a 1Gb/s bottleneck link, they would have to be
transmitted no more than 12 microseconds apart. An
active technique is more likely than a passive one to
satisfy this assumption because it can control the size
and transmission times of its packets. However, in Sec-
tion 2.2, we describe how passive techniques can detect
this problem and sometimes filter out its effect.

Another assumption of the packet pair property is
that the bottleneck router uses FIFO-queueing. If the
router uses fair queueing, then packet pair measures
the available bandwidth of the bottleneck link [Kes91].

Finally, the packet pair property assumes that trans-
mission delay is proportional to packet size and that
routers are store-and-forward. The assumption that
transmission delay is proportional to packet size may
not be true if, for example, a router manages its buffers
in such a way that a 128 byte packet is copied more
than proportionally faster than a 129 byte packet.
However, this effect is usually small enough to be ig-
nored. The assumption that routers are store-and-
forward (they receive the last bit of the packet before
forwarding the first bit) is almost always true in the
Internet.

Using the packet pair property, we can solve Equa-
tion 1 for bl, the bandwidth of the bottleneck link:

bl =
s1

t1n − t0n
(2)

We call this the received bandwidth because it is band-
width measured at the receiver. When filtering in the
next section, we will also use the the bandwidth mea-
sured at the sender (the sent bandwidth):

s1

t10 − t00
(3)

2.2 Filtering Techniques

In this section, we describe in more detail how the as-
sumptions in Section 2.1 can be violated in practice
and how we can filter out this effect. Using measure-
ments of the sizes and transmission and arrival times
of several packets and Equation 1, we can get samples
of the received bandwidth. The goal of a filtering tech-
nique is to determine which of these samples indicate
the bottleneck link bandwidth and which do not. Our
approach is to develop a filtering function that gives
higher priority to the good samples and lower priority
to the bad samples.

Before describing our filtering functions, we differ-
entiate between the kinds of samples we want to keep
and those we want to filter out. Figure 2 shows one
case that satisfies the assumptions of the packet pair
property and three cases that do not. There are other

possible scenarios but they are combinations of these
cases.

Case A shows the ideal packet pair case: the packets
are sent sufficiently quickly to queue at the bottleneck
link and there is no queueing after the bottleneck link.
In this case the bottleneck bandwidth is equal to the
received bandwidth and we do not need to do any fil-
tering.

In case B, one or more packets queue between the
first and second packets, causing the second packet to
fall farther behind than would have been caused by the
bottleneck link. In this case, the received bandwidth is
less than the bottleneck bandwidth by some unknown
amount, so we should filter this sample out.

In case C, one or more packets queue before the first
packet after the bottleneck link, causing the second
packet to follow the first packet closer than would have
been caused by the bottleneck link. In this case, the re-
ceived bandwidth is greater than the bottleneck band-
width by some unknown amount, so we should filter
this sample out.

In case D, the sender does not send the two pack-
ets close enough together, so they do not queue at the
bottleneck link. In this case, the received bandwidth is
less than the bottleneck bandwidth by some unknown
amount, so we should filter this sample out. Active
techniques can avoid case D samples by sending large
packets with little spacing between them, but passive
techniques are susceptible to them. Examples of case D
traffic are TCP acknowledgements, voice over IP traf-
fic, remote terminal protocols like telnet and ssh, and
instant messaging protocols.

2.2.1 Filtering using Density Estimation

To filter out the effect of case B and C, we use the in-
sight that samples influenced by cross traffic will tend
not to correlate with each other while the case A sam-
ples will correlate strongly with each other [Pax97]
[CC96b]. This is because we assume that cross traffic
will have random packet sizes and will arrive randomly
at the links along the path. In addition, we use the
insight that packets sent with a low bandwidth that
arrive with a high bandwidth are definitely from case
C and can be filtered out [Pax97]. Figure 3 shows a
hypothetical example of how we apply these insights.
Using the second insight, we eliminate the case C sam-
ples above the received bandwidth = sent bandwidth
(x = y) line. Of the remaining samples, we calculate
their smoothed distribution and pick the point with
the highest density as the bandwidth.

There are many ways to compute the density func-
tion of a set of samples [Pax97] [CC96b], including us-
ing a histogram. However, histograms have the dis-
advantages of fixed bin widths, fixed bin alignment,
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Figure 2: This figure shows four cases of how the spacing between a pair of packets changes as they travel along a path.
The black boxes are packets traveling from a source on the left to a destination on the right. Underneath each pair of
packets is their spacing relative to the spacing caused by the bottleneck link. They gray boxes indicate cross traffic that
causes one or both of the packets to queue.

and uniform weighting of points within a bin. Fixed
bin widths make it difficult to choose an appropriate
bin width without previously knowing something about
the distribution. For example, if all the samples are
around 100,000, it would not be meaningful to choose
a bin width of 1,000,000. On the other hand, if all
the samples are around 100,000,000, a bin width of
10,000 could flatten an interesting maxima. Another
disadvantage is fixed bin alignment. For example, two
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Figure 3: The left graph shows some packet pair samples
plotted using their received bandwidth against their sent
bandwidth. “A” samples correspond to case A, etc. The
right graph shows the distribution of different values of re-
ceived bandwidth after filtering out the samples above the
x = y line. In this example, density estimation indicates
the best result.

points could lie very close to each other on either side of
a bin boundary and the bin boundary ignores that re-
lationship. Finally, uniform weighting of points within
a bin means that points close together will have the
same density as points that are at opposite ends of a
bin. The advantage of a histogram is its speed in com-
puting results, but we are more interested in accuracy
and robustness than in saving CPU cycles.

To avoid these problems, we use kernel density esti-
mation [Sco92]. The idea is to define a kernel function
K(t) with the property∫ +∞

−∞
K(t)dt = 1 (4)

Then the density at a received bandwidth sample x is

d(x) =
1
n

n∑
i=1

K

(
x− xi
cx

)
(5)

where c is the kernel width ratio, n is the number of
points within cx of x, and xi is the ith such point. We
use the kernel width ratio to control the smoothness
of the density function. Larger values of c give a more
accurate result, but are also more computationally ex-
pensive. We use a c of 0.10. The kernel function we
use is

K(t) =
{

1 + t t ≤ 0
1− t t > 0

}
(6)

This function gives greater weight to samples close to
the point at which we want to estimate density, and it
is simple and fast to compute.
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Figure 4: This figure has the same structure as Figure 3.
In this example, the ratio of received bandwidth to sent
bandwidth is a better indicator than density estimation.

2.2.2 Filtering using the Received/Sent Band-
width Ratio

Although density estimation is the best indicator in
many situations, many case D samples can fool density
estimation. For example, a host could transfer data in
two directions over two different TCP connections to
the same correspondent host. If data mainly flows in
the forward direction, then the reverse direction would
consist of many TCP acknowledgements sent with large
spacings and a few data packets sent with small spac-
ings. Figure 4 shows a possible graph of the resulting
measurement samples. Density estimation would indi-
cate a bandwidth lower than the correct one because
there are so many case D samples resulting from the
widely spaced acks.

We can improve the accuracy of our results if we
favor samples that show evidence of actually causing
queueing at the bottleneck link [LB99]. The case D
samples are unlikely to have caused queueing at the
bottleneck link because they are so close to the line
x = y. On the other hand, the case A samples are
on average far from the x = y line, meaning that they
were sent with a high bandwidth but received with a
lower bandwidth. This suggests that they did queue at
the bottleneck link.

Using this insight we define the received/sent band-
width ratio of a received bandwidth sample x to be

p(x) = 1− ln(x)
ln(s(x))

(7)

where s(x) is the sent bandwidth of x. We take the
log of the bandwidths because bandwidths frequently
differ by orders of magnitude.

Unfortunately, given two samples with the same sent
bandwidth (7) favors the one with the smaller received
bandwith. To counteract this, we define the received

bandwidth ratio to be

r(x) =
ln(x)− ln(xmin)

ln(xmax)− ln(xmin)
(8)

2.2.3 Composing Filtering Algorithms

We can compose the filtering algorithms described in
the previous sections by normalizing their values and
taking their linear combination:

f(x) = 0.4 ∗ d(x)
d(x)max

+ 0.3 ∗ p(x) + 0.3 ∗ r(x) (9)

where d(x)max is the maximum kernel density value.
By choosing the maximum value of f(x) as the bottle-
neck link bandwidth, we can take into account both the
density and the received/sent bandwidth ratio without
favoring smaller values of x. The weighting of each of
the components is arbitrary. Although it is unlikely
that this is the optimal weighting, the results in Sec-
tion 4.2 indicate that these weightings work well.

2.3 Sample Window

In addition to using a filtering function, we also only
use the last w bandwidth samples. This allows us to
quickly detect changes in bottleneck link bandwidth
(agility) while being resistant to cross traffic (stability).
A large w is more stable than a small w because it
will include periods without cross traffic and different
sources of cross traffic that are unlikely to correlate
with a particular received bandwidth. However, a large
w will be less agile than a small w for essentially the
same reason. It is not clear to us how to define a w for
all situations, so we currently punt on the problem by
making it a user-defined parameter in nettimer.

3 Implementation

In this section, we describe how nettimer implements
the algorithms described in the previous section. The
issues we address are how to define flows, where to take
measurements, and how to distribute measurements.

3.1 Definition of Flows

In Section 2.1, the packet pair property refers to two
packets from the same source to the same destination.
For nettimer, we interpret this flow to be defined by
a (source IP address, destination IP address)
tuple (network level flow), but we could also have in-
terpreted it to be defined by a (source IP address,
source port number, destination IP address,
source port number) tuple (transport level flow).
The advantage of using transport level flows is that
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they can penetrate Network Address Translation
(NAT) gateways. The advantage of network level
flows is that we can aggregate the traffic of multiple
transport level flows (e.g. TCP connections) so that
we have more samples to work with. We chose network
level flows because when we started implementing
nettimer, NAT gateways were not widespread while
popular WWW browsers would open several short
TCP connections with servers. We describe a possible
solution to this problem in Section 5.

3.2 Measurement Host

In Section 2.1, we assume that we have the transmis-
sion and arrival times of packets. In practice, this
requires deploying measurement software at both the
sender and the receiver, which may be difficult. In this
section, we describe how we mitigate this limitation in
nettimer and the trade-offs of doing so.

3.2.1 Two Hosts

In the ideal case, we can deploy measurement soft-
ware at both the sender and the receiver. Using this
technique, called Receiver Based Packet Pair (RBPP)
[Pax97], nettimer can employ all of the filtering algo-
rithms described in Section 2.2 because we have both
the transmission times and reception times. However,
in addition to deploying measurement software at both
the sender and the receiver, nettimer also needs an ar-
chitecture to distribute the measurements to interested
hosts (described in Section 3.3). We show in Section 4
that RBPP is the most accurate technique.

3.2.2 One Host

When we can only deploy software at one host, we
measure the bandwidth from that host to any other
host using Sender Based Packet Pair (SBPP) [Pax97]
or from any other host to the measurement host using
Receiver Only Packet Pair (ROPP) [LB99].

SBPP works by using the arrival times of transport-
or application-level acknowledgements instead of the
arrival times of the packets themselves. One applica-
tion of this technique would be to deploy measurement
software at a server and measure the bandwidth from
the server to clients where software could not be de-
ployed. The issues with this technique are 1) transport-
or application-level information, 2) non-per-packet ac-
knowledgements, and 3) susceptibility to reverse path
cross traffic. nettimer uses transport- or application-
level information to match acknowledgements to pack-
ets. Currently it only implements this functionality
for TCP. Unfortunately, TCP does not have a strict
per-packet acknowledgement policy. It only acks every
other packet or packets out of order. Furthermore, it

sometimes delays acks. Finally, the acks could be de-
layed by cross traffic on the reverse path, causing more
noise for the filtering algorithm to deal with. We show
in Section 4 that these issues cause SBPP to be less
accurate that the other packet pair techniques. We
describe solutions to these problems in Section 5.

ROPP works by using only the arrival times of pack-
ets. This prevents us from using some of the filter-
ing algorithms described in Section 2.2 because we can
no longer calculate the sent bandwidth. One applica-
tion of this technique would be to deploy measurement
software at a client and measure the bandwidth from
servers that cannot be modified to the client. We show
in Section 4 that when there is little post-bottleneck
queueing, ROPP is close in accuracy to RBPP.

3.3 Distributed Packet Capture

In this section, we describe our architecture to do dis-
tributed packet capture. The nettimer tool uses this
architecture to measure both transmission and arrival
times of packets in the Internet. We first explain our
approach and then describe our implementation.

3.3.1 Approach

Our approach is to distinguish between packet cap-
ture servers and packet capture clients. The packet
capture servers capture packet headers and then dis-
tribute them to the clients. The servers do no cal-
culations. The clients receive the packet headers and
perform performance calculations and filtering. This
allows flexibility in where the packet capture is done
and where the calculation is done.

Another possible approach is to do more calculation
at the packet capture hosts [MJ98]. The advantage of
approach is that packet capture hosts do not have to
consume bandwidth by distributing packet headers.

The advantages of separating the packet capture and
performance calculation are 1) reducing the CPU bur-
den of the packet capture hosts, 2) gaining more flex-
ibility in the kinds of performance calculations done,
and 3) reducing the amount of code that has to run
with root privileges. By doing the performance calcula-
tion only at the packet capture clients, the servers only
capture packets and distribute them to clients. This is
especially important if the packet capture server re-
ceives packets at a high rate, the packet capture server
is collocated with other servers (e.g. a web server),
and/or the performance calculation consumes many
CPU cycles (as is the case with the filtering algorithm
described in Section 2.2). Another advantage is that
clients have the flexibility to change their performance
calculation code without modifying the packet capture
servers. This also avoids the possible security prob-
lems of allowing client code to be run on the server.
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Finally, some operating systems (e.g. Linux) require
that packet capture code run with root privileges. By
separating the client and server code, only the server
runs with root privilege while the client can run as a
normal user.

3.3.2 libdpcap

Our implementation of distributed packet capture is
the libdpcap library. It is built on top of the libpcap
library [MJ93]. As a result, the nettimer tool can
measure live in the Internet or from tcpdump traces.

To start a libdpcap server, the application spec-
ifies the parameters send thresh, send interval,
filter cmd, and cap len. send thresh is the num-
ber of bytes of packet headers the server will buffer
before sending them to the client. This should usu-
ally be at least the TCP maximum segment size
so fewer less than full size packet report packets
will sent. send interval is the amount of time
to wait before sending the buffered packet headers.
This prevents packet headers from languishing at the
server waiting for enough data to exceed send thresh.
The server sends the buffer when send interval or
send thresh is exceeded. The filter cmd speci-
fies which packets should be captured by this server
using the libpcap filter language. This can cut
down on the amount of unnecessary data sent to the
clients. For example, to capture only TCP packets be-
tween cs.stanford.edu and eecs.harvard.edu the
filter cmd would be “host cs.stanford.edu and
host eecs.harvard.edu and TCP”. cap len specifies
how much of each packet to capture.

To start a libdpcap client, the application specifies
a set of servers to connect to and its own filter cmd.
The client sends this filter cmd to the servers with
whom it connects. This further restrict the types of
packet headers that the client receives.

After a client connects to a server, the server re-
sponds with its cap len and its clock resolution. Dif-
ferent machines and operating systems have different
clock resolutions for captured packets. For example
Linux < 2.2.0 had a resolution of 10ms, while Linux
>= 2.2.0 has a resolution < 20 microseconds, almost a
thousand times difference. This can make a significant
difference in the accuracy of a calculation, so the server
reports this clock resolution to the client.

To calculate the bandwidth consumed by the packet
reports that the distributed packet capture server
sends to its clients, we start with the size of each
report: cap len + sizeof(timestamp) (8 bytes) +
sizeof(cap len) (2 bytes) + sizeof(flags) (2 bytes). For
TCP traffic, nettimer needs at least 40 bytes of packet
header. In addition, link level headers consume some
variable amount of space. To be safe, we set the cap-

Table 1: This table shows the different path characteristics
used in the experiments. The Short and Long column list
the number of hops from host to host for the short and
long path respectively. The RTT columns list the round-
trip-times of the short and long paths in ms.

Type Short RTT Long RTT

Ethernet 100 Mb/s 4 1 17 74

Ethernet 10 Mb/s 4 1 17 80

WaveLAN 2 Mb/s 3 4 18 151

WaveLAN 11 Mb/s 3 4 18 151

ADSL 14 19 19 129

V.34 Modem 14 151 18 234

CDMA 14 696 18 727

ture length to 60 bytes, so each libdpcap packet report
consumes 72 bytes. 20 of these headers fit in a 1460
byte TCP payload, so the total overhead is approxi-
mately 1500 bytes / 20 * 1500 = 5.00%. On a heavily
loaded network, this could be a problem. However, if
we are only interested in a pre-determined subset of
the traffic, we can use the packet filter to reduce the
number of packet reports. We experimentally verify
this cost in Section 4.2.5 and describe some other ways
to reduce it in Section 5.

4 Experiments

In this section we describe the experiments we used to
quantify the utility of nettimer.

4.1 Methodology

In this section we describe and explain our method-
ology in running the experiments. Our approach is
to take tcpdump traces on pairs of machines during a
transfer between those machines while varying the bot-
tleneck link bandwidth, path length, and workload. We
then run these traces through nettimer and analyze
the results. Our methodology consists of 1) the net-
work topology, 2) the hardware and software platform,
3) accuracy measurement, 4) the network application
workload, and 5) the network environment.

Our network topology consists of a variety of paths
(listed in Table 1) where we vary the bottleneck link
technology and the length of the path. WaveLAN
[wav00] is a wireless local area network technology
made by Lucent. ADSL (Asymmetric Digital Sub-
scriber Line) is a high bandwidth technology that uses
phone lines to bring connectivity into homes and small
businesses. We tested the Pacific Bell/SBC [dsl00]
ADSL service. V.34 is an International Telecommuni-
cation Union (ITU) [itu00] standard for data commu-
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Table 2: This table shows the different software versions
used in the experiments. The release column gives the RPM
package release number.

Name Version Release

GNU/Linux Kernel 2.2.16 22

RedHat 7.0 -

tcpdump 3.4 10

tcptrace 5.2.1 1

openssh 2.3.0p1 4

nettimer 2.1.0 1

nication over analog phone lines. We used the V.34
service of Stanford University. CDMA (Code Divi-
sion Multiple Access) is a digital cellular technology.
We tested CDMA service by Sprint PCS [spr00] with
AT&T Global Internet Services as the Internet service
provider. These are most of the link technologies that
are currently available for users.

In all cases the bottleneck link is the link closest to
one of the hosts. This allows us to measure the best and
worst cases for nettimer as described below. The short
paths are representative of local area and metropolitan
area networks while the long paths are representative
of a cross-country, wide area network. We were not
able to get access to an international tracing machine.

All the tracing hosts are Intel Pentiums ranging from
266MHz to 500MHz. The versions of software used are
listed in Table 2.

We measure network accuracy by showing a lower
bound (TCP throughput on a path with little cross
traffic) and an upper bound (the nominal bandwidth
specified by the manufacturer). TCP throughput by it-
self is insufficient because it does not include the band-
width consumed by link level headers, IP headers, TCP
headers and retransmissions. The nominal bandwidth
is insufficient because the manufacturer usually mea-
sures under conditions that may be difficult to achieve
in practice. Another possibility would be for us to mea-
sure each of the bottleneck link technologies on an iso-
lated test bed. However, given the number and types
of link technologies, this would have been difficult.

The network application workload consists of using
scp (a secure file transfer program from openssh) to
copy a 7476723 byte MP3 file once in each directions
along a path. The transfer is terminated after five min-
utes even if the file has not been fully transferred.

We copy the file in both directions because 1) the
ADSL technology is asymmetric and we want to mea-
sure both bandwidths and 2) we want to take measure-
ments where the bottleneck link is the first link and the
last link. A first link bottleneck link is the worst case
for nettimer because it provides the most opportunity

for cross traffic to interfere with the packet pair prop-
erty. A last link bottleneck link is the best case for the
opposite reason.

We copy a 7476723 byte file as a compromise between
having enough samples to work with and not having
so many samples that traces are cumbersome to work
with. We terminate the tracing after five minutes so
that we do not have to wait hours for the file to be
transferred across the lower bandwidth links.

The network environment centers around the Stan-
ford University campus but also includes the networks
of Pacific Bell, Sprint PCS, Harvard University and the
ISPs that connect Stanford and Harvard.

We ran five trials so that we could measure the effect
of different levels of cross traffic during different times
of day and different days of the week. The traces were
started at 18:07 PST 12/01/2000 (Friday), 16:36 PST
12/02/2000 (Saturday), 11:07 PST 12/04/2000 (Mon-
day), 18:39 PST 12/04/2000 (Monday), and 12:00 PST
12/05/2000 (Tuesday). We believe that these traces
cover the peak traffic times of the networks that we
tested on: commute time (Sprint PCS cellular), week-
ends and nights (Pacific Bell ADSL, Stanford V.34,
Stanford residential network), work hours (Stanford
and Harvard Computer Science Department networks).

Within the limits of our resources, we have selected
as many different values for our experimental param-
eters as possible to capture some of the heterogeneity
of the Internet.

4.2 Results

In this section, we analyze the results of the experi-
ments.

4.2.1 Varied Bottleneck Link

One goal of this work is to determine whether
nettimer can measure across a wide variety of network
technologies. Dealing with different network technolo-
gies is not just a matter of dealing with different band-
widths because different technologies have very differ-
ent link and physical layer protocols that could affect
bandwidth measurement.

Using Table 3, we examine the short path Receiver
Based Packet Pair results for the different technologies.
This table gives the mean result over all the times and
days of the TCP throughput and Receiver Based result
reported by nettimer.

The Ethernet 100Mb/s case and to a lesser extent the
Ethernet 10Mb/s case show that using TCP to mea-
sure the bandwidth of a high bandwidth link can be
inaccurate and/or expensive. For both Ethernets, the
TCP throughput is significantly less than the nominal
bandwidth. This could be caused by cross traffic, not
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Table 3: This table summarizes nettimer results over all
the times and days. “Type” lists the different bottleneck
technologies. “D” lists the direction of the transfer. “u”
and “d” indicate that data is flowing away from or towards
the bottleneck end, respectively. “Path” indicates whether
the (l)ong or (s)hort path is used. “N” lists the nomi-
nal bandwidth of the technology. “TCP” lists the TCP
throughput. “RB” lists the nettimer results for Receiver
Based packet pair. (σ) lists the standard deviation over the
different traces.

High bandwidth technologies (Mb/s):

Type D P N TCP (σ) RB (σ)

Ethernet d s 100 21.2 (0.13) 85.6 (0.04)
Ethernet d l 100 2.09 (0.41) 63.8 (0.02)
Ethernet u s 100 19.9 (0.05) 89.4 (0.06)
Ethernet u l 100 1.51 (0.58) 93.7 (0.02)
Ethernet d s 10 6.56 (0.06) 9.65 (0.00)
Ethernet d l 10 1.85 (0.14) 9.65 (0.00)
Ethernet u s 10 7.80 (0.03) 9.53 (0.00)
Ethernet u l 10 1.66 (0.21) 8.48 (0.02)
WaveLAN d s 11 4.33 (0.16) 6.27 (0.19)
WaveLAN d l 11 1.63 (0.13) 7.38 (0.23)
WaveLAN u s 11 4.64 (0.17) 5.22 (0.11)
WaveLAN u l 11 1.51 (0.32) 4.93 (0.14)
WaveLAN d s 2 1.38 (0.01) 1.48 (0.02)
WaveLAN d l 2 1.05 (0.09) 1.47 (0.02)
WaveLAN u s 2 1.07 (0.05) 1.21 (0.01)
WaveLAN u l 2 .871 (0.26) 1.17 (0.01)
ADSL d s 1.5 1.21 (0.01) 1.24 (0.00)
ADSL d l 1.5 1.16 (0.01) 1.24 (0.00)

Low bandwidth technologies (Kb/s):

Type D P N TCP (σ) RB (σ)

ADSL u s 128 96.9 (0.19) 109 (0.00)
ADSL u l 128 107 (0.01) 110 (0.00)
V.34 d s 33.6 26.4 (0.04) 27.0 (0.04)
V.34 d l 33.6 26.8 (0.04) 27.5 (0.04)
V.34 u s 33.6 28.0 (0.01) 28.6 (0.01)
V.34 u l 33.6 28.0 (0.00) 28.8 (0.00)
CDMA d s 19.2 5.30 (0.05) 11.0 (0.04)
CDMA d l 19.2 5.15 (0.09) 10.4 (0.05)
CDMA u s 19.2 4.76 (0.24) 16.7 (0.25)
CDMA u l 19.2 3.50 (0.53) 16.9 (0.15)

being able to open the TCP window enough, bottle-
necks in the disk, inefficiencies in the operating system,
and/or the encryption used by the scp application. In
general, using TCP to measure bandwidth requires ac-
tually filling that bandwidth. This may be expensive
in resources and/or inaccurate. We have no explana-
tion for the RBPP result of 59Mb/s for the down long
path.

In the WaveLAN cases, both the nettimer estimate
and the TCP throughput estimate deviate significantly
from the nominal. However, another study [BPSK96]

reports a peak TCP throughput over WaveLAN 2Mb/s
of 1.39Mb/s. We took the traces with a distance of less
than 3m between the wireless node and the base station
and there were no other obvious sources of electromag-
netic radiation nearby. We speculate that the 2Mb/s
and 11Mb/s nominal rates were achieved in an optimal
environment shielded from external radio interference
and conclude that the nettimer reported rate is close
to the actual rate achievable in practice.

Another anomaly is that the nettimer measured
WaveLAN bandwidths are consistently higher in the
down direction than in the up direction. This is un-
likely to be nettimer calculation error because the
TCP throughputs are similarly asymmetric. Since the
hardware in the PCMCIA NICs used in the host and
the base station are identical, this is most likely due to
an asymmetry in the MAC-layer protocol.

The nettimer measured ADSL bandwidth consis-
tently deviates from the nominal by 15%-17%. Since
the TCP throughput is very close to the nettimer mea-
sured bandwidth, this deviation is most likely due to
the overhead from PPP headers and byte-stuffing (Pa-
cific Bell/SBC ADSL uses PPP over Ethernet) and the
overhead of encapsulating PPP packets in ATM (Pa-
cific Bell/SBC ADSL modems use ATM to communi-
cate with their switch). Link layer overhead is also the
likely cause of the deviation in V.34 results.

The CDMA results exhibit an asymmetry similar to
the WaveLAN results. However, we are fairly certain
that the base station hardware is different from our
client transceiver and this may explain the difference.
However, this may also be due to an interference source
close to the client and hidden from the base station. In
addition, since the TCP throughputs are far from both
the nominal and the nettimer measured bandwidth,
the deviation may be due to nettimer measurement
error.

We conclude that nettimer was able to measure the
bottleneck link bandwidth of the different link tech-
nologies with a maximum error of 41%, but in most
cases with an error less than 10%.

4.2.2 Resistance to Cross Traffic

We would expect that the long paths would have more
cross traffic than the short paths and therefore inter-
fere with nettimer. In addition, we would expect that
bandwidth in the up direction would be more difficult
to measure than bandwidth in the down direction be-
cause packets have to travel the entire path before their
arrival time can be measured.

However, Table 3 shows that the RBPP technique
and nettimer’s filtering algorithm are able to filter out
the effect of cross traffic such that nettimer is accurate
for long paths even in the up direction.
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In contrast, ROPP is much less accurate on the up
paths than on the down paths (Section 4.2.3).

It was pointed out by an anonymous reviewer that
there may be environments (e.g. a busy web server)
where packet sizes and arrival times are highly cor-
related, which would violate some of the assumptions
described in Section 2.2.1. There are definitely parts
of the Internet containing technologies and/or traffic
patterns so different from those described here that
they cause nettimer’s filtering algorithm to fail. One
example is multi-channel ISDN, which is no longer in
common use in the United States. We simply claim
that nettimer is accurate in a variety of common cases
which justifies further investigation into its effective-
ness in other cases.

4.2.3 Different Packet Pair Techniques

In this section, we examine the relative accuracy of
the different packet pair techniques. Table 4 shows the
Receiver-Only and Sender-Based results of one day’s
traces.

Sender Based Packet Pair is not particularly ac-
curate, reporting 5%-2000% of the estimated band-
width, even on the short paths. As mentioned be-
fore, this is most likely the result of 1) passively using
TCP’s non-per-packet acknowledgements and delayed
acknowledgements, and 2) queueing of acknowledge-
ments on the reverse path. We discuss possible solu-
tions to this in Section 5.

Receiver Only Packet Pair is almost as accurate as
RBPP, even in the up direction, which gives 17-18
hops of opportunity for post-bottleneck queueing. This
means that when a distributed packet capture server
cannot be deployed at a remote host and most of the
packets are sent with a high bandwidth (i.e. filter-
ing using the received/sent bandwidth ratio is unnec-
essary), ROPP can still give fairly accurate results.

4.2.4 Agility

In this section, we examine how quickly nettimer cal-
culates bandwidth when a connection starts. Figure 5
shows the bandwidth that nettimer using RBPP re-
ports at the beginning of a connection. The connection
begins 1.88 seconds before the first point on the graph.
nettimer initially reports a low bandwidth, then a
(correct) high bandwidth, then a low bandwidth, then
converges at the high bandwidth. The total time from
the beginning of the connection to convergence is 3.72
seconds. It takes this long because scp requires several
round trips to authenticate and negotiate the encryp-
tion.

If we measure from when the data packets begin to
flow, nettimer converges when the 8th data packet
arrives, 8.4 ms after the first data packet arrives, 10308

Table 4: This table shows 11:07 PST 12/04/2000 nettimer

results.“Type” lists the different bottleneck technologies.
“D” lists the direction of the transfer. “u” and “d” indi-
cate that data is flowing away from or towards the bottle-
neck end, respectively. “P” indicates whether the (l)ong or
(s)hort path is used. “Nom” lists the nominal bandwidth of
the technology. “RO” and “SB” list the Receiver Only or
Sender Based packet pair bandwidths respectively. (σ) lists
the standard deviation over the duration of the connection.

High bandwidth technologies (Mb/s):

Type D P Nom RO (σ) SB (σ)

Ethernet d s 100 82.3 (0.28) 67.2 (0.23)
Ethernet d l 100 59.0 (0.28) 5.28 (1.01)
Ethernet u s 100 94.3 (0.12) 110 (0.16)
Ethernet u l 100 95.6 (0.06) 46.0 (0.63)
Ethernet d s 10 9.65 (0.03) 213 (0.39)
Ethernet d l 10 9.64 (0.04) 61.9 (3.19)
Ethernet u s 10 9.63 (0.03) 9.78 (1.35)
Ethernet u l 10 10.9 (1.26) 8.99 (0.17)
WaveLAN d s 11 8.29 (0.20) 5.68 (0.09)
WaveLAN d l 11 8.59 (0.23) 6.12 (3.65)
WaveLAN u s 11 5.65 (0.08) 4.70 (0.26)
WaveLAN u l 11 5.20 (0.20) 3.03 (0.29)
WaveLAN d s 2 1.46 (0.03) 1.52 (0.03)
WaveLAN d l 2 1.46 (0.04) 1.48 (0.04)
WaveLAN u s 2 1.20 (0.04) 1.20 (0.02)
WaveLAN u l 2 1.19 (0.04) 1.19 (0.02)
ADSL d s 1.5 1.24 (0.03) 1.17 (0.08)
ADSL d l 1.5 1.24 (0.04) 1.19 (0.05)

Low bandwidth technologies (Kb/s):

Type D P Nom RO (σ) SB (σ)

ADSL u s 128 109 (0.05) 108 (0.03)
ADSL u l 128 109 (0.04) 107 (0.04)
V.34 d s 33.6 26.4 (0.05) 26.2 (0.10)
V.34 d l 33.6 26.3 (0.08) 26.2 (0.11)
V.34 u s 33.6 28.2 (0.09) 28.4 (0.04)
V.34 u l 33.6 28.6 (0.08) 28.6 (0.07)
CDMA d s 19.2 11.3 (0.19) 104 (2.38)
CDMA d l 19.2 10.3 (0.36) 23.9 (4.17)
CDMA u s 19.2 17.8 (0.33) 5.57 (1.04)
CDMA u l 19.2 16.1 (0.48) 18.6 (0.46)

bytes into the connection. TCP would have reported
the throughput at this point as 22.2Kb/s. Converging
within 10308 bytes means that an adaptive web server
could measure bandwidth using just the text portion
of most web pages and then adapt its images based on
that measurement.

4.2.5 Resources Consumed

In this section, we quantify the resources consumed
by nettimer. In contrast to the other experiments
where we took traces and then used nettimer to pro-
cess the traces, in this experiment, nettimer captured
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Figure 5: This graph shows the bandwidth reported by
nettimer using RBPP at a particular time for Ethernet
10Mb/s in the down direction along the long path. The Y-
axis shows the bandwidth in b/s on a log scale. The X-axis
shows the number of seconds since tracing began.

Table 5: This table shows the CPU overhead consumed by
nettimer and the application it is measuring. “User” lists
the user-level CPU seconds consumed. “System” lists the
system CPU seconds consumed. “Elapsed” lists the elapsed
time that the program was running. “% CPU” lists (User
+ System) / scp Elapsed time.

Name User System Elapsed % CPU

server .31 .43 32.47 4.52%

client 9.28 .15 26.00 57.6%

scp .050 .21 16.37 1.59%

its own packets and calculated the bandwidth as the
connection was in progress. We measure the Ethernet
100Mb/s short up path because this requires the most
efficient processing. We use scp and copy the same file
as before. The distributed packet capture server ran on
an otherwise unloaded 366MHz Pentium II while the
packet capture client and nettimer processing ran on
an otherwise unloaded 266MHz Pentium II.

Table 5 lists the CPU resources consumed by each of
the components. The CPU cycles consumed by the dis-
tributed packet capture server are negligible, even for a
366MHz processor on a 100Mb/s link. Nettimer itself
does consume a substantial number of CPU seconds to
classify packets into flows and run the filtering algo-
rithm. However, this was on a relatively old 266MHz
machine and this functionality does not need to be col-
located with the machine providing the actual service
being measured (in this case the scp program).

Transferring the packet headers from the libdpcap
server to the client consumed 473926 bytes. Given that
the file transferred is 7476723 bytes, the overhead is
6.34%. This is higher than the 5.00% predicted in Sec-
tion 3.3.2 because 1) scp transfers some extra data for
connection setup, 2) some data packets are retrans-
mitted, and most significantly, 3) the libdpcap server
captures its own traffic. The server captures its own
traffic because it does not distinguish between the scp
data packets and its own packet header traffic, so it
captures the headers of packets containing the headers
of packets containing headers and so on. Fortunately,
there is a limit to the recursion so the net overhead is
close to the predicted overhead.

5 Future Work

In this section, we describe some possible future im-
provements to the nettimer implementation. One
improvement would be to determine what the opti-
mal weighting of components in the filtering algorithm
(Section 2.2.3) is. Another improvement would be to
allow runtime choice of flow definition (Section 3.1), so
that we could measure bandwidth behind NAT gate-
ways. Another improvement would be to allow dis-
tributed packet capture servers to randomly sample
traffic to reduce the amount of bandwidth that packet
reports consume. Finally, we could add an active prob-
ing component like [Sav99] which can cause large pack-
ets to flow in both directions from hosts without special
measurement software and can cause prompt acknowl-
edgements to flow back to the sender. The pathrate
[DRM01] tool shows that active packet pair can be very
accurate.
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6 Conclusion

In this paper, we describe the trade-offs involved in
implementing nettimer, a Packet Pair-based tool for
passively measuring bottleneck link bandwidths in real
time in the Internet. We show its utility across a wide
variety of bottleneck link technologies ranging from
19.2Kb/s to 100Mb/s, wired and wireless, symmetric
and asymmetric bandwidth, across local area and cross
country paths, while using both one and two packet
capture hosts.

In the future, we hope that nettimer will ease the
creation of adaptive applications, provide more insight
for network performance analysis, and lead to the de-
velopment of more precise performance measurement
algorithms.
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