
Transaction rate limiters for peer-to-peer systems∗

Marcos K. Aguilera† Mark Lillibridge

Hewlett-Packard Laboratories
1501 Page Mill Rd

Palo Alto, CA 94304, USA
firstname.lastname@hp.com

Xiaozhou Li

Abstract

We introduce transaction rate limiters, new mechanisms
that limit (probabilistically) the maximum number of trans-
actions a user of a peer-to-peer system can do in any given
period. They can be used to limit the consumption of self-
ish users and the damage done by malicious users. They
complement reputation systems, solving the traitor prob-
lem. We give simple distributed algorithms that work over
time frames as short as seconds and are very robust: they
use no trusted servers and continue to work even when
attacked by a large fraction of users colluding. Our al-
gorithms are based on a new primitive we have devised,
probably-anonymous queries, which guarantees anonymity
with a specified probability.

1 Introduction

Peer-to-peer systems can be a convenient venue for par-
ties to exchange goods and services. In such systems pairs
of users transact with each other; for example, one user may
download a song from or agree to store a document for an-
other user. Each user has a natural transaction-rate limit,
the maximum rate at which she can do transactions. This
rate is usually determined by physical limitations like her
network bandwidth or processing power, but sometimes is
determined by partner availability. Unfortunately, the nat-
ural rate is often undesirably high, especially for malicious
users.

Accordingly, we propose transaction rate limiters, or
simply rate limiters, which are mechanisms to (probabilis-
tically) limit the transaction rates of users. Each user can
be forced to transact as slowly as desired, with different

∗Reproduced from the Proceedings of the International Conference on
Peer-to-Peer Computing 2008 (P2P’08); c©2008 by The Institute of Elec-
trical and Electronics Engineers, Inc. All rights reserved.

†Author’s current affiliation: Microsoft Research Silicon Valley

users having different limits that can vary over time. Our
transaction-rate limiter implementations can work over time
frames as short as seconds and are extremely robust: they
do not rely on trusted servers, which may be easy to take
out or subvert, and continue to work even when attacked by
a large fraction of the system’s users colluding.

Transaction rate limitation is important both to limit self-
ish users from consuming far more than their fair share of
resources (e.g., limit songs downloaded/hour) and to limit
how fast malicious users can do damage (e.g., limit mes-
sages sent/minute to limit spam). The need for rate limi-
tation is not removed by using reputation systems because
they take so long to act: we expect any decentralized robust
reputation system to act on a substantially slower timescale
than our limiters because it must gather information from
a substantial fraction of nodes while our limiter need talk
to only a few nodes before each transaction. The slowness
of reputation systems makes them vulnerable to attacks by
traitors, dishonest users that act honestly for some period to
build up their reputations and later quickly engage in many,
many dishonest transactions [14].

Adding a rate limiter to a reputation system prevents
traitors from doing significant damage before they are ex-
pelled. In addition, it provides defense in depth: even if an
attacker figures out how to fool the reputation system, the
much simpler (and hence more likely to be correct) limiter
will limit the damage. Rate limiters are useful even with-
out reputation systems, although more damage can occur
in that case because malicious users that constantly do a
small amount of damage cannot be expelled. We are un-
aware of any reputation systems that work under the severe
conditions (e.g., large coalitions of dishonest users) that our
limiters can tolerate so using transaction rate limiters may
be the only available option for systems that must operate
under such conditions.

Briefly, our rate limiters work roughly as follows. To
limit users’ transaction rate to k/T , we split time into peri-
ods of duration T , limit each user to transacting with at most

1

k honest users per period, and have each honest user trans-
act with any given user at most once per period. The chal-
lenge here is finding a way for an honest user Alice to avoid
becoming the k+1th user a dishonest user Bob is transact-
ing with given that (1) she cannot see who he is talking to,
(2) there may not be enough time for Alice to contact all the
other users, and (3) there are no users she can be sure she
can trust.

The key idea in our scheme is to force Bob to tell her
who he is transacting with by having all the honest users that
wish to transact with him (including her) anonymously and
simultaneously ask Bob who he is transacting with. If Bob
wants anyone to do business with him, he must give out their
name: any user who receives back a list without their name
on it or containing more than k users knows Bob is trying to
cheat and refuses to do business with him. Unfortunately for
Bob, because he has no control over who gets each name,
the more people he tries to do business with, the more likely
each of them catches him cheating. We show in Section 5.2
that the expected number of honest users that deal with him
under these circumstances is bounded above by k. Our limit
is thus probabilistic.

Unfortunately, in a pure peer-to-peer system it is diffi-
cult to implement always-anonymous communication, es-
pecially if there is a large number of dishonest parties
colluding with Bob. We therefore instead use probably-
anonymous queries, which are guaranteed to be anonymous
only with some probability p. We implement probably-
anonymous queries by using random relays and assuming
a limit on the fraction of dishonest users. The probability
that a sender’s identity is exposed (at most 1−p) need not
be negligible, so in our transaction limiters users compen-
sate by making several queries to Bob so that the probabil-
ity that all such queries are not anonymous is small. We can
precisely quantify how p affects the ability of Bob to cheat,
so that we can choose an appropriate number of queries to
bound the amount of cheating.

This paper is organized as follows: in the next section,
we introduce an example of how our limiters might be used.
In Section 3, we explain our system model. In Section 4,
we describe probably-anonymous queries and how to im-
plement them. In Section 5, we describe and analyze our
basic transaction rate limiter implementation. In Section 6,
we estimate key performance parameters for our example.
In Section 7, we describe how to handle churn. In Section 8,
we briefly discuss other extensions of our work. Finally, in
Section 9 we discuss related work and in Section 10 our
conclusions.

2 Example: Limiting audio spam

Consider an imaginary decentralized peer-to-peer sys-
tem, which we shall call Musictella, that is loosely based on

its namesake, Gnutella. Like Gnutella, Musictella’s goal is
to allow its users to share songs. Each user makes available
a set of songs that they are willing to share. Other users
can then request and receive those songs. We will not be
concerned in this paper with how users find song providers,
assuming only that there is some mechanism for interested
users to locate other users that have songs they want.

Without defense mechanisms, Musictella is likely to suf-
fer from spam: spammers may attempt to share audio ads
with as many people as possible by mislabeling their ads as
popular songs. More problematically, Musictella may be at-
tacked by large organizations that want to make Musictella
(nearly) unusable by spamming the system with fake or bad
music. While it may be possible to programmatically dis-
tinguish audio ads from songs, it is unlikely that bad music
can be reliably distinguished (e.g., an attacker might simply
send the wrong song).

Accordingly, any effective defense against spamming
must limit spammers’ ability to send spam. Ways to do this
include limiting the number of users a node can distribute
to at once (e.g., transaction rate limiters) and banning spam-
mers based on users’ complaints (e.g., reputation systems).

Either method requires holding down the number of sys-
tem nodes controlled by spammers at any given time. How
best to do this is beyond the scope of this paper. For con-
creteness, we shall assume that Musictella limits malicious
nodes by requiring that each node that wishes to join or re-
new its membership solve a new hard computational puzzle
and by assuming that Musictella has a large enough user
base so that spammers do not have enough computational
power to control more than a small fraction of Musictella’s
nodes at any time [15]. In our examples, we will assume
that Musictella has one million nodes, of which at most 1%
are controlled by spammers at any one time. See the liter-
ature on Sybil attacks [2, 5, 20, 22] for more discussion of
this problem and methods for solving it.

We shall now consider and contrast three approaches for
controlling spam: (1) using a transaction rate limiter, (2)
using a reputation system, and (3) using both.

Using a limiter: Adding a transaction rate limiter to
Musictella is straightforward: treat each song transfer as a
transaction between a provider and a receiver and limit the
rate of transactions each provider can do. Because the same
node can be both a provider and a receiver in this example,
we will need to limit user-role pairs rather than users in or-
der to avoid limiting how fast a node can receive songs as
well. One simple way to do this is to split each node into
two virtual nodes, one of which is allowed only to send and
one of which is allowed only to receive; we then limit only
the provider virtual nodes.

Suppose the provider limit is say 10 songs per hour and
each non-spammer node provides one song per hour.1 Then

1The assumed sharing rate may be unrealistically high: most Gnutella

2

in one hour the spammers will send 10 · 1% · 1 million
= 100,000 pieces of spam and the honest users will send
1 · 99% · 1 million = 990,000 good songs so 90.8% of re-
ceived songs will be spam free. In the absence of any lim-
iters or banning, the percentage of received spam will de-
pend on the natural-transaction rate limit of the attacker,
which could easily be as high as 360 songs/hour per node
(10 Mb/s bandwidth, 10 MB song size) yielding only 21.6%
spam-free songs.

Using reputations: A simple reputation system for Mu-
sictella might work as follows: when users discover by lis-
tening to a “song” that they have been given spam, they
broadcast a complaint against the node that provided the
spam; once a user hears enough complaints about a given
node, they stop transacting with or playing songs from that
node. How many complaints are enough? Because the at-
tacker, which could control 10,000 nodes, may try to falsely
accuse non-spammers in order to stop the flow of illegal mu-
sic, 10,001 complaints are needed to be sure a node is bad.

The Achilles’ heel of this reputation system is the com-
plaint broadcast system, which must be both very fast and
acceptably efficient. It needs to be fast because if the at-
tacker has each of his nodes take turns using all his band-
width (i.e., all of the attacker’s machines are pretending to
be a single node at a time), then the current spamming node
can send 360 · 1% · 1 million = 3.6 million songs per hour
= 1, 000 songs per second, which in 10 seconds blows past
the maximum 10,001 spams that an ideal reputation should
allow any node to send. Every second beyond that that ban-
ning takes allows each spammer node to spam an additional
1,000 times.

It is hard for the broadcast system to be efficient because
banning one node requires at least O((1−θ)n2) commu-
nication where n is the number of system nodes, θ is the
constant fraction of nodes that are honest, and (1−θ)n is
the number of complaints required for safe banning. (Our
limiters, by contrast, we will show in Section 6 add only
O(log n) communication per transaction.)

Using both: Transaction rate limiters can complement
reputation systems. Here adding a transaction rate limiter to
the reputation system described above mitigates the broad-
cast problem because broadcasts can then be much slower
while allowing the same amount of spam through. Commu-
nication efficiency can be better in practice as well because
messages can be batched and combined. Without limiters,
such a reputation system might never work in practice.

In addition to the spamming problem, the designers of
Musictella may also wish to increase the fairness of their
system by limiting how much of the system’s resources any
one user can consume at a time. They could do this by using
a second transaction rate limiter to limit how many songs
any given user can receive per hour. The second limiter’s

nodes share no songs. If so, the limit should be proportionately reduced.

setup is similar to the anti-spamming one but we instead
limit the rate of transactions each receiver node can perform
to say 5 songs per hour. In general when multiple limiters
are used, each limiter can limit a different class of users or
user-role pairs to a possibly different rate limit. Thus, for
example, when using limiters in a system for purchasing
electronic goods, we could limit buyers, sellers, or both.

3 System assumptions

In order to simplify the presentation of our algorithms,
we are going to assume (unrealistically) for the next several
sections that there is no churn, nodes are always connected,
and each node knows the identity of every other node in
the system. Later, in Section 7 we describe how to handle
churn, temporarily unavailable nodes, and strangers.

For now, we consider a distributed peer-to-peer system
with a fixed large set Π of users (equivalently, nodes). Each
user is either permanently honest, meaning that she always
follows our protocols, or dishonest, meaning that she may
deviate from our protocols. A fraction θ > 0 of users are
honest. Dishonest users may collude towards a common
goal.

Nodes can communicate by sending messages over reli-
able links, which do not lose, duplicate, or create messages
(e.g., a TCP connection). Eavesdropping is not possible—
messages are visible only to their senders and receivers—
and communication is probabilistically synchronous: there
are constants td>0 and pd>0 such that, with probability at
least pd, a message is received within time td of being sent.
In practice, td is of the order of hundreds of milliseconds
and pd is close to 1. For example, Hu et al. [7] measured
that 90% of the round trip delay time (RTT) from any of
three server replicas (located in the US, Europe, and Asia)
to a large number of destinations (about 140,000) fall be-
low 400 milliseconds. In fact, pd can be made as close to
1 as desired (at the cost of increasing td) by retransmitting
messages.

Users can only send messages to users whose names they
know (including users they have received messages from).
We assume that each user u ∈ Π knows a (possibly differ-
ent) subset Ku of users. Which users in Ku are honest is not
known to (honest) u. For now, we will assume the system’s
membership is public (i.e., Ku = Π for every u).

Nodes have nearly-synchronized clocks, such as those
obtained by using Network Time Protocol (NTP) servers
or (less accurately) manual synchronization. Nodes’ clocks
increase monotonically and differ by at most ±ε from real
time at any given time. In Wide Area Networks (WANs),
NTP usually can keep ε down to tens of milliseconds [16].
For simplicity, we assume computation takes negligible
time.

For the reader’s convenience, Figure 1 lists the symbols

3

symbol description
Π set of all system users
Ku users known by user u
θ fraction of honest users
td message transmission time
pd probability a message is delivered within td

ε max. time any local clock differs from real-time
p probability a query succeeds
q probability a query fails
tr thinking time allowed before must respond
t∆ time a query requires independent of tr

r probes per query
k number of transactions allowed per period
T size of a period
δ upper bound on extra transactions a dishonest

user can do per period

Figure 1. Symbols defined in Sections 3, 4,
and 5 respectively.

used throughout this paper along with their concise defini-
tions.

4 Probably-anonymous queries

To implement transaction rate limiters, we use probably-
anonymous queries. A (p, t∆)-probably-anonymous query
is a communication primitive that takes arguments m, v,
and tr. This primitive allows an honest user u to send query
m to (honest or dishonest) user v and v to optionally send
one answer to u after at most tr of thinking time. It ensures,
with probability p, that (a) v receives the query m; (b) v
learns nothing about who sent m other than what m may
convey and possibly u’s local time when u made the query;
(c) if v replies with exactly 1 answer within real-time tr

of receiving m, then u receives that answer; (d) u receives
exactly 1 answer, either one from v or “timeout”; and (e) u
receives an answer within t∆ + tr of the query’s start by his
clock.

Probably-anonymous queries can be implemented in a
highly robust peer-to-peer fashion by using a random node
as a relay to anonymize communication as shown in Fig-
ure 2. We use nonces (nu and nw) to distinguish multiple
instances of the protocol running simultaneously and to ig-
nore messages with spoofed sender information.

Consider the case where no protocol messages are late
(i.e., take longer than td) and w is an honest user. Because
u and w’s clocks can differ by at most 2ε, w receives m
by t1+td+2ε his time. Note that the time he forwards m,
t1+td+2ε his time, depends only on t1 (the local time u
made the query) and w. Thus v on receiving (m, nw) learns
only m, nw, w, and (roughly) t1. Knowledge of t1 and m

u queries v with m allowing think time tr and gets an answer:
u: w ← random user from set Ku;

t1 ← current time, nu ← random number;
send (m, v, tr, t1, nu) to w

w: receive (m, v, tr, t1, nu) then wait until t1 + td + 2ε;
nw ← random number;
send (m, nw) to v

v: receive (m, nw) then choose an answer a;
send (a, nw) to w

w: wait until t1 + 3td + tr + 4ε;
if have received (r, nw):

then a′ ← r
else a′ ← “timeout”

send (a′, nu) to u

u: receive (a′, nu);
return a′

Figure 2. Implementing probably-anonymous
queries with p = θp4

d and t∆ = 4td + 6ε.

are expressly permitted by (b); nw is a fresh random number
and thus conveys no information about u’s identity. Because
by the public membership assumption every user chooses its
relays from the same set, Π, the choice of w reveals nothing
about the identity of u either, so (a) and (b) hold.

If v replies once with (a, nw) after a real-time delay of
at most tr, then w will receive the reply at most real-time
2td + tr after forwarding m to v. The local time w receives
the reply at is thus at most t1+3td+tr+4ε, with the extra
2ε due to the possibility that w’s clock speeded up relative
to real-time during the interval. Accordingly, a′ will be set
to a and u will receive a as the query answer so (c) holds.
Regardless of whether v replies, w will send (a′, nu) to u
at t1+3td+tr+4ε w’s time where a′ is either “timeout” or
an answer from v. This message can arrive no later than
t1+4td+tr+6ε u’s time. Thus, (d) and (e) hold for t∆ =
4td+6ε.

Thus for the case we have considered, which has prob-
ability p = θ · p4

d, (a) through (e) hold for t∆ =
4td+6ε. Figure 2 thus implements a (θp4

d, 4td+6ε)-
probably-anonymous query.

5 Transaction rate limiters

We assume time has been divided into consecutive peri-
ods of duration T and that a distinguished subset of users,L,
has been designated as users that need their transaction rate
limited. A k-rate limiter acts to limit the expected number
of transactions each limited user ` ∈ L can do with honest
users in any given period to k. Each limited user can thus
perform transactions at a rate of at most k/T .

Our rate limiters work by having each user u wishing to
transact with a limited user ` in a given period run an ap-

4

approve u transacting with limited user `?:
u: wait until start t of given period;

probably-anonymous query ` with t allowing think time 0
in parallel r times

`: answer all queries t with the name of the user with
whom ` plans to transact in period [t, t+T]

u: wait until t + t∆ + 2ε;
if all answers returned before t+t∆ are u

then return “approve”
else return “reject”

Figure 3. Basic approval protocol for a 1+δ-
rate limiter where δ depends on parameter r.

proval protocol with ` first; u proceeds with at most one
transaction with ` if the approval protocol gives permission.
If u is also limited, then both u and ` run the approval proto-
col with each other in parallel and the transaction proceeds
only if both protocols approve.

We assume each limited user has already decided by the
start of a period who he wishes to transact with in that pe-
riod. How exactly this occurs does not matter for our algo-
rithms; for example, ` may take reservations from users that
come to him, or ` may solicit users, or both. If there is a con-
cern that some users may be starved of service (e.g., never
get to transact with a given node), then a method should be
chosen that ensures that any user wanting service from a
given node eventually gets it. Such methods include hold-
ing lotteries among current applicants and taking applicants
first-come, first-served off a waiting list.

For simplicity we implement a 1-rate limiter (more pre-
cisely a 1+δ-rate limiter, δ � 1); a k-rate limiter (really
k+kδ) can be built from this implementation by allowing
each limited user to run k instances of the 1+δ-rate limiter
in parallel: each user wishing to transact with ` is assigned
one of these instances by `, and each instance runs indepen-
dently of each other.

Alternatively, our 1+δ-rate limiter can be generalized
(not shown) to a k+δ-rate limiter by having ` answer
queries with a list of the names of the at most k users he
intends to transact with in that period and by having ap-
proval occur only if all the answers u receives in time are
lists of length at most k containing u. Note that because
the approval protocols of k-rate limiters take k as a param-
eter, it is easy to build more complicated limiters where the
limits vary from user to user and from period to period; for
example, new nodes might have more stringent limits than
older or more reputable nodes.

5.1. Basic approval protocol

Figure 3 shows the approval protocol for our basic 1+δ-
rate limiter. Here u attempts to anonymously ask ` to return

the single user with whom ` intends to transact; if an answer
other than u is received, the protocol disapproves. Because
we can ask only probably-anonymous queries, which may
have a high failure rate, we have to resort to multiple queries
to ensure a sufficiently high probability that at least one of
them is truly anonymous. Even with r queries, there is still
some chance of failure, potentially allowing ` an extra δ
transactions; however, as we shall see, by increasing r we
can make δ as small as desired.

To prevent ` from distinguishing among the anonymous
queries of the users that wish to transact with him in a given
period, all users do their queries at the same time t on their
local clocks (recall that queries can leak this time). At the
end of the protocol, u waits an extra 2ε before returning to
ensure he does not subsequently take actions (outside our
protocol) that cause ` to learn the result of u’s query before
another user’s query has finished, which might allow ` to
make his answer to the second query depend on the result
of the first query.

5.2. Analysis

Suppose n honest users wish to transact with `. Let H
be the expected number of these that receive approval. To-
gether, the honest users will make rn probably-anonymous
queries, some of which may turn out anonymous and hard
for a dishonest ` to answer. If we pretend for a moment that
each honest user makes exactly 1 query and that it succeeds
(i.e., (a)–(e) holds), then we claim that H is bounded above
by 1: ` has n indistinguishable queries to answer, each of
which he must answer with that inquirer’s name in order to
get that inquirer to transact. The expectation that an answer
matches an inquirer is 1

n
. Thus, by the linearity of expec-

tation, no matter how ` answers, the expected number of
matches is at most n · 1

n
= 1. Additional queries cannot

raise H because they do not help ` answer the successful
queries.

Unfortunately, there is a probability that all r queries of
a user are non-anonymous. This probability is at most qr

where q = 1−p. If we conservatively assume that a dis-
honest ` can trick such users into transacting, then an upper
bound on H is 1 + nqr. Here 1 bounds the number of ap-
proved users that made at least one successful query and
nqr bounds the number of approved users that did not.

In practice, a dishonest ` can nearly achieve this limit, for
example, by adopting the following strategy: choose some
user u0 who wishes to transact then answer all anonymous
queries with u0’s name, and all non-anonymous queries
with their asker’s name. With this strategy, ` can get u0

to transact plus any other user whose r queries fail to be
anonymous. If we assume all messages arrive in time (i.e.,
pd = 1) and ` learns the asker of a query with probability q,
then H = 1 + (n−1)qr.

5

A dishonest `’s advantage over an honest ` is at most
δ = nqr transactions with honest users, where n is bounded
by the number of users in the system, |Π|. δ can be made as
small as desired by setting r = logq

δ
|Π| = logq−1 (|Π|δ−1).

6 Performance

To get a sense of how our transaction rate limiter might
perform in practice, we now estimate for the Musictella ex-
ample of Section 2 the key performance numbers, namely
the number of extra messages that must be sent per transac-
tion and the latency added by using the limiter.

Per Section 2, the system has |Π| = 106 real nodes, of
which at least a fraction θ = 0.99 are honest; moreover, vir-
tual provider nodes are supposed to be limited to at most 10
transactions per hour (equivalently one transaction per six
minutes). We shall assume that an honest node can always
respond to a probe within tr = 1 second. Per Section 3,
we shall assume that the probability of a message being re-
ceived within td = 1 second is at least pd = 0.95. More-
over, we will assume that NTP holds the time difference
between any two nodes to within 2ε = 100 milliseconds.

If we set k = 1 and T = 6 minutes, then honest users
will be limited to sending 10 songs per hour as desired. Dis-
honest users, however, will be able to exceed this by an ad-
ditional 10δ songs per hour, where δ = mqr, m is the max-
imum number of users that a dishonest user can interest in
receiving its songs in a single period, q = 1−p is the proba-
bility a given probably-anonymous query fails, and r is the
number of probes each node does per transaction. In the
worst case, m = |Π|, its maximum value (perhaps every-
one wants a new, not yet released song). For our probably-
anonymous query implementation with pd = 0.95, we have
q = 1−p = 1− θp4

d = 0.194.
If we choose to limit 10δ to 0.1 (e.g., a dishonest user

can send at most 10.1 songs per hour), then we can pick
r = 12: per Subsection 5.2, we need r ≥ logq−1 (|Π|δ−1)
and q−1 = 5.15. Equivalently, we could have used the same
δ but chosen T = 6.06 minutes instead so dishonest users
could send at most 10 songs per hour while honest users
could send only at most 9.9 songs per hour.

Each node that wishes to receive a song must then make
12 probes, which results in 4r = 48 messages being sent.
This number can be reduced somewhat by increasing td

(and hence pd); for example, td = 10 seconds might make
pd = .99 and hence q = 0.49 and r = 7. Alternatively, in-
stead of changing td, we can make δ larger: 10δ = 1 yields
r = 10, for example.

The added latency due to the probing process is t =
t∆ + tr + 2ε = 4td + tr + 8ε = 5.4 seconds (remem-
ber that all probes for a given period are done in parallel).
For comparison, downloading a typical MP3 song (4 MB)
over a 1 Megabit per second link takes at least 32 seconds.

If we keep everything except the number of nodes con-
stant, we find that we need O(log m) ≤ O(log |Π|) probes
per attempted transaction and O(1) extra latency. Increas-
ing the fraction of dishonest nodes also increases the re-
quired value of r:

dishonest fraction (1− θ) required probes (r)
0.1% 11
1% 12
10% 14
25% 20

Even the largest r here (20) yields a number of messages
(80) that is small compared to the number of packets re-
quired to download a typical MP3 song. If we use IP ad-
dresses as names and 8-byte values for the other fields, each
message has at most 32 bytes, which means our limiter uses
negligible bandwidth.

There is another source of latency in our system: waiting
for the start of the next period. If Fred wants to download
a song from Sally now and Sally has no other requests, he
will have to wait three minutes on average for the start of the
next period. The extra time Fred may have to wait for Sally
to serve earlier requests due to the imposed rate limit is not
overhead due to our transaction rate limiter implementation,
but rather inherent in any approach that limits rates.

In many cases, it may be possible to hide these over-
head latencies by doing the probing/waiting in parallel with
the transaction. For example in Musictella, Fred could start
downloading his song as soon as Sally has free bandwidth
but only look at the song after the limiter has given approval
(the download could be abandoned early on a rejection). We
are also working on more complicated limiters (not other-
wise described in this paper) that trade making more probes
for shorter periods. Very roughly, they work by having
Fred decide in period i and then spoil periods i+1, i+2,
. . . i+l−1 for Sally; Fred spoils a period by probing and
then contacting and warning off anyone whose name he re-
ceives (other than his). This effectively allows Sally to only
do k

lT
transactions per period so T can be made 1/l smaller.

7 Churn

In order to make our system work with a changing sys-
tem membership, unavailable nodes, and strangers, we need
to address two issues: how to pick relays and how to
handle unavailable relays. Pretend for the moment that
we know how to choose honest relays that—if available—
would properly anonymize a querier.

To decrease the chance of a relay being unavailable, we
can choose say j relays, ping them, and then use a ran-
dom relay that responds. When an honest node responds
to a ping, it commits to not voluntarily going down or dis-

6

connecting in the next t∆+2ε time units. If no relays re-
spond, the probably-anonymous query fails but this should
happen with very low probability, say pj , for sufficiently
large j. This scheme handles nodes already unavailable at
the start of a period, including nodes that have recently left,
and nodes that do not crash (i.e., involuntarily become un-
available) during the query.

When a query’s relay crashes, that query fails (e.g., (e)
fails) so we must adjust p downwards from θp4

d (see Sec-
tion 4) to (1−pj)θ̂p

4

d where θ̂ is the probability of a ping-
responding relay being both honest and available for the du-
ration of the query. Note that if dishonest relays are dispro-
portionately available or non-crashing, then θ̂ is not simply
θ times the probability of an honest node crashing during a
query. For example, if 1% of system nodes are dishonest
but only 90% of honest nodes are unavailable at any given
time then 9.2% of the available nodes will be dishonest.

Our probably-anonymous query implementation will
work for any method of secretly and randomly choosing a
system node that has the property that knowledge of what
node was picked does not (usually) reveal who picked it.
One way to pick relays in the presence of churn is for each
node to maintain a reasonably up-to-date membership ros-
ter and choose relays from it randomly. If the rosters are
sufficiently up to date then all honest nodes should agree on
a large core C of nodes whose membership has been stable
recently. If we assume that honest nodes’ rosters have at
most 20% non-core nodes and conservatively regard choos-
ing w from outside the core as revealing u’s identity and let
all dishonest nodes be in C, then we pick a relay w that will
anonymize us with probability at least θ − 2

10
.

A robust way to keep the rosters up to date is to use a
gossip protocol where each node exchanges membership
changes occasionally with other nodes chosen randomly
from its roster list; the higher the churn rate, the more fre-
quently gossip will need to be exchanged. If nodes are down
much of the time, then a store-and-forward message system
(e.g., email) may be needed for transmitting gossip. In or-
der to maintain the required system invariant that the frac-
tion of nodes that are honest is at least θ, one needs to use
a mechanism to control entry (e.g., proof of solving an ex-
pensive problem). To prevent disrupters from lying about
fake nodes joining or honest nodes leaving, signed joining
and farewell messages can be used.

We think it should be possible to pick relay nodes with-
out requiring each node maintain a full membership list; see
the related work on peer sampling.

8 Extensions

8.1. Privacy

Adding our basic limiter implementation to a system
may cause it to leak additional information: because our
limiters work by forcing limited users (e.g., song providers)
to tell anonymous probers who they are transacting with,
anyone can figure out who a limited user is transacting with
merely by probably-anonymously querying that user. To
prevent this, users can use a different pseudonym for each
partner, period pair. With this change, information leaks
only to the relays that are directly talking to both parties.
It should be possible to hide the transactors from the relays
as well by using a series of relays instead of single relays
as in Crowds [19]. The number of users a limited user is
transacting with (for k > 1) can be hidden by padding his
partner list with fake pseudonyms.

8.2 Disrupters

We have discussed the case where dishonest users wish
to exceed the limits we are imposing. An alternative case
involves disrupters, dishonest users that wish to disrupt
the system by preventing as many transactions as possible
(e.g., an attacker trying to prevent song trading). With our
probably-anonymous queries, a single disrupter relay can
block a transaction by returning “timeout” so even a small
fraction of disrupters can substantially reduce the transac-
tion rate of honest users. For example in the Musictella
example where r=12, the 1% dishonest users could disrupt
d = 1−θr = 1− .9912 = 11.4% of the transactions (21.4%
if receivers are also limited).

By increasing r and allowing the approval protocol to ap-
prove even with some incorrect answers from the probably-
anonymous queries, it is possible to decrease the level of
disruption. If we allow b incorrect answers then

δ = |Π|

b
∑

i=0

(

r
i

)

piqr−i (1)

d = 1−
b

∑

i=0

(

r
i

)

(1−θ)iθr−i (2)

where d is the fraction of transactions that are disrupted. (`
gets an extra transaction if at most b queries succeed and
one of u’s transactions is disrupted if more than b of its as-
sociated relays are disrupters.)

For this example, setting r to 15 and allowing 2 incor-
rect answers keeps 10δ at 0.1 and limits the disruption to
0.04% of transactions. Allowing some bad answers (in-
cluding “timeout”) also increases the system’s resilience to
communication failures, which can also block transactions.

7

T

(a)

(b)

T T

Figure 4. (a) non-overlapping periods of du-
ration T . (b) overlapping periods that start
every T time units.

Because there are so many possible relays and process-
ing a single probe requires so little resources, a denial of
service (DoS) attack against the relays is unlikely to be ef-
fective. Far more effective is simply requesting as many
songs as possible, which consumes large amounts of re-
sources. When song providers have their transaction rate
limited below their natural transaction rate—whether by our
limiters or a reputation system—the scarce resource being
exhausted becomes allowed-transactions-per-hour instead
of bandwidth. Rate limits thus can greatly amplify the ef-
fectiveness of any given song-request DoS attack. These
attacks can be substantially mitigated, however, by addi-
tionally limiting nodes’ ability to request songs by using
a (second) transaction rate limiter.

8.3. Overlapping periods

We have described things assuming non-overlapping pe-
riods of size T . Because the approval protocol, which takes
time t∆+tr+2ε (= 4td+tr+8ε), and any subsequent result-
ing transaction must run during a single period, this limits
how small T can be. If this is a problem, consecutive over-
lapping periods of fixed length can be used, each of which
starts T after the last period started (see Figure 4). This
is equivalent to limiting the rate at which transactions can
be started (e.g., k transactions can be started each T time
units). Unlike with the non-overlapping case, the number of
transactions a limited user has outstanding at any one time
may exceed k in this case.

9 Related work

TCP’s flow control and congestion control can be viewed
as mechanisms to limit rates [12]. However, TCP’s rate lim-
iting applies to the flow between a pair of nodes, and is quite
different from our rate limiters, which limit the aggregate
rate of transactions between a node and all others.

To increase fairness, BitTorrent uses a tit-for-tat mech-
anism in an attempt to make each peer’s download rate
be proportional to their upload rate [4]. This mechanism

works only between nodes simultaneously downloading the
same content, does not limit the aggregate rate of a node,
and is not suitable for systems where some nodes by de-
sign only consume or provide. Moreover, BitTorrent’s
mechanism can be circumvented using carefully modified
clients [13, 17].

Like rate limiters, reputation systems are a way to pre-
vent system misuse, but they are vulnerable to many attacks,
including those from traitors [14]. Rate limiters can limit
the gains obtained from such attacks so that it is not cost-
effective for traitors to sacrifice their reputations.

Many reputation systems have been proposed; surveys
of the field are beginning to appear [6, 14]. The reputation
system we described in Section 2 was of necessity fairly
simple. Among the proposed reputation systems, one of the
more sophisticated is EigenTrust.

EigenTrust [9] assigns each node a global trust value that
is intended to reflect that node’s history of uploads. The
assignment is based on each node’s local experiences (how
did X treat me?), a notion of transitive trust (weigh X’s opin-
ions based on how much we trust him), and a special set of
trusted nodes. The trusted nodes are required for the dis-
tributed computation of global trust values—done via power
iteration—to converge. In addition to its need for trusted
nodes, which may be easy to take out or subvert, EigenTrust
does not appear to handle churn, sometimes offline nodes,
or disrupters. It seems particularly vulnerable to the traitor
problem because it does not distinguish between “I’ve had
a bad experience with this node” and “I’ve never talked to
that node”. We suspect EigenTrust has much greater over-
head than our system, but it is hard to tell from the provided
information.

Anonymity is an area of active research [1]. Chaum
mixes [3] use public key cryptography and a set of com-
puters called mixes to achieve anonymity. Onion rout-
ing [18] is basically a real-time variant of Chaum mixes.
Crowds [19] achieves anonymity using a relaying mecha-
nism rather than cryptography. Crowds gives a classifica-
tion of degrees of anonymity (e.g., beyond suspicion, possi-
ble innocence, etc.), but it does not consider schemes that
provide different degrees of anonymity probabilistically,
such as our probably-anonymous queries. Such schemes
allow for simpler and more efficient implementations than
Crowds. Cashmere [23] and information slicing [10] are
anonymization systems that explicitly consider churn. Sev-
eral attacks on anonymization systems are described in [21].

The problem of randomly choosing a user in a (dynamic)
group is called peer sampling, which can be achieved via
gossiping [8]. If group membership is stable, peer sampling
can be done with low latency and message overhead by us-
ing random walks, without knowledge of global member-
ship [11].

8

10 Conclusion

In this paper, we have introduced transaction rate lim-
iters, which impose limits on the rate at which users can
perform transactions. Such limits have many uses, includ-
ing restricting users to their fair share of resources, slowing
spam to a trickle, and allowing traitors to be evicted before
they can cause substantial damage. We showed how to im-
plement transaction rate limiters in a robust manner using
our probably-anonymous query implementation, which pro-
vides anonymity with at least a specified probability even
against a collusion of a large fraction of the system’s users.

Acknowledgments

We are thankful to the anonymous referees for providing
useful feedback.

References

[1] Anonymity bibliography.
http://freehaven.net/anonbib/full/date.html.

[2] R. Bazzi and G. Konjevod. On the establishment of dis-
tinct identities in overlay networks. Distributed Computing,
19(4):267–287, Mar. 2007.

[3] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM,
24(2):84–88, Feb. 1981.

[4] B. Cohen. Incentives build robustness in BitTorrent. In Pro-
ceedings of the Workshop on Economics of Peer-to-Peer Sys-
tems (P2PEcon 2003), June 2003.

[5] J. Douceur. The sybil attack. In Proceedings of the 1st In-
ternational Peer To Peer Systems Workshop (IPTPS 2002),
pages 251–260, Mar. 2002.

[6] K. Hoffman, D. Zage, and C. Nita-Rotaru. A survey of at-
tack and defense techniques for reputation systems. Techni-
cal Report CSD–TR 07–013, Purdue University, May 2007.

[7] N. Hu, O. Spatscheck, J. Wang, and P. Steenkiste. Optimiz-
ing network performance in replicated hosting. In Proceed-
ings of the 10th International Workshop on Content Caching
and Distribution (WCW 2005), pages 3–14, Sept. 2005.

[8] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,
and M. van Steen. Gossip-based peer sampling. ACM Trans-
actions on Computer Systems, 25(3), Aug. 2007. Article No.
8.

[9] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
Eigentrust algorithm for reputation management in P2P net-
works. In Proceedings of the 12th International World Wide
Web conference (WWW 2003), pages 640–651, May 2003.

[10] S. Katti, J. Cohen, and D. Katabi. Information slicing:
Anonymity using unreliable overlays. In Proceedings of the
4th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2007), pages 43–56, Apr. 2007.

[11] V. King and J. Saia. Choosing a random peer. In Proceed-
ings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC 2004), pages 125–130, July
2004.

[12] J. Kurose and K. Ross. Computer Networking: A Top-Down
Approach Featuring the Internet. Addison-Wesley, Boston,
3rd edition, 2005.

[13] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free
riding in BitTorrent is cheap. In 5th Workshop on Hot Topics
in Networks (HotNets V), pages 85–90, Nov. 2006.

[14] S. Marti and H. Garcia-Molina. Taxonomy of trust: Cat-
egorizing P2P reputation systems. Computer Networks,
50(4):472–484, Mar. 2006.

[15] R. Merkle. Secure communications over insecure channels.
Communications of the ACM, 21(4):294–299, April 1978.

[16] D. Mills. Network time synchronization research project.
http://www.cis.udel.edu/∼mills/ntp.html.

[17] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in Bit-
Torrent? In Proceedings of the 4th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
2007), pages 1–14, Apr. 2007.

[18] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous connections and onion routing. IEEE Journal on Se-
lected Areas in Communications, 16(4):482–494, May 1998.

[19] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web
transactions. ACM Transactions on Information and System
Security, 1(1):66–92, 1998.

[20] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta. Lim-
iting Sybil attacks in structured peer-to-peer networks. In
Proceedings of the 26th Annual IEEE Conference on Com-
puter Communications (INFOCOM 2007), pages 2596–
2600, May 2007.

[21] M. K. Wright, M. Adler, B. N. Levine, and C. Shields. The
predecessor attack: An analysis of a threat to anonymous
communication systems. ACM Transactions on Information
and System Security, 7(4):489–522, Nov. 2004.

[22] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybil-
Guard: defending against Sybil attacks via social networks.
In Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM 2006), pages 267–278, Sept.
2006.

[23] L. Zhuang, F. Zhou, B. Y. Zhao, and A. Rowstron. Cash-
mere: Resilient anonymous routing. In Proceedings of the
2nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 2005), pages 301–314, Apr. 2005.

9

