
The Roma Personal Metadata Service

Edward Swierk, Emre Kıcıman, Vince Laviano and Mary Baker
Stanford University

Computer Science Department
Stanford, CA 94305 USA

{eswierk, emrek, vince, mgbaker}@cs.stanford.edu

Abstract

People now have available to them a diversity of digi-
tal storage devices, including palmtops, cell phone address
books, laptops, desktop computers and web-based services.
Unfortunately, as the number of personal data repositories
increases, so does the management problem of ensuring that
the most up-to-date version of any document is available to
the user on the storage device he is currently using. We
introduce the Roma personal metadata service to make it
easier to locate current file versions and ensure their avail-
ability across different repositories. This centralized ser-
vice stores informationabouteach of a user’s files, such
as name, location, timestamp and keywords, on behalf of
mobility-aware applications. Separating out these meta-
data from the data respositories makes it practical to keep
the metadata store on a highly available, portable device.
In this paper we describe the design requirements, archi-
tecture and current prototype implementation of Roma.

1. Introduction

As people come to rely more heavily on digital devices
to work and communicate, they keep more of their per-
sonal files—including email messages, notes, presentations,
address lists, financial records, news clippings, music and
photographs—in a variety of data repositories. Since peo-
ple are free to switch among multiple heterogeneous de-
vices, they can squirrel away information on any device they
happen to be using at the moment as well as on an ever-
broadening array of web-based storage services. For ex-
ample, a businessperson wishing to record a travel expense
could type it into his laptop, scribble it into his personal
digital assistant, or record it in various web-based expense
tracking services.

One might expect this plethora of storage options to be
a catalyst for personal mobility[9], enabling people to ac-
cess and use their personal files wherever and whenever

they want, while using whatever device is most convenient
to them. Instead, it has made it harder for mobile people to
ensure that up-to-date versions of files they need are avail-
able on the current storage option of choice. This is because
contemporary file management tools are poor at handling
multiple data repositories in the face of intermittent connec-
tivity. There is no easy way for a user to determine whether
a file on the device he is currently using will be accessible
later on another device, or whether the various copies of that
file across all devices are up-to-date. As a result, the user
may end up with many out-of-date or differently-updated
copies of the same file scattered on different devices.

Previous work has attempted to handle multiple data
repositories at the application level and at the file system
level. At the application level, some efforts have focused
on using only existing system services to do peer-to-peer
synchronization. Unfortunately, tools that use high-level
file metadata provided by the system[15], such as the file’s
name or date of last modification, are unreliable; they can
only infer relationships between file copies from informa-
tion not intended for such use. For example, if the user
changes the name of one copy of a file, its relationship to
other copies may be broken. Other file synchronization
tools[14] that employ application-specific metadata to syn-
chronize files are useful only for the set of applications they
explicitly support.

Distributed file systems such as Coda[7] provide access
to multiple data repositories by emulating existing file sys-
tem semantics, redirecting local file system calls to a re-
mote repository or a local cache. Since they operate at the
file system level rather than the application level, they can
reliably track modifications made while disconnected from
the network, transparently store them in a log and apply
them to another copy upon reconnection. Synchronization
across multiple end devices is performed indirectly, through
a logically centralized repository that stores the master copy
of a user’s files. Unfortunately, it is often the case that
two portable devices will have better connectivity with each
other than with a centralized data repository located a sta-



tionary network server. Until fast, cheap wide-area net-
work connectivity becomes widespread, this approach will
remain impractical. Keeping the repository on a portable
device, on the other hand, will be feasible only when a tiny,
low-power device becomes capable of storing and serving
up potentially huge amounts of data over a fast local net-
work.

The ideal solution would offer the flexibility of peer-to-
peer synchronization tools along with the reliability of cen-
tralized file systems. Users should be free to copy files to
any device to ensure that they will be available there later—
personal financial records on the home PC, digital audio
files in the car, phone numbers on the cell phone—without
having to remember which copies reside on which devices
and what copy was modified when.

Our system, Roma, provides an available, centralized
repository of metadata, or informationabouta single user’s
files. The metadata format includes sufficient information
to enable tracking each file across multiple file stores, such
as a name, timestamp, and URI or other data identifier. A
user’s metadata repository may reside on a device that the
user carries along with him (metadata records are typically
compact enough that they can be stored on a highly portable
device), thus ensuring that metadata are available to the
user’s local devices even when wide-area network connec-
tivity is intermittent. To maintain compatibility with exist-
ing applications, synchronization agents periodically scan
data stores for changes made by legacy applications and
propagate them to the metadata repository.

Related to the problem of managing versions of files
across data repositories is the problem of locating files
across different repositories. Most file management tools
offer hierarchical naming as the only facility for organizing
large collections of files. Users must invent unique, mem-
orable names for their files, so that they can find them in
the future; and must arrange those files into hierarchies, so
that related files are grouped together. Having to come up
with a descriptive name on the spot is an onerous task, given
that the name is often the only means by which the file can
later be found[11]. Arranging files into hierarchical folders
is cumbersome enough that many users do not even bother,
and instead end up with a single “Documents” folder listing
hundreds of cryptically named, uncategorized files. This
problem is compounded when files need to be organized
across multiple repositories.

Roma metadata include fully-extensible attributes that
can be used as a platform for supporting these methods of
organizing and locating files. While our current prototype
does not take advantage of such attributes, several projects
have explored the use of attribute-based naming to locate
files in either single or multiple repositories[2, 4].

The rest of this paper describes Roma in detail. We be-
gin by outlining the requirements motivating our design; in

subsequent sections we detail the architecture and current
prototype implementation of Roma, as well as some key is-
sues that became apparent while designing the system; these
sections are followed by a survey of related work and a dis-
cussion of some possible future directions for this work.

2. Motivation and design requirements

To motivate this work, consider the problems faced by
Jane Mobile, techno-savvy manager at ABC Widget Com-
pany, who uses several computing devices on a regular ba-
sis. She uses a PC at work and another at home for editing
documents and managing her finances, a palmtop organizer
for storing her calendar, a laptop for working on the road,
and a cell phone for keeping in touch. In addition, she keeps
a copy of her calendar on a web site so it is always available
both to herself and to her co-workers, and she frequently
downloads the latest stock prices into her personal finance
software.

Before dashing out the door for a business trip to New
York, Jane wants to make sure she has everything she will
need to be productive on the road. Odds are she will forget
something, because there is a lot to remember:

• I promised my client I’d bring along the specifications
document for blue fuzzy widgets—I think it’s called
BFWidgetSpec.doc, or is it SpecBluFuzWid.doc?If
Jane could do a keyword search over all her documents
(regardless of which applications she used to create
them) and over all her devices at once, she would not
have to remember what the file is called, which direc-
tory contains it, or on which device it is stored.

• I also need to bring the latest blue fuzzy widget price
list, which is probably somewhere on my division’s web
site or on the group file server.Even though the file
server and the web site are completely outside her con-
trol, Jane would like to use the same search tools that
she uses to locate documents on her own storage de-
vices.

• I have to make some changes to that presentation I was
working on yesterday. Did I leave the latest copy on my
PC at work or on the one at home?If Jane copies an
outdated version to her laptop, she may cause a write
conflict that will be difficult to resolve when she gets
back. She just wants to grab the presentation without
having to check both PCs to figure out which version
is the more recent one.

• I want to work on my expense report on the plane, so
I’ll need to bring along my financial files.Like most
people, Jane does not have the time or patience to ar-
range all her documents into neatly labeled directories,

2



so it’s hard for her to find groups of related files when
she really needs them. More likely, she has to pore
over a directory containing dozens or hundreds of files,
and guess which ones might have something to do with
her travel expenses.

To summarize, the issues illustrated by this example are the
dependence on filenames for locating files, the lack of inte-
gration between search tools for web documents and search
tools on local devices, the lack of support for managing
multiple copies of a file across different devices, and the
dependence on directories for grouping files together.

These issues lead us to a set of architectural requirements
for Roma. Our solution should be able to

1. Make information about the user’s personal files al-
ways available to applications and to the user.

2. Associate with each file (or file copy) a set of standard
attributes, including version numbers or timestamps to
help synchronize file replicas and avoid many write
conflicts.

3. Allow the attribute set to be extended by applications
and users, to include such attributes as keywords to
enable searching, categories to allow browsing related
files, digests or thumbnails to enable previewing file
content, and parent directories to support traditional
hierarchical naming (where desired). This information
can be used to develop more intuitive methods for or-
ganizing and locating files.

4. Track files stored on data repositories outside the
user’s control. A user may consider a certain file as
part of his personal file space even if he did not directly
create or maintain the data. For example, even though
the user’s bank account balances are available on a web
site controlled and maintained by the bank, he should
be able to organize, search and track changes to these
data just like any other file in his personal space.

5. Track files stored on disconnected repositories and of-
fline storage media. Metadata can be valuable even if
the data they describe are unavailable. For example,
the user may be working on a disconnected laptop on
which resides a copy of the document that he wants to
edit. Version information lets him figure out whether
this copy is the latest, and if not, where to find the
most recent copy upon reconnection. Alternatively, if
the laptop is connected on a slow network, he can use
metadata (which are often smaller in size than their as-
sociated file) to find which large piece of data needs to
be pulled over the network.

Metadata

server


Agent


Data store


Roma

application
Web server


Browser


Figure 1. The Roma architecture. Applica-
tions are connected to the metadata server,
and possibly connected to a number of data
stores. Agents track changes to third-party
data stores, such as the web server in this di-
agram, and make appropriate updates to the
metadata server.

3. Architecture

At the core of the Roma architecture (illustrated in Fig-
ure 1) is themetadata server, a centralized, potentially
portable service that stores information about a user’s per-
sonal files. The files themselves are stored on autonomous
data repositories, such as traditional file systems, web
servers and any other device with storage capability. Roma-
aware applications query the metadata server for file infor-
mation, and send updates to the server when the information
changes. Applications obtain file data directly from data
repositories. Agents monitor data stores for changes made
by Roma-unaware applications, and update file information
in the metadata server when appropriate.

Roma supports a decentralized replication model where
all repositories store “first-class” file replicas—that is, all
copies of a file can be manipulated by the user and by ap-
plications. To increase availability and performance, a user
can copy a file to local storage from another device, or an
application can do so on the user’s behalf. Roma helps ap-
plications maintain the connection between these logically
related copies, orinstances, of the file by assigning a unique
file identifier (UID) that is common to all of its instances.
The file identifier can be read and modified by applications
but is not normally exposed to the user.

Once the file is copied, the contents and attributes of

3



<metadata>
<uid>123456789</uid>
<name>My Blue Fuzzy Widget</name>
<location>

<protocol>http</protocol>
<host>anthill.stanford.edu</host>
<path>

/projects/bluestuff/mbfw13.ps
</path>

</location>
<version>12</version>
<attribute>

<key>keyword</key>
<value>blue</value>

</attribute>
<attribute>

<key>author</key>
<value>Jane Mobile</value>

</attribute>
</metadata>

Figure 2. A typical metadata record, in XML.

each instance can diverge. Thus Roma keeps onemetadata
record for each file instance. A metadata record is a tuple
composed of the UID, one or more data locations, a version
number and optional, domain-specific attributes. Figure 2
shows a typical metadata record.

Thedata locationspecifies the location of a file instance
as a Universal Resource Identifier (URI). Files residing on
the most common types of data repositories can be identi-
fied using existing URI schemes, such ashttp: andftp:
for network-accessible servers andfile: for local file sys-
tems. When naming removable storage media, such as a
CD-ROM or a Zip disk, it is important to present a human-
understandable name to the user (possibly separate from the
media’s native unique identifier, such as a floppy serial num-
ber).

The version numberis a simple counter. Whenever a
change is made to a file instance, its version number is in-
cremented.

Roma-aware applications can supplement metadata
records with a set of optionalattributes, stored as
name/value pairs, including generic attributes such as the
size of a file or its type, and domain-specific attributes like
keywords, categories, thumbnails, outlines or song titles.

These optional attributes enable application user inter-
faces to support new modes of interaction with the user’s
file space, such as query-based interfaces and browsers. Au-
tonomous agents can automatically scan files in the user’s
space and add attributes to the metadata server based on the

files’ contents. Section 6 briefly describes Presto, a sys-
tem developed by the Placeless Documents group at Xe-
rox PARC that allows users to organize their documents in
terms of user-defined attributes. The user interaction mech-
anisms developed for Presto would mesh well with the cen-
tralized, personal metadata repository provided by Roma.

3.1. Metadata server

The metadata server is a logically centralized entity that
keeps metadata information about all copies of a user’s data.
Keeping this metadata information centralized and separate
from the data stores has many advantages:

• Centralization helps avoid write conflicts, since a sin-
gle entity has knowledge of all versions of the data in
existence. Some potential conflicts can be prevented
before they happen (before the user starts editing an
out-of date instance of a file) rather than being caught
later, when the files themselves are being synchro-
nized.

• Centralization allows easier searching over all of a
user’s metadata because applications only have to
search at a single entity. The completeness of a
search is not dependent on the reachability of the data
stores. In contrast, if metadata were distributed across
many data stores, a search would have to be per-
formed at each data store. While this is acceptable for
highly available data repositories connected via high-
bandwidth network, it is cumbersome for data stores
on devices that need to be powered on, plugged in, or
dug out of a shoebox to be made available.

• Separation of the metadata from the data store allows
easier integration of autonomous data stores, includ-
ing legacy and third-party data stores over which the
user has limited control. Storing metadata on a server
under the user’s control, rather than on the data stores
with the data, eliminates the need for data stores to be
“Roma-compliant.” This greatly eases the deployabil-
ity of Roma.

• Separation also provides the ability to impose a per-
sonalized namespace over third-party or shared data.
A user can organize his data in a manner independent
of the organization of the data on the third-party data
store.

• Separation enables applications to have some knowl-
edge about data they cannot access, either because the
data store is off-line, or because it speaks a foreign pro-
tocol. In essence, applications can now “know what
they don’t know.”

4



The main challenge in designing a centralized metadata
server is ensuring that it is always available despite inter-
mittent network connectivity. Section 5.2 describes one so-
lution to this problem, which is to host the metadata server
on a portable device. Since metadata tend to be significantly
smaller than the data they describe, it is feasible for users to
take their metadata server along with them when they dis-
connect from the network.

3.2. Data stores

A data store is any information repository whose con-
tents can somehow be identified and retrieved by an appli-
cation. Roma-compatible data stores include not only tradi-
tional file and web servers, but also laptops, personal digital
assistants (PDAs), cell phones, and wristwatches—devices
that have storage but cannot be left running and network-
accessible at all times due to power constraints, network
costs, and security concerns—as well as “offline” storage
media like compact discs and magnetic tapes. Information
in a data store can be dynamically generated (for example,
current weather conditions or bank account balances). Our
architecture supports

• data stores that are not under the user’s control.

• heterogeneous protocols (local file systems, HTTP,
FTP, etc.). There are noa priori restrictions on the
protocols supported by a data store.

• data stores with naming and hierarchy schemes inde-
pendent of both the user’s personal namespace and
other data stores.

In keeping with our goal to support legacy and third-party
data stores, data stores do not have to be Roma-aware.
There is no need for direct communication between data
stores and the metadata server. This feature is key to in-
creasing the deployability of Roma.

3.3. Applications

In Roma, applications are any programs used by peo-
ple to view, search and modify their personal data. These
include traditional progams, such as text editors, as well
as handheld-based personal information managers (PIMs),
web-based applications, and special-purpose Internet appli-
ances. Applications can be co-located with data sources;
for example, applications running on a desktop computer
are co-located with the computer’s local file system.

Roma-aware applications have two primary responsibil-
ities. The first is to take advantage of metadata information
already in the repository, either by explicitly presenting use-
ful metadata to the user or by automatically using metadata

to make decisions. For example, an application can auto-
matically choose to access the “nearest” or latest copy of a
file.

The application’s second responsibility is to inform the
metadata server when changes made to the data affect the
metadata. At the very least, this means informing the meta-
data server when a change has been made (for synchro-
nization purposes), but can also include updating domain-
specific metadata. We are investigating how often updates
need to be sent to the metadata server to balance correctness
and performance concerns.

While applications should be connected to the metadata
server while in use, they are not necessarily well-connected
to all data stores; they may be connected weakly or not at
all. For example, an application might not speak the pro-
tocol of a data store, and thus might be effectively discon-
nected from it. Also, a data store itself may be disconnected
from the network.

3.4. Synchronization agents

Roma synchronization agents are software programs that
run on behalf of the user, without requiring the user’s atten-
tion. Agents can do many tasks, including

• providing background synchronization on behalf of the
user.

• hoarding of files on various devices in preparation for
disconnected operation.

• making timely backups of information across data
stores.

• tracking third-party updates (on autonomous data
stores, or data shared between users).

Agents can be run anywhere on a user’s personal comput-
ers or on cooperating infrastructure. The only limitation
on an agent’s execution location is that the agent must be
able to access relevant data stores and the metadata server.
Note that the use of a portable metadata server precludes
agents from running while the metadata server is discon-
nected from the rest of the network; Section 5.2 describes
an alternative approach.

3.5. Examples

To illustrate how Roma supports a user working with
files replicated across several storage devices, let us revisit
Jane Mobile, and consider what a Roma-aware application
does in response to Jane’s actions.

The action of copying a file actually has two different
results, depending on her intent, and the application should
provide a way for her to distinguish between the two:

5



• She makes a file instance available on a different
repository(in preparation for disconnected operation,
for example). The application contacts the metadata
server, creates a new metadata record with the same
file identifier, copies all attributes, and sets the data lo-
cation to point to the new copy of the file.

• She copies a file to create a new, logically distinct file
based on the original. The application contacts the
metadata server, creates a new metadata record with
a new file identifier, copies all attributes, and sets the
data location to point to the new copy of the file.

Other actions Jane may take:

• She opens a file for updating. The application contacts
the metadata server, and checks the version number of
this instance. If another instance has a higher version
number, the application warns Jane that she is about
to modify an old version, and asks her if she wants to
access the latest version or synchronize the old one (if
possible).

• She saves the modified file. The application contacts
the server, increments the version number of this in-
stance, and updates any attributes, such as the file’s
size. As described in Section 5.1, a write conflict may
be detected at this point if the version number of an-
other instance has already been incremented.

• She brings a file instance up to date by synchronizing
it with the newest instance. The application contacts
the server, finds the metadata record with the highest
version number for this file, and copies all attributes
(except the data location) to the current instance.

3.6. Limitations

This architecture meets our requirements only to the ex-
tent that (1) the metadata store is available to the user’s ap-
plications and to third-party synchronization agents, and (2)
applications take advantage of the metadata store to aid the
user in synchronizing and locating files. These issues are
discussed in Sections 5.2 and 5.3, respectively.

4. Implementation

In this section we describe the current status of our pro-
totype Roma implementation. The prototype is still in
its early stages and does not yet support synchronization
agents.

4.1. Metadata server

We have implemented a prototype metadata server that
supports updates and simple queries, including queries on
optional attributes. It is written in Java as a service run-
ning on Ninja[5], a toolkit for developing highly available
network services. Metadata are stored in an XML format,
and we use XSet, a high performance, lightweight XML
database, for query processing and persistence[17].

We have also implemented a proof-of-concept portable
metadata server. Though the metadata server itself requires
a full Java environment to operate, we have implemented
a simple mechanism to migrate a metadata repository be-
tween otherwise disconnected computers using a PDA as a
transfer medium. As a user finishes working on one com-
puter, the metadata repository is transferred onto his PDA.
The next time he begins using a computer, the metadata
repository is retrieved from the PDA. In this way, though
the metadata server itself is not traveling, the user’s meta-
data are always accessible, regardless of the connectivity
between the user’s computer and the rest of the world.

4.2. Data stores

Currently, the data stores we support are limited to those
addressable through URIs. Our applications can currently
access data stores using HTTP and FTP, as well as files ac-
cessible via a standard file system interface such as local file
systems, NFS[12] and AFS[6].

4.3. Applications

We have implemented three Roma-aware applications.
These applications allow users to view and manipulate their
metadata and data from a variety of devices.

The first is a web-based metadata browser that provides
hierarchical browsing of a user’s personal data. The browser
displays the names of data files, their version information,
and the deduced MIME type of the file. In addition, if the
file is accessible, the browser will present a link to the file
itself. We have also written a proxy to enable “web clip-
ping” of arbitrary web content into the user’s personal file
space, as displayed in Figure 3.

Our second application is a set of command-line tools.
We have written Roma-awarels and locate commands
to query a metadata server, aget command to retrieve the
latest version of a file from remote data stores, andim-
port , a utility to create metadata entries for files on a local
data store.

We have also implemented a proof-of-concept PDA ap-
plication. Built using a Waba VM and RMILite[16, 1], our
PDA application can query and view the contents of a meta-
data server. Currently, the PDA application does not access
the actual contents of any file.

6



Figure 3. A screenshot of the web-clipper proxy. As the user browses the web, the proxy adds links
on the fly, allowing the user to browse the metadata server and to add pages to his personal file
space.

Our applications have added a metadata attribute to de-
scribe the data format of files. If available, our command-
line tools use the Unixmagic command to determine the
data format. Our web clipper determines the data format
based on the MIME type of the file.

5. Design issues and future work

In this section we describe some of the issues and design
decisions encountered so far in our work with Roma, along
with some of the work that remains for us to do.

5.1. Why “personal”?

One important design issue in Roma is the scope of the
types of data it supports. There are several reasons be-
hind our choice to support only personal files, rather than
to tackle collaboration among different users as well, or to
attempt to simplify system administration by handling dis-
tribution of application binaries and packages.

First, restricting ourselves to personal files gives us
the option of migrating the metadata server to a personal,
portable device that the user carries everywhere, to increase
its availability. This option is described in more detail in the
next section.

Second, it avoids a potential source of write conflicts—
those due to concurrent modifications by different users on
separate instances of the same file. Such conflicts are of-
ten difficult to resolve without discussion between the two
users.

With a single user, conflicts can still result from modi-
fications by third parties working on his behalf, such as an
email transfer agent appending a new message to the user’s

inbox while the user deletes an old one. However, these
conflicts can often be resolved automatically using knowl-
edge about the application, such as the fact that an email
file consists of a sequence of independent messages. A sin-
gle user may also create conflicts himself by concurrently
executing applications that access the same document, but
avoiding this behavior is usually within the control of the
user, and any resulting conflicts do not require communica-
tion between multiple users for resolution. We are investi-
gating the use of version vectors to store more complete and
flexible versioning information[10].

Third, it lets us exploit the fact that users are much better
at predicting their future needs for their personal files than
for other kinds of files[3].

Fourth, it lets us support categories, annotations and
other metadata that are most meaningful to a single person
rather than a group.

Finally, we believe there is a trend toward specialized
applications tailored for managing other types of files:

• Groupware systems like the Concurrent Versioning
System (CVS), ClearCase, Lotus Notes and Microsoft
Outlook impose necessary structure and order on ac-
cess toshared data with multiple writers. Email is of-
ten sufficient for informal collaboration within a small
group.

• Tools like the RedHat Package Manager (RPM)
and Windows Update are well-suited for distributing
system-oriented datasuch as application packages, op-
erating system components, and code libraries. These
tools simplify system administration by grouping re-
lated files into packages, enforcing dependencies, and
automatically notifying the user of bug fixes and new

7



versions of software.

• The web has become the best choice for distributing
shared data with many readers.

Since these applications handle system data, collaborative
projects and shared read-mostly data, we believe that the
remaining important category of data is personal data. We
thus focus on handling this category of data in Roma.

5.2. Ensuring availability of metadata

Since our overarching goal is to ensure that information
about the user’s files is always available to the user, we need
to make the system robust in the face of intermittent or weak
network connectivity—the very situations that underscore
the need for a metadata repository in the first place.

Our approach is to allow the user to keep the metadata
server in close physical proximity, preferably on a highly
portable device that he can always carry like a keychain,
watch, or necklace. Wireless network technologies like
Bluetooth will soon make “personal-area networks” a re-
ality. It is not hard to imagine a server embedded in a cell
phone or a PDA, with higher availability and better perfor-
mance than a remote server in many situations.

The main difficulty with storing metadata on a portable
server is making it available to third-party agents that act
on behalf of the user and modify data in the user’s personal
file space. If the network is partitioned and the only copy of
the metadata is with the user, how does such an agent read
or modify the metadata? In other words, we need to ensure
availability to third parties as well.

One solution is to cache metadata in multiple locations.
If the main copy currently resides on the user’s PDA, an-
other copy on a stationary, network-connected server can
provide access to third parties. This naturally raises the is-
sues of synchronizing the copies and handling update con-
flicts between the metadata replicas.

However, our hypothesis is that updates made to the
metadata by third parties rarely conflict with user updates.
For example, a bank’s web server updates a file containing
the user’s account balances, but the user himself rarely up-
dates this file. Testing this hypothesis is part of our future
work in evaluating Roma.

5.3. Making applications Roma-aware

Making applications Roma-aware is the biggest chal-
lenge in realizing Roma’s benefits of synchronization and
file organization across multiple data stores. To gain
the most benefit, application user interfaces and file in-
put/output routines must be adapted to use and update in-
formation in the metadata store. We have several options

for extending existing applications to use Roma or incorpo-
rating Roma support into new applications.

Our first option is to use application-specific extension
mechanisms to add Roma-awareness to legacy applications.
For example, we implemented a Roma-aware proxy to in-
tegrate existing web browsers into our architecture. Roma
add-in modules could be written for other applications, such
as Microsoft Outlook, that have extension APIs, or for
open-source applications that can be modified directly.

Our second option is to layer Roma-aware software be-
neath the legacy application. Possibilities include modify-
ing the C library used by applications to access files, or writ-
ing a Roma-aware file system. This option does nothing to
adapt the application’s user interface, but can provide some
functionality enhancements such as intelligent retrieval of
updated copies of files.

A third option is to use agents to monitor data edited
by legacy applications in the same way we monitor data
repositories not under the user’s control. This option neither
presents metadata to the user, nor enhances the functional-
ity of the application. It can, however, ensure that the meta-
data at the server are kept up-to-date with changes made by
legacy applications.

Beyond choosing the most appropriate method to extend
an application to use Roma, the bulk of the programming
effort is in modifying the application’s user interface and
communicating with the metadata store. Our current pro-
totype provides a simple, generic Java RMI interface to
the metadata store, through which applications pass XML-
formatted objects. Platform- or domain-specific Roma li-
braries could offer much richer support to application de-
velopers, including both user interface and file I/O compo-
nents, to help minimize the programming effort. For ex-
ample, a Roma library for Windows could offer a drop-in
replacement for the standard “file explorer” components, so
that adapting a typical productivity application would in-
volve making a few library API calls rather than developing
an entirely new user interface.

5.4. Addressing personal data

Our current Roma implementation uses a URI to iden-
tify the file instance corresponding to a particular metadata
record. Unfortunately this is an imperfect solution since the
relationship between URIs and file instances is often not
one-to-one. In fact, it is rarely so.

On many systems, a file instance can be identified by
more than one URI, due to aliases and links in the under-
lying file system or multiple network servers providing
access to the same files. For example, the file identified
by ftp://gunpowder/pub/paper.ps can also be
identified as ftp://gunpowder/pub/./paper.ps
(because. is an alias for the current directory) and

8



http://gunpowder/pub/ftp/pub/paper.ps
(since the public FTP directory is also exported by an
HTTP server).

The problem stems from the fact that URIs are defined
simply as a string that refers to a resource and not as a
unique resource identifier. Currently we rely on applica-
tions and agents to detect and handle cases where multiple
URIs refer to the same file, but if an application fails to do
this, it could cause the user to delete the only copy of a file
because he was led to believe that a backup copy still ex-
isted. In the future, Roma must address this problem more
systematically.

6. Related work

Helping users access data on distributed storage reposi-
tories is an active area of research. The primary character-
istic distinguishing our work from distributed file systems,
such as NFS[12], AFS[6], and Coda[7], is our emphasis on
unifying a wide variety of existing data repositories to help
users manage their personal files.

Like Roma, the Coda distributed file system seeks to
allow users to remain productive during periods of weak
or no network connectivity. While Roma makes metadata
available during these times, Coda caches file data in a
“hoard” according to user preferences in anticipation of pe-
riods of disconnection or weak connectivity. However, un-
like Roma, users must store their files on centralized Coda
file servers to benefit fully from Coda, which is impracti-
cal for people who use a variety of devices between which
there may be better connectivity than exists to a centralized
server. Even when users do not prefer to maintain more than
one data repository, they may be obliged to if, for instance,
their company does not permit them to mount company file
systems on their home computers. We note, however, that it
may be appropriate to use Coda for synchronization of our
centralized metadata repository.

The architecture of OceanStore[8] is similar to that of
Coda, but in place of a logically single, trusted server is a
global data utility comprised of a set of untrusted servers
whose owners earn a fee for offering persistent storage to
other users. Weakly connected client devices can read from
and write to the closest available server; the infrastruc-
ture takes care of replicating and migrating data and re-
solving conflicts. As with Coda, users benefit fully from
OceanStore only if all their data repositories—from the
server at work to the toaster oven at home—are part of the
same OceanStore system.

The Bayou system[10] supports a decentralized model
where users can store and modify their files in many
repositories which communicate peer-to-peer to propagate
changes. However, users cannot easily integrate data from
Bayou-unaware data stores like third-party web services

into their personal file space.
The Presto system[2] focuses on enabling users to orga-

nize their files more effectively. The Presto designers have
built a solution similar to Roma that associates with each of
a user’s documents a set of properties that can be used to or-
ganize, search and retrieve files. This work does not specif-
ically address tracking and synchronizing multiple copies
of documents across storage repositories, nor does it en-
sure that properties are available even when their associated
documents are inaccessible. However, the applications they
have developed could be adapted to use the Roma metadata
server as property storage.

Both Presto and the Semantic File System[4] enable
legacy applications to access attribute-based storage repos-
itories by mapping database queries onto a hierarchical
namespace. Presto achieves this using a virtual NFS server,
while the Semantic File System integrates this functionality
into the file system layer. Either mechanism could be used
with Roma to provide access to the metadata server from
Roma-unaware applications.

The Elephant file system[13] employs a sophisticated
technique for tracking files across both changes in name and
changes in inode number.

7. Conclusions

We have described a system that helps fulfill the promise
of personal mobility, allowing people to switch among mul-
tiple heterogeneous devices and access their personal files
without dealing with nitty-gritty file management details
such as tracking file versions across devices. This goal is
achieved through the use of a centralized metadata repos-
itory that contains information about all the user’s files,
whether they are stored on devices that the user himself
manages, on remote servers administered by a third party,
or on passive storage media like compact discs. The meta-
data can include version information, keywords, categories,
digests and thumbnails, and is completely extensible. We
have implemented a prototype metadata repository, design-
ing it as a service that can be integrated easily with appli-
cations. The service can be run on a highly available server
or migrated to a handheld device so that the user’s metadata
are always accessible.

8. Acknowledgements

The authors thank Doug Terry for his helpful advice
throughout the project. We also thank Andy Huang, Kevin
Lai, Petros Maniatis, Mema Roussopoulos, and Doug Terry
for their detailed review and comments on the paper. This
work has been supported by a generous gift from NTT Mo-
bile Communications Network, Inc. (NTT DoCoMo).

9



References

[1] Mike Chen, Mohan Lakhamraju, Eric Brewer, and
David Culler, “Jini/RMI/TSpace for Small Devices.”
http://post-pc.cs.berkeley.edu/rmilite/

[2] Paul Dourish, W. Keith Edwards, Anthony LaMarca
and Michael Salisbury, “Uniform Document Interac-
tions Using Document Properties.”Proc. ACM Sym-
posium on User Interface Software and Technology
(UIST ’99).

[3] Maria Ebling, “Translucent Cache Management for
Mobile Computing,” Thesis, School of Computer Sci-
ence, Carnegie Mellon University, March 1998.

[4] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon,
and James W. O’Toole, Jr., “Semantic File Systems.”
Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, October 13–16, 1991,
Pacific Grove, California.

[5] Steve Gribble, Matt Welsh, Eric A. Brewer, and David
Culler, “The MultiSpace: an Evolutionary Platform
for Infrastructural Services.”Proceedings of the Sec-
ond USENIX Symposium on Internet Technologies and
Systems (USITS ’99), August 1999.

[6] M. L. Kazar, “Synchronization and Caching Issues in
the Andrew File System.”Proceedings of the Winter
1988 USENIX Technical Conference, February 1988.

[7] James J. Kistler and M. Satyanarayanan, “Discon-
nected Operation in the Coda File System.”Proceed-
ings of the Thirteenth ACM Symposium on Operat-
ing Systems Principles, October 13–16, 1991, Pacific
Grove, California. Pages 213–225.

[8] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski, Patrick Eaton, Dennis Geels, Ra-
makrishna Gummadi, Sean Rhea, Hakim Weather-
spoon, Westley Weimer, Chris Wells and Ben Zhao,
“OceanStore: An Architecture for Global-Scale Per-
sistent Storage.”Proceedings of the Ninth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS 2000), November 12–15, 2000, Cambridge, Mas-
sachusetts.

[9] Petros Maniatis, Mema Roussopoulos, Ed Swierk,
Kevin Lai, Guido Appenzeller, Xinhua Zhao, and
Mary Baker, “The Mobile People Architecture.”
ACM Mobile Computing and Communications Review
(MC2R), July 1999.

[10] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
Marvin M. Theimer and Alan J. Demers, “Flexible
Update Propagation for Weakly Consistent Replica-
tion.” Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles, October 5–8, 1997,
Saint-Malo, France. Pages 288–301.

[11] Jef Raskin,The Humane Interface. Addison-Wesley,
2000.

[12] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon, “Design and Implementation of the Sun Net-
work File System.”Proceedings of the Summer 1985
USENIX Technical Conference, June 1985.

[13] Douglas S. Santry, Michael J. Feeley, Norman C.
Hutchinson, Alistair C. Veitch, Ross W. Carton and
Jacob Ofir, “Deciding When to Forget in the Elephant
File System.”Proceedings of the Seventeenth ACM
Symposium on Operating Systems Principles, Decem-
ber 12–15, 1999, Charleston, South Carolina. Pages
110–123.

[14] Stu Slack, “Extending Your Desktop with Pilot.”
PDA Developer Magazine, September/October 1996.
http://www.wwg.com/newsview/palmdesktop.shtml

[15] Andrew Tridgell and Paul Mackerras, “The rsync Al-
gorithm.” Technical Report TR-CS-96-05, Australian
National University.

[16] Wabasoft, Inc., “Wabasoft: Product Overview.”
http://www.wabasoft.com/products.html

[17] Ben Y. Zhao and Anthony D. Joseph, “XSet:
A Lightweight Database for Internet Applica-
tions.” Submitted for publication, May 2000.
http://www.cs.berkeley.edu/~ravenben/publica-
tions/saint.pdf

10


