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Abstract. We demonstrate that in the context of statically-typed purely-functional lambda
calculi without recursion, unchecked exceptions (e.g., SML exceptions) can be strictly more pow-
erful than call/cc. More precisely, we prove that a natural extension of the simply-typed lambda
calculus with unchecked exceptions is strictly more powerful than all known sound extensions of
Girard’s Fω (a superset of the simply-typed lambda calculus) with call/cc.

This result is established by showing that the first language is Turing complete while the later
languages permit only a subset of the recursive functions to be written. We show that our natural
extension of the simply-typed lambda calculus with unchecked exceptions is Turing complete by
reducing the untyped lambda calculus to it by means of a novel method for simulating recursive
types using unchecked-exception–returning functions. The result concerning extensions of Fω with
call/cc stems from previous work of the author and Robert Harper.

Keywords: Studies of programming constructs, control primitives, exceptions, recursion, λ-
calculus, type theory, functional programming

1. Introduction

The relationship between the programming features of exceptions and call/cc (call
with current continuation) in statically-typed purely-functional programming lan-
guages has been an open question for some time. Carl Gunter and colleagues write
in a recent paper [11]:

It is folklore (the authors know of no published proof) that neither [unchecked]
exceptions nor continuations can be expressed as a macro in terms of the
other (at least if no references are present), even though they are closely
related.

Exceptions in statically-typed programming languages come in two kinds, checked
and unchecked. The difference lies in the fact that the type of a function must
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declare only the checked exceptions that it may throw, not the unchecked ones.
Most programming languages provide only one kind of exception. For example,
all user-declared exceptions in CLU [16] are checked exceptions1 while SML [17]
provides only unchecked exceptions. Java [2], from which this terminology comes,
is unusual in providing both kinds.

In this paper we demonstrate that under reasonable assumptions unchecked ex-
ceptions cannot be expressed as a macro using only call/cc in a statically-typed
purely-functional lambda calculi without recursion, thus partially answering half of
Gunter et al.’s open question. Left open is the question of whether or not unchecked
exceptions can be defined using a macro in terms of call/cc and either a fixpoint
operator, recursive types, or some similar feature.

We do this by showing that when call/cc is added in a sound manner to even
as powerful a statically-typed purely-functional lambda calculus as Girard’s Fω

[10, 22], the set of functions expressible in the resulting language is still a subset
of the recursive functions, and that a natural extension with unchecked exceptions
of even so limited a language as the simply-typed lambda calculus (λ→) is Tur-
ing complete; that is, it permits all computable functions to be expressed. (In
particular, unlike in the first case, potentially non-terminating functions can be
written.) This demonstrates that unchecked exceptions are strictly more powerful
than call/cc for statically-typed purely-functional lambda calculi without recursion
— even allowing arbitrary transformations on programs instead of macros cannot
reduce unchecked exceptions to call/cc.

The first of these results is a previous result of the author with Robert Harper [13].
The second is new to this paper and involves a novel method for simulating recursive
types using unchecked-exception–raising functions.

Future work on answering Gunter et al.’s question will require studying explicitly
what can be defined using a macro because the approach taken in this paper of
comparing language power (what functions a language can denote) cannot produce
negative results when the base language is already Turing complete, as is the case
when recursion is present. Fellesisen’s work [7] provides an excellent foundation for
this task. Although it was not Gunter et al.’s primary concern, Andrzej Filinski
has shown recently that it is possible to define unchecked exceptions in terms of
call/cc and references [9].

2. The Power of Call/CC

Like assignment, both call/cc and exceptions can have non-local effects. Adding
non-local effects to a lambda calculus requires specifying an evaluation order in
order to retain determinism. Consider, for example, the following untyped code
fragment:

call/cc (λk. f(k 3, k 4))

If we evaluate arguments left-to-right, then this expression evaluates to 3; if we
instead evaluate right-to-left, then it evaluates to 4. Each different evaluation
order yields a different extension of Fω with call/cc.
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The author and Robert Harper considered a number of these extensions in a recent
paper [13] obtaining a number of results, which we summarize briefly here: Four
evaluation strategies were considered, differing in whether they use call-by-name or
call-by-value parameter passing and in whether or not they evaluate beneath type
abstractions (Λα::K.M). We know of no other proposed evaluation strategies for
Fω extended with non-local effects.

Not evaluating beneath type abstractions treats type instantiation (M [A]) as a
significant computation step, possibility including effects. Strategies of this type
are used in Quest [3] and LEAP [21], and are directly compatible with extensions
that make significant uses of types at run time [14] (e.g., “dynamic” types [1, 3]).
Since polymorphic expressions are kept distinct from their instances, the anomalies
that arise in implicitly polymorphic languages in the presence of references [25] and
control operators [12] do not arise.

Strategies that evaluate beneath type abstractions are inspired by the operational
semantics of ML [5, 17]. Evaluation proceeds beneath type abstractions, leading
to a once-for-all-instances evaluation of polymorphic terms. Type instantiation is
retained as a computation step, but its force is significantly attenuated by the fact
that type expressions may contain free type variables, precluding primitives that
inductively analyze their type arguments. The superficial efficiency improvement
gained by evaluating beneath type abstractions comes at considerable cost since
it is incompatible with extensions such as mutable data structures and control
operators [25, 12].

The call/cc operator takes one normal argument, which it then calls with the
current continuation; if the argument returns, then its value is the result of the
call/cc expression [4]. For example (ignoring types), call/cc (λf.3) yields 3 and
call/cc (λf.f 4; 3) yields 4. The obvious type for call/cc in Fω was used: 2

call/cc : ∀α:Ω. ((∀u:Ω.α→u)→α)→α

In English, this means that call/cc[A] M has type A when M is a function that
takes an A-accepting continuation and returns a value of type A, where A-accepting
continuations have type ∀u:Ω.A→u, reflecting the fact that they do not return.

This typing does not distinguish continuations from normal functions. If desired,
an abstract type constructor (e.g., α cont) can be used to keep these separate. The
only effect of this change is to rule out some programs, so it can only decrease the
power of Fω plus call/cc.

Fω extended with call/cc was shown to be sound under all the strategies except for
the strategy most like ML (the call-by-value, evaluating beneath type abstractions
strategy) which was shown to be unsound for full Fω. Restricting so that polymor-
phism can only be used on values, not general expressions,3 restores soundness for
this strategy. This restriction has since been adopted for SML where it is called
the value restriction [18].

Typed CPS (continuation-passing style) transforms were then given for each strat-
egy from the appropriate sound subset into Fω and proven correct. The proofs of
correctness showed that if M terminates with value V then the transformed version
of M terminates with a (possibly further reduced) transformed version of V . This
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was done by showing that each reduction step on the original term corresponds
to at least one reduction step of the transformed term. Since Fω is known to be
strongly normalizing (see [10]), this means that all programs in the sound sub-
sets must terminate. Hence, adding call/cc to Fω in a sound manner permits only
recursive functions to be written; Fω plus call/cc is therefore not Turing complete.

It should be noted that because the simply-typed lambda calculus (λ→), the
polymorphic lambda calculus (F2), and the core of ML, Core-ML [19, 5], are proper
subsets of Fω that this result applies to adding call/cc to them as well.

3. A Language with Unchecked Exceptions

Unlike the case with call/cc, we will need to consider only one language with
unchecked exceptions. To maximize the strength of our results, we choose to
add unchecked exceptions to the weakest typed lambda calculus, the simply-typed
lambda calculus (λ→). Because exceptions can have non-local effects, we must
fix an evaluation order before we can extend λ→. We choose to use call-by-value
(CBV) evaluation as it seems to be the most natural choice in this setting. (The
question of whether or not to evaluate under type abstractions does not arise here
because there are no type abstractions in λ→.)

3.1. The CBV Simply-Typed Lambda Calculus (λ→
v )

We define the syntax of λ→
v as follows:

Types A,B ::= unit | A1→A2 | A1+A2

Terms M ::= x | () | λx:A.M | M1 M2 | leftA(M) | rightA(M) |
M of left(x1:A1) => M1; right(x2:A2) => M2

Assignments Γ ::= ∅ | Γ, x:A

The meta-variables x and y range over term variables. As usual, we identify α-
convertible terms and types. We use FV(M) to denote the free term variables of
M and [M/x]M ′ for the usual capture-avoiding substitution of M for x in M ′.

In addition to the usual first-class functions (λx:A.M), we have included a single-
ton type unit with sole value () and disjoint sums (with type A+B). The disjoint
sums are not necessary for the primary results of this paper; we have included them
for use in Section 4.1, which provides motivation for the encoding of recursive types
using unchecked exceptions. The unit type is included so that we have at least one
base type; any other base type with at least one value would work as well.

The type system of λ→
v consists of a set of rules for deriving judgements of the

following forms:

� Γ well-formed assignment
Γ � M : A well-formed term

The rules for deriving these judgements are standard and can be found in Figure 1.
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� ∅ (a-empty)

� Γ x �∈ dom(Γ)
� Γ, x:A

(a-extend)

� Γ
Γ � x : Γ(x)

(t-var)

� Γ
Γ � () : unit

(t-unit)

Γ, x:A1 � M : A2

Γ � λx:A1.M : A1 → A2

(t-abs)

Γ � M1 : A2 → A Γ � M2 : A2

Γ � M1 M2 : A
(t-app)

Γ � M : A

Γ � leftA+B(M) : A+B
(t-left)

Γ � M : B

Γ � rightA+B(M) : A+B
(t-right)

Γ � M : A1+A2 Γ, x1:A1 � M1 : B Γ, x2:A2 � M2 : B

Γ � M of left(x1:A1) => M1; right(x2:A2) => M2 : B
(t-case)

Figure 1. Typing rules for λ→
v
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A context C is an expression of λ→
v with a single hole, written []:

Contexts C ::= [] | λx:A.C | C M | M C | leftA(C) | rightA(C) |
C of left(x1:A1) => M1; right(x2:A2) => M2 |
M of left(x1:A1) => C; right(x2:A2) => M2 |
M of left(x1:A1) => M1; right(x2:A2) => C

The hole in C may be filled by an expression M , written C[M ], by replacing the hole
with M , incurring capture of free variables in M that are bound at the occurrence of
the hole. For example, if C = λx:unit.[], and M = f x, then C[M ] = λx:unit.f x.
The variables that are bound within the hole of a context are said to be exposed (to
capture) by that context. We write EV (C) for the exposed variables of a context.

Type checking in λ→
v is compositional in the sense that if an expression is well-

typed, then so are all its constituent expressions:

Lemma 1 (Decomposition) Suppose that λ→
v � Γ � C[M ] : A such that EV (C)∩

dom(Γ) = ∅.4 Then there exists Γ′, and B such that:

• dom(Γ′) = EV (C)

• λ→
v � Γ,Γ′ � M : B

Proof: Routine induction on the structure of contexts.

Furthermore, only the type of a constituent of a well-formed expression is relevant
to typing. Consequently any constituent may be replaced by a term of the same
type without affecting typability of the whole expression:

Lemma 2 (Replacement) Suppose that λ→
v � Γ � C[M ] : A, with λ→

v � Γ,Γ′ �
M : B in accordance with the decomposition lemma. If λ→

v � Γ,Γ′′,Γ′ � M ′ : B
then λ→

v � Γ,Γ′′ � C[M ′] : A.

Proof: Routine induction on typing derivations.

Following Plotkin [23] and Felleisen [8], we specify an operational semantics by
defining the set of values (V ), the set of evaluation contexts (E), and the one step
evaluation relation for that semantics. One-step evaluation is a binary relation on
programs that is defined by a set of rules of the form E[R] ↪→ M , where E is an
evaluation context, R is an expression, the redex, and M is determined as a function
of E and R. In this case E[R] is said to evaluate to M in one step. We define ↪→+

to be the irreflexive, transitive closure and ↪→∗ to be the reflexive, transitive closure
of the ↪→ relation.

A program is a well-typed closed term. We will arrange things so that a program
P is either a value or can be represented in exactly one way as E[R] where E is
an evaluation context and R is a redex. Because our evaluation relations will be
functions of E and R, this means that our languages will be deterministic. Using
this method, the call-by-value semantics of λ→

v are defined as follows:
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V ::= x | () | λx:A.M | leftA(V ) | rightA(V )
E ::= [] | E M | V E | leftA(E) | rightA(E) |

E of left(x1:A1) => M1; right(x2:A2) => M2

R ::= (λx:A.M)V |
leftB(V ) of left(x1:A1) => M1; right(x2:A2) => M2 |
rightB(V ) of left(x1:A1) => M1; right(x2:A2) => M2

E[(λx:A.M)V ] ↪→ E[[V/x]M ]
E[leftB(V ) of left(x1:A1) => M1; right(x2:A2) => M2] ↪→ E[V/x1]M1]

E[rightB(V ) of left(x1:A1) => M1; right(x2:A2) => M2] ↪→ E[V/x2]M2]

In the absence of case expressions, these rules specify that the leftmost, outermost
term of the form (λx:A.M)V may be reduced in place by replacing it with [V/x]M .
Note that the case expression first evaluates its first argument then evaluates exactly
one of its branches. Sequential execution (M1; M2) can be obtained by writing
(λx:A1.M2)M1, where A1 is the type of M1 and x is not free in M2. The definition
of term variables (x) as values is for the benefit of the transformation rules later in
this paper.

Theorem 1 (Progress) If M is a closed, well-typed expression of type A, then
either M is a value, or else there exist a unique evaluation context E and unique
redex R such that M = E[R].

Proof: The proof proceeds by induction on the structure of typing derivations
using Lemma 1.

Lemma 3 (Substitution) If λ→
v � Γ, x:A,Γ′ � M ′ : B and λ→

v � Γ � M : A then
λ→

v � Γ,Γ′ � [M/x]M ′ : B.

Proof: Routine induction on typing derivations.

Theorem 2 (Subject Reduction) If λ→
v � Γ � M : A and M ↪→ N , then

λ→
v � Γ � N : A.

Proof: By Theorem 1, M = E[R] for some unique evaluation context E and
redex R. Hence, by Lemma 1 there exists a type B and assignment Γ′ such that
λ→

v � Γ,Γ′ � R : B. By inspecting the definition of the one-step evaluation rules,
we see that N = E[N ′] and R ↪→ N ′ for some N ′. By Lemma 2, we need to show
only that λ→

v � Γ,Γ′ � N ′ : B.
We proceed by cases on the form of R. If R = (λx:A′.M ′)V , then λ→

v �
Γ,Γ′, x:A′ � M ′ : B, λ→

v � Γ,Γ′ � V : A′, and N ′ = [V/x]M ′ by inspection;
hence, λ→

v � Γ,Γ′ � N ′ : B by Lemma 3 as required. The remaining cases are
handled similarly.

We will be proving versions of these theorems for many different systems. We
will omit their proofs when they are essentially the same as the ones for λ→

v .
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3.2. λ→
v extended with unchecked exceptions (λ→,E

v )

We chose to add exceptions to λ→
v by introducing a family of unchecked exceptions

parameterized by the type of the values they carry. For each type A, there is an
associated unchecked exception flavor with an operation to raise an exception of
that flavor (raiseA(M)) and an operation to catch and handle just exceptions of
that flavor (M handle x:A => M ′).

Unlike in SML, it is not possible to have different flavors of A-carrying exceptions
in our system. A more powerful exception system than the one we describe here
would have the ability to dynamically generate new exception flavors at runtime.
We do not need this additional power for any of the results in this paper. Indeed, we
shall see that with the exception of the simulation of recursive types using unchecked
exceptions result in Section 4.2, we will need only one exception flavor to establish
our results. This fact means that our primary result about exceptions (λ→,E

v is
Turing Complete) can be extended to systems like SML that require exception
flavors to be declared before they can be used.

Note that because functions are first-class in λ→, exceptions may carry functional
values. Our results depend on this ability. While this ability is seldom used in
applicative programming, its analog is used often in object-oriented programming
(objects can be thought of as a form of multiple-entry closure).

The syntax of λ→,E
v is an extension of that of λ→

v :

Terms M ::= . . . | raiseA(M) | M handle x:A => M ′

No new types are required, but a new type rule is required for each of the new
operators:

Γ � M : A

Γ � raiseA(M) : B
(t-raise)

Γ � M : B Γ, x:A � M ′ : B

Γ � M handle x:A => M ′ : B
(t-handle)

Note that raiseA(M) may be assigned any type since it never returns normally.
The properties of decomposition and replacement remain true:

Contexts C ::= . . . | raiseA(C) | C handle x:A => M |
M handle x:A => C

Lemma 4 (Decomposition) Suppose that λ→,E
v � Γ � C[M ] : A such that EV (C)∩

dom(Γ) = ∅. Then there exists Γ′ and B such that:

• dom(Γ′) = EV (C)

• λ→,E
v � Γ,Γ′ � M : B
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Lemma 5 (Replacement) Suppose that λ→,E
v � Γ � C[M ] : A, with λ→,E

v �
Γ,Γ′ � M : B in accordance with the decomposition lemma. If λ→,E

v � Γ,Γ′′,Γ′ �
M ′ : B then λ→,E

v � Γ,Γ′′ � C[M ′] : A.

As expected, the semantics of λ→,E
v is an extension of that of λ→

v . Because exe-
cution of an λ→,E

v program can produce an uncaught exception instead of a value,
it is necessary to generalize our semantic framework so that programs evaluate to
outputs (O), a superset of the values (V ). The definitions for λ→,E

v ’s semantics fol-
lows. F here represents a single frame of an evaluation context that is not a handle
expression. We use it to combine all the cases where we propagate a exception up
through a non-handle expression into one rule.

O ::= V | raiseA(V )
V ::= . . .
E ::= . . . | raiseA(E) | E handle x:A => M

R ::= . . . | F [raiseA(V )] | O handle x:A => M
F ::= []M | V [] | leftA([]) | rightA([]) | raiseA([]) |

[] of left(x1:A1) => M1; right(x2:A2) => M2

. . . ↪→ . . .
E[F [raiseA(V )]] ↪→ E[raiseA(V )]

E[V handle x:A => M ] ↪→ E[V ]
E[(raiseA(V )) handle x:B => M ] ↪→ E[[V/x]M ] (A = B)
E[(raiseA(V )) handle x:B => M ] ↪→ E[raiseA(V )] (A �= B)

Theorem 3 (Progress) If M is a closed, well-typed expression of type A, then
either M is an output, or else there exist a unique evaluation context E and unique
redex R such that M = E[R].

Theorem 4 (Subject Reduction) If λ→,E
v � Γ � M : A and M ↪→ N , then

λ→,E
v � Γ � N : A.

4. The Power of Unchecked Exceptions

In this section we prove that λ→,E
v is Turing complete. We start by motivating the

reduction we will use.

4.1. Motivation

It is standard practice when giving the semantics of untyped programming lan-
guages such as Scheme [4], to explain unchecked exceptions by use of a transform
similar in spirit to a CPS transform wherein expressions returning a value of “type”
A are transformed to expressions that return a value of “type” A + σ, where σ is



284 MARK LILLIBRIDGE

the “type” of all the values that may be carried by exceptions. If the original ex-
pression evaluates normally to a value V of type A then the transformed expression
evaluates to the value left〈A〉+〈σ〉(V ′), where V ′, 〈A〉, and 〈σ〉 are suitably trans-
formed versions of V , A, and σ. If, on the other hand, the original expression when
evaluated raises an uncaught exception carrying the value V of type σ then the
transformed expression evaluates to right〈A〉+〈σ〉(V ′).

The control flow of the original program is then simulated explicitly using case
expressions. For example, the translation of raise(M) would first run the trans-
formed code for M then case on the result. If it was a left value, then we would
return it after first switching its tag to right. This corresponds to M returning a
value normally, which is then turned into an exception carrying that value. If the
result was a right value, we would return it untouched. This corresponds to M
raising an exception, which then passes through the raise expression uncaught.

4.1.1. Exceptions carrying base types Such a transform is easily written in the
statically-typed case where there is only one flavor of exception and where σ, the
type of values it carries, is a base type (b). For simplicity, let us consider trans-
forming the subset of λ→,E

v that has no disjoint sums and only has exceptions
carrying values of type σ. Terms from this language, which we call σ-only, may not
include leftA(M), rightA(M), or M of left(x:A) => M1; right(y:B) => M2 as
sub-terms and may include raise or handle sub-terms of only the form raiseσ(M)
or M handle x:σ => M ′. σ-only is closed under λ→,E

v evaluation:

Lemma 6 (Closure) If M is a σ-only term and M ↪→ N under λ→,E
v then N is

a σ-only term.

Proof: Inspection of the one-step evaluation relation for λ→,E
v shows that it maps

σ-only terms to σ-only terms.

A transform of this kind from σ-only to λ→
v for the case when σ is a base type

can be found in Figure 2. Unless we say otherwise, σ will be assumed to be a base
type throughout the rest of this section (Section 4.1.1).

The main transform is computed by the judgement Γ � M : A ⇒ M ′, which says
that the σ-only computation M of type A transforms to the λ→

v -term M ′, which
will have type [A] under 〈−〉 applied pointwise to Γ (〈Γ〉). A sub-judgement,
Γ � V : A ⇒v V ′, is used to transform σ-only values into λ→

v values with type 〈A〉
under 〈Γ〉. A number of macros used by the transform can be found in Figure 3.

Note that the transformation of a value differs from the transformation of the
computation that immediately returns that value because only the later will be
wrapped in a left tag. The B-APP-V and B-RAISE-V rules are specialized versions
of the B-APP and B-RAISE rules that produce more optimized code for the case
when M1 or M is a value. This optimization is needed to ensure that one λ→,E

v

evaluation step on a σ-only term is simulated by one or more λ→
v evaluation steps on

the transformed version of the term (see Theorem 5 below). Without this simulation
result, it is much harder to prove the correctness of the transforms.
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〈b〉 = b
〈A1+A2〉 = 〈A1〉 + 〈A2〉
〈A1→A2〉 = 〈A1〉 → [A2]

[A] = 〈A〉 + 〈σ〉

� Γ
Γ � x : Γ(x) ⇒v x

(bv-var)

� Γ
Γ � () : unit ⇒v ()

(bv-unit)

Γ, x:A1 � M : A2 ⇒ M ′

Γ � λx:A1.M : A1→A2 ⇒v λx:〈A1〉.M ′ (bv-abs)

Γ � V : A ⇒v V ′

Γ � V : A ⇒ left[A](V
′)

(b-value)

Γ � V : A2 → A ⇒v V ′ Γ � M : A2 ⇒ M ′

Γ � V M : A ⇒ applyv(V ′,M ′, A2, A)
(b-app-v)

M1 not a λ→,E
v -value

Γ � M1 : A2 → A ⇒ M ′
1 Γ � M2 : A2 ⇒ M ′

2

Γ � M1 M2 : A ⇒ apply(M ′
1,M

′
2, A2, A)

(b-app)

Γ � V : σ ⇒v V ′

Γ � raiseσ(V ) : A ⇒ raisev(A, V ′)
(b-raise-v)

M not a λ→,E
v -value Γ � M : σ ⇒ M ′

Γ � raiseσ(M) : A ⇒ raise(A,M ′)
(b-raise)

Γ � M : A ⇒ M ′ Γ, x:σ � N : A ⇒ N ′

Γ � M handle x:σ => N : A ⇒ handle(x,A,M ′, N ′)
(b-handle)

Figure 2. Exception transform for σ a base type
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apply(M1,M2, A2, A) = M1 of (x �∈ FV (M2))
left(x:〈A2→A〉) =>

applyv(x,M2, A2, A);
right(x:〈σ〉) => right[A](x)

applyv(V,M,A2, A) = M of (x �∈ FV (V ))
left(x:〈A2〉) => V x
right(x:〈σ〉) => right[A](x)

raise(A,M) = M of
left(x:〈σ〉) => raisev(A, x)
right(x:〈σ〉) => right[A](x)

raisev(A, V ) = right[A](V )

handle(x,A,M,N) = M of
left(x:〈A〉) => left[A](x);
right(x:〈σ〉) => N

Figure 3. Macros used by the transform
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The transforms are defined on all well-typed σ-only values and terms when σ is
a base type:

Lemma 7 (Completeness) Let V and M be σ-only values and terms respectively.

1. If λ→,E
v � Γ � V : A then ∃ a λ→

v -value V ′ such that � Γ � V : A ⇒v V ′.

2. If λ→,E
v � Γ � M : A then ∃ a λ→

v -term M ′ such that � Γ � M : A ⇒ M ′.

Proof: Routine simultaneous induction on the derivations of λ→,E
v � Γ � V : A

and λ→,E
v � Γ � M : A.

(For certain Γs, Ms, and As, the transform can yield several different M ′s that
differ only in the types they contain because the variable A in the B-RAISE rule is
unconstrained due to the polymorphism of the raiseσ(−) operator.)

Moreover, they result in well-typed λ→
v terms and values with the appropriate

types:

Lemma 8 (Preservation) Let V and M be drawn from σ-only while V ′ and M ′

are drawn from λ→
v .

1. If � Γ � V : A ⇒v V ′ then λ→,E
v � Γ � V : A and λ→

v � 〈Γ〉 � V ′ : 〈A〉.
2. If � Γ � M : A ⇒ M ′ then λ→,E

v � Γ � M : A and λ→
v � 〈Γ〉 � M ′ : [A].

Proof: Proved by simultaneous induction on the derivations of Γ � V : A ⇒v V ′

and Γ � M : A ⇒ M ′.

They also distribute over substitution:

Lemma 9 (Substitution) Suppose � Γ � V : A ⇒v V ′. Then:

1. If � Γ, x:A,Γ′ � V2 : B ⇒v V ′
2 then � Γ,Γ′ � [V/x]V2 : B ⇒v [V ′/x]V ′

2 .

2. If � Γ, x:A,Γ′ � M : B ⇒ M ′ then � Γ,Γ′ � [V/x]M : B ⇒ [V ′/x]M ′.

Proof: Proved by routine simultaneous induction on the derivations of
Γ, x:A,Γ � V2 : B ⇒v V ′

2 and Γ, x:A,Γ′ � M : B ⇒ M ′, using the fact that N is a
value iff [V/x]N is a value.

Proving the transforms correct is done through showing that each evaluation step
in λ→,E

v on an original σ-only term is simulated in λ→
v on the transformed term by

at least one step:

Theorem 5 (Simulation) Suppose M is a σ-only term, � Γ � M : A ⇒ M ′ and
M ↪→ N under λ→,E

v . Then there exists N ′ such that � Γ � N : A ⇒ N ′ and
M ′ ↪→+ N ′ under λ→

v .

Proof: Proved by induction on M . Sample cases:
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LAM: Here M = λx:A1.M1. This case is impossible because inspection of λ→,E
v ’s

one-step evaluation relation shows that it never applies to lambdas.

APP1M: Here M = M1 M2, where M1 is not a λ→,E
v output. By B-APP, ∃A2,M

′
1,M

′
2

such that Γ � M1 : A2 → A ⇒ M ′
1, Γ � M2 : A2 ⇒ M ′

2, and M ′ =
apply(M ′

1,M
′
2, A2, A).

Inspection of the semantic definitions for λ→,E
v shows that it must be the case

that there exists N1 such that N = N1 M2 and M1 ↪→ N1 under λ→,E
v . By the

induction hypothesis, ∃N ′
1 such that Γ � N1 : A2 → A ⇒ N ′

1 and M ′
1 ↪→+ N ′

1

under λ→
v ⇒ M ′ = apply(M ′

1,M
′
2, A2, A) ↪→+ apply(N ′

1,M
′
2, A2, A) under λ→

v .

Two cases need to be considered:

– N1 is a λ→,E
v value: By B-VALUE, ∃V1 such that Γ � V1 : A2 → A ⇒v V ′

1

and N ′
1 = left[A2 → A](V

′
1). It is easy to verify that apply(N ′

1,M
′
2, A2, A)

= apply(left[A2 → A](V
′
1),M ′

2, A2, A) ↪→ applyv(V ′
1 ,M ′

2, A2, A) ⇒ M ′ ↪→+

applyv(V ′
1 ,M ′

2, A2, A) (all under λ→
v ). By B-APP-V,

Γ � N : A ⇒ applyv(V ′
1 ,M ′

2, A2, A).

– otherwise: By B-APP, � Γ � N : A ⇒ apply(N ′
1,M

′
2, A2, A).

HANR: Here M = (raiseσ(V1)) handle x:σ => M2 ↪→ [V1/x]M2 under λ→,E
v . By

B-HANDLE and B-RAISE-V, ∃V ′
1 ,M ′

2 such that Γ � V1 : σ ⇒v V ′
1 ,

Γ, x:σ � M2 : A ⇒ M ′
2, and M ′ = handle(x,A, right[A](V

′
1),M ′

2) ↪→
[V ′

1/x]M ′
2 under λ→

v . Hence by Lemma 9, � Γ � [V1/x]M2 : A ⇒ [V ′
1/x]M ′

2.

To see where this result goes wrong if we do not use the specialized versions of
apply and raise, consider the case where M = V M1, N = V M2, and M1 ↪→
M2 under λ→,E

v . To get our desired simulation result, we will need to show that
M ′ = apply(left[A2→A](V

′),M ′
1, A2, A) ↪→+ apply(left[A2→A](V

′),M ′
2, A2, A) =

N ′ under λ→
v for appropriate A2 and A. It is easy to verify that

apply(left[A2→A](V
′),M ′

1, A2, A) ↪→+ applyv(V ′,M ′
1, A2, A)

↪→+ applyv(V ′,M ′
2, A2, A) under λ→

v (the second part by induction). However,
it is not the case that applyv(V ′,M ′

2, A2, A) ↪→ apply(left[A2→A](V
′),M ′

2, A2, A)
under λ→

v so the result fails. (The later is an expansion of the former.)

Lemma 10 (Stopping) If � Γ � M : A ⇒ M ′ then M is a λ→,E
v output iff M ′ is

a λ→
v value.

Proof: Proved by inspection of the definitions of the transform and the semantics
of λ→

v and λ→,E
v .

Theorem 6 (Correctness) Suppose P is a σ-only program of type A. Then
there exists P ′ such that � � P : A ⇒ P ′ and
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1. The evaluation of P under λ→,E
v terminates iff the evaluation of P ′ under λ→

v

terminates.

2. If P ↪→∗ O under λ→,E
v then ∃O′ such that � � O : A ⇒ O′ and P ′ ↪→∗ O′

under λ→
v .

3. If P ′ ↪→∗ V ′ under λ→
v , then exists a σ-only output O such that � � O : A ⇒ V ′

and P ↪→∗ O under λ→,E
v .

Proof: P ′ exists by Lemma 7. Consider the (possibly infinite) chain of terms
resulting from applying the one-step evaluation function of λ→,E

v repeatedly to P
(=P0): P1, P2, . . .

By repeatedly applying Theorem 5, we can generate a corresponding chain of λ→
v

terms P ′
0 (= P ′), P ′

1, P ′
2, . . . such that � � Pi : A ⇒ P ′

i and ∀i. P ′
i ↪→+ P ′

i+1 under
λ→

v . By Lemma 10, the chains must either both be infinite in length, or both be of
the same length (say n) with Pn a λ→,E

v output and P ′
n a λ→

v value. By Lemma 6,
∀i. Pi is a σ-only term. The desired results follow.

Problems arise if we try and use this transform when σ is a non-base type. In
particular, if σ is an arrow type, infinite recursion results at the type level, prevent-
ing the transform from working because infinite types are not permitted in λ→

v .
(For example, if σ = int → int then 〈σ〉 = 〈int〉→[int] = int→(〈int〉+〈σ〉) =
int→(int+(int→(〈int〉 +〈σ〉))) = . . ..)

This suggests that if we add recursive types to the destination calculus, we can
make the transform work on arrow types. We will consider such a transform in
Section 4.1.3 after we introduce a suitable target calculus.

4.1.2. λ→
v extended with recursive types (λ→,µ

v ) We can obtain such a calculus by
adding recursive types (µα.A) to λ→

v . We use a formulation of recursive types where
there is an isomorphism µα.A ∼= [µα.A/α]A mediated by two built in primitives,
unrollµα.A(−) in the forward direction and rollµα.A(−) in the backward direction,
such that unrollµα.A(rollµα.A(V )) ↪→ V . The syntax of λ→,µ

v is an extension of
that of λ→

v :

Types A,B ::= . . . | α | µα.A
Terms M ::= . . . | rollA(M) | unrollA(M)

Assignments Γ ::= . . . | Γ, α

The meta-variable α ranges over type variables. We use FTV (A) to denote the free
type variables of A and [A/α]A′ for the usual capture-avoiding substitution of A
for α in A′.

The type system of λ→,µ
v extends that of λ→

v . Because types may now contain
type variables, an additional judgement is needed to check that types do not contain
type variables unbound by the current assignment:
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� Γ α �∈ dom(Γ)
� Γ, α

(a-type)

Γ � A x �∈ dom(Γ)
� Γ, x:A

(a-extend2)

� Γ α ∈ dom(Γ)
Γ � α

(k-var)

� Γ
Γ � unit

(k-unit)

Γ � A Γ � B

Γ � A→B
(k-arrow)

Γ � A Γ � B

Γ � A+B
(k-dsum)

Γ, α � A

Γ � µα.A
(k-rec)

Γ � M : A Γ � B

Γ � leftA+B(M) : A+B
(t-left2)

Γ � M : B Γ � A

Γ � rightA+B(M) : A+B
(t-right2)

Γ � M : [µα.A/α]A Γ � µα.A

Γ � rollµα.A(M) : µα.A
(t-roll)

Γ � M : µα.A

Γ � unrollµα.A(M) : [µα.A/α]A
(t-unroll)

Figure 4. New type rules for λ→,µ
v
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Γ � A well-formed type

The rules for implementing this new judgement as well as for typing rollA(M) and
unrollA(M) appear in Figure 4. Rules A-EXTEND2, T-LEFT2, and T-RIGHT2
replace the corresponding rules of λ→

v ; they are needed to ensure that if � Γ � M : A
then � Γ � A. The properties of decomposition and replacement remain true:

Contexts C ::= . . . | rollA(C) | unrollA(C)

Lemma 11 (Decomposition) Suppose that λ→,µ
v � Γ � C[M ] : A such that

EV (C) ∩ dom(Γ) = ∅. Then there exists Γ′ and B such that:

• dom(Γ′) = EV (C)

• λ→,µ
v � Γ,Γ′ � M : B

Lemma 12 (Replacement) Suppose that λ→,µ
v � Γ � C[M ] : A, with λ→,µ

v �
Γ,Γ′ � M : B in accordance with the decomposition lemma. If λ→,µ

v � Γ,Γ′′,Γ′ �
M ′ : B then λ→,µ

v � Γ,Γ′′ � C[M ′] : A.

The semantics of λ→,µ
v is an extension of that of λ→

v :

V ::= . . . | rollA(V )
E ::= . . . | rollA(E) | unrollA(E)
R ::= . . . | unrollA(rollA(V ))

. . . ↪→ . . .
E[unrollA(rollA(V ))] ↪→ E[V ]

Theorem 7 (Progress) If M is a closed, well-typed expression of type A, then
either M is a value, or else there exist a unique evaluation context E and unique
redex R such that M = E[R].

Theorem 8 (Subject Reduction) If λ→,µ
v � Γ � M : A and M ↪→ N , then

λ→,µ
v � Γ � N : A.

4.1.3. Exceptions carrying functional types By retargeting our transform from
λ→

v to λ→,µ
v and altering its definition slightly, we can make it work even when σ is

an arrow type. Figure 5 contains the necessary modifications to our transform: the
new transform is composed of the definitions of this figure plus those of Figures 2
and 3, except that where there are two definitions for the same name, only the new
definition is used.

The most important change here is to the definitions of what types transformed
values (〈−〉) and computations ([−]) have. Instead of transformed exceptional
values (the arguments of rightA(−)) being of type 〈σ〉, they now are of type
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〈b〉α = b
〈A1+A2〉α = 〈A1〉α + 〈A2〉α
〈A1→A2〉α = 〈A1〉α → [A2]α

[A]α = 〈A〉α + α
γ = µα.〈σ〉α
〈A〉 = 〈A〉γ
[A] = [A]γ (= 〈A〉 + γ)

apply(M1,M2, A2, A) = M1 of (x �∈ FV (M2))
left(x:〈A2→A〉) =>

applyv(x,M2, A2, A);
right(x:γ) => right[A](x)

applyv(V,M,A2, A) = M of (x �∈ FV (V ))
left(x:〈A2〉) => V x
right(x:γ) => right[A](x)

raise(A,M) = M of
left(x:〈σ〉) => raisev(A, x)
right(x:γ) => right[A](x)

raisev(A, V ) = right[A](rollγ(V ))

handle(x,A,M,N) = M of
left(x:〈A〉) => left[A](x);
right(x:γ) => (λx:〈σ〉. N) unrollγ(x)

Figure 5. Exception transform using recursive types
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γ = µα.〈σ〉α, where 〈−〉α is the old definition of 〈−〉 modified to use α as the
type of transformed exception values. These definitions ensure that 〈A〉 and [A]
are always well defined.

Unlike before, though, explicit roll and unroll operations need to be inserted
to convert between γ and 〈σ〉 = 〈σ〉γ ; these show up in the raisev and handle
functions. The only other change required is to the type argument of the right(x :
−) pattern matcher in the case statements (from 〈σ〉 to γ).

Although σ is now free to be any λ→,E
v type, the transforms are still defined on

only well-typed σ-only values and terms:

Lemma 13 (Completeness) Let V and M be σ-only values and terms respec-
tively.

1. If λ→,E
v � Γ � V : A then ∃ a λ→,µ

v -value V ′ such that � Γ � V : A ⇒v V ′.

2. If λ→,E
v � Γ � M : A then ∃ a λ→,µ

v -term M ′ such that � Γ � M : A ⇒ M ′.

Proof: Routine simultaneous induction on the derivations of λ→,E
v � Γ � V : A

and λ→,E
v � Γ � M : A.

All of the results previously proved for the original transform carry over to the new
transform; we omit proofs that are essentially the same as the previous versions:

Lemma 14 (Preservation) Let V and M be drawn from σ-only while V ′ and M ′

are drawn from λ→,µ
v .

1. If � Γ � V : A ⇒v V ′ then λ→,E
v � Γ � V : A and λ→,µ

v � 〈Γ〉 � V ′ : 〈A〉.
2. If � Γ � M : A ⇒ M ′ then λ→,E

v � Γ � M : A and λ→,µ
v � 〈Γ〉 � M ′ : [A].

Lemma 15 (Substitution) Suppose � Γ � V : A ⇒v V ′. Then:

1. If � Γ, x:A,Γ′ � V2 : B ⇒v V ′
2 then � Γ,Γ′ � [V/x]V2 : B ⇒v [V ′/x]V ′

2 .

2. If � Γ, x:A,Γ′ � M : B ⇒ M ′ then � Γ,Γ′ � [V/x]M : B ⇒ [V ′/x]M ′.

Theorem 9 (Simulation) Suppose M is a σ-only term, � Γ � M : A ⇒ M ′ and
M ↪→ N under λ→,E

v . Then there exists N ′ such that � Γ � N : A ⇒ N ′ and
M ′ ↪→+ N ′ under λ→,µ

v .

Proof: Proved by induction on M . Most cases are very similar to the previous
theorem, with one exception:

HANR: Here M = (raiseσ(V1)) handle x:σ => M2 ↪→ [V1/x]M2 under λ→,E
v

with x �∈ FV(V ′
1). By B-HANDLE and B-RAISE-V, ∃V ′

1 ,M ′
2 such that

Γ � V1 : σ ⇒v V ′
1 , Γ, x:σ � M2 : A ⇒ M ′

2, and
M ′ = handle(x,A, right[A](rollγ(V ′

1)),M ′
2)

↪→ [rollγ(V ′
1)/x]((λx:〈σ〉.M ′

2) unrollγ(x))
= (λx:〈σ〉.M ′

2) unrollγ(rollγ(V ′
1))

↪→ (λx:〈σ〉.M ′
2) V ′

1 ↪→ [V ′
1/x]M ′

2 under λ→,µ
v . Hence by Lemma 15,

� Γ � [V1/x]M2 : A ⇒ [V ′
1/x]M ′

2.
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Lemma 16 (Stopping) If � Γ � M : A ⇒ M ′ then M is a λ→,E
v output iff M ′ is

a λ→,µ
v value.

Theorem 10 (Correctness) Suppose P is a σ-only program of type A. Then
there exists P ′ such that � � P : A ⇒ P ′ and

1. The evaluation of P under λ→,E
v terminates iff the evaluation of P ′ under

λ→,µ
v terminates.

2. If P ↪→∗ O under λ→,E
v then ∃O′ such that � � O : A ⇒ O′ and P ′ ↪→∗ O′

under λ→,µ
v .

3. If P ′ ↪→∗ V ′ under λ→,µ
v , then exists a σ-only output O such that � � O : A ⇒ V ′

and P ↪→∗ O under λ→,E
v .

A question naturally arises: since, as we have seen, the transform suggests that
unchecked exceptions carrying arrow types have an inherently recursive character,
can we simulate recursive types using unchecked exceptions capable of carrying
arrow types? The following section answers this question in the affirmative.

4.2. Simulating recursive types with exceptions

Suppose we wish to encode the λ→,µ
v values of a recursive type µα.A using the λ→,E

v

values of some type µα.A. What properties do we need of µα.A? Most importantly,
we need the following isomorphism so we can implement roll and unroll on our
encoded terms:5

µα.A ∼= [µα.A/α]A

Ideally, we would like our transform to be compositional so that [A/α]B = [A/α]B;
this means that the desired isomorphism is really between µα.A and [µα.A/α]A.

Because recursive types have no non-local effects, we should be able to make only
local changes to recursive values and types. This means that − should distribute
over type constructors other than µ (e.g., A+B = A+B) and that b should equal
b. Accordingly, we should have that A = A when A contains no recursive types.

Thus, if we consider the simple case where A contains no recursive types, the
isomorphism means that we have to be able to pack a value of type [µα.A/α]A into
a value of type µα.A. We cannot do this in λ→

v because, in general, values of the
former type will contain much more information than values of the later type.

If we are to succeed, we need a way to “smuggle” more information out of some
values than their type suggests they can provide. Functions that can raise unchecked
exceptions provide this ability. Consider a function of the simplest functional type
unit→unit that can raise an exception carrying values of type σ: if we apply the
transform of the last section, we see that it can be modeled by a λ→,µ

v value of
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b = b
A1+A2 = A1 + A2

A1→A2 = A1 → A2

µα.A = unit → unit

∅ = ∅
Γ, x:A = Γ, x:A

x = x

() = ()
λx:A.M = λx:A.M
M1 M2 = M1 M2

rollµα.A(V ) = packv([µα.A/α]A, V )
rollµα.A(M) = pack([µα.A/α]A, M) (M not a λ→,µ

v -value)
unrollµα.A(M) = unpack([µα.A/α]A, M)

leftA(M) = left
A

(M)
rightA(M) = right

A
(M)

M of left(x:A) => M1; right(y:B) => M2

=
M of left(x:A) => M1; right(y:B) => M2

pack(A,M) = (λx:A. packv(A, x)) M
packv(A,M) = λx:unit. raiseA(M) (x �∈ FV (M))
unpack(A,M) = (M (); fail(A)) handle x:A => x

fail(A) = raiseunit(())

Figure 6. Encoding recursive types with exceptions

type 〈unit→unit〉 = 〈unit〉 → [unit] = unit → (〈unit〉+γ) = unit → (unit+γ),
where γ is a rolled version of σ. Here σ can be any type so that our unit→unit
λ→,E

v function can “smuggle” out a value of type σ by raising a unchecked exception
carrying values of that type. Note that checked exceptions, by contrast, do not allow
smuggling because functions that raise checked exceptions must include the types
that those exceptions carry in their functional type (e.g., unit→unit throws σ).

These facts suggest that we set µα.A = unit→unit and pack values of type
[µα.A/α]A into unit→unit functions by wrapping a unit-accepting lambda (λx:unit.[])
around code that raises the packed value. Unpacking can then be done by calling
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one of these functions and catching the resulting exception, which will be carrying
the packed value. Such a transform from λ→,µ

v to λ→,E
v can be found in Figure 6.

The transform acts on types as expected, with the exception that it acts on
only closed λ→,µ

v types and simple assignments (assignments that declare no type
variables) because there is nothing in λ→,E

v that a type variable could be mapped to.
(Remember that λ→,E

v does not have type variables.) Because of this restriction,
the transform is only guaranteed to be defined on λ→,µ

v types and terms that are
valid under a valid λ→,µ

v simple assignment:

Lemma 17 (Completeness and Preservation) Let M , A, and Γ be λ→,µ
v terms,

types, and simple assignments respectively. Then:

1. If λ→,µ
v � � Γ then Γ exists and λ→,E

v � � Γ.

2. If λ→,µ
v � Γ � A then Γ and A exist and A is a λ→,E

v type.

3. If λ→,µ
v � Γ � M : A then Γ, A, and M exist and λ→,E

v � Γ � M : A.

Proof: Proved by straightforward simultaneous induction on the derivations.

The transform treats terms in a straightforward way, rewriting instances of roll
and unroll into instances of the macros pack[v] and unpack respectively and re-
placing all instances of recursive types with unit→unit. Otherwise, terms are left
unchanged. This transform is thus far more local than the previous ones, which
required global rewriting to insert the necessary plumbing. The specialized packv
macro is used to produce the more optimized code needed to make a simulation
result go through (see Theorem 11 below).

When a transformed program is evaluated, unpack(A,−) will never be called on
any unit→unit function not generated by packv(A,−),6 ensuring that unpack’s
argument will raise an exception when called. However, because nothing prevents
the programmer from applying unpack directly to λ→,E

v terms that are not the
result of transforming a λ→,µ

v term, λ→,E
v ’s type system insists that we give well-

typed code for the case where unpack’s argument returns. The term fail(A) of
type A in unpack serves this purpose.

Because raise is polymorphic in its return type, we have found it easiest to define
fail(A) as raiseunit(()). However, any function that produces a term of type A
will do here. The proof of the transform’s correctness proceeds similarly to that of
the previous transforms:

Lemma 18 (Substitution) If V and M exist then [V/x]M = [V /x]M .

Proof: Proved by induction on M .

Theorem 11 (Simulation) If M is a λ→,µ
v term, λ→,µ

v � Γ � M : A, Γ is simple,
and M ↪→ N under λ→,µ

v then M ↪→+ N under λ→,E
v .

Proof: Proved by induction on M . M exists by Lemma 17. Sample cases:
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BETA: Here M = (λx:A.M)V ↪→ [V/x]M = N under λ→,µ
v . Hence, M =

(λx:A.M)V ↪→ [V /x]M = N under λ→,E
v by Lemma 18.

CAN: Here M = unrollB(rollB(V )) ↪→ V = N under λ→,µ
v . By T-ROLL, B must

have the form µα.A. Let A′ = [µα.A/α]A. Then
M = unpack(A′, packv(A′, V ))
= ((λx:unit. raise

A′(V )) (); fail(A)) handle x:A′ => x

↪→ (raise
A′(V ); fail(A)) handle x:A′ => x

↪→ raise
A′(V ) handle x:A′ => x

↪→ [V /x]x = V = N under λ→,E
v (x �∈ FV (V )).

Lemma 19 (Stopping) If M exists then it is a λ→,E
v value iff M is a λ→,µ

v value.

Proof: Proved by inspection of the transform.

Theorem 12 (Correctness) Suppose P is a λ→,µ
v program such that λ→,µ

v � Γ �
P : A where Γ is simple. Then P exists and

1. The evaluation of P under λ→,µ
v terminates iff the evaluation of P under λ→,E

v

terminates.

2. If P ↪→∗ V under λ→,µ
v then P ↪→∗ V under λ→,E

v .

3. If P ↪→∗ V ′ under λ→,E
v , then exists a λ→,µ

v value V such that V = V ′ and
P ↪→∗ V under λ→,µ

v .

Proof: λ→,E
v � Γ � P : A by Lemma 17. Consider the (possibly infinite) chain of

terms resulting from applying the one-step evaluation function of λ→,µ
v repeatedly

to P (=P0): P1, P2, . . .
By repeatedly applying Theorems 8 and 11, we get that P (=P0) ↪→+ P1 ↪→+

P2 . . . ↪→+ under λ→,E
v . If evaluation of P does terminate, say at Pn, then by

Theorem 7 and Lemma 19 Pn is a λ→,µ
v value and Pn is a λ→,E

v value; moreover,
by Theorems 3 and 4, evaluation of P under λ→,E

v terminates at Pn, with all
previous evaluation steps being on non-λ→,E

v values. The desired results follow.

Because we have a correct transform from full λ→,µ
v to λ→,E

v , we have reduced
our goal of proving λ→,E

v Turing complete to proving λ→,µ
v Turing complete:

Corollary 1 (Reduction) If λ→,µ
v is Turing complete then so is λ→,E

v .

Proof: Follows from Theorem 12 and the fact that the transform defines an
algorithm. (Recall that a language L is Turing complete iff it can express all
computable functions. This requirement can be expressed more formally as there
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exist recursive functions fi and fo such that for all Turing-machine descriptions M
and Turing-machine inputs I, fi(M, I) is a valid program of L that terminates with
value fo(O) iff Turing machine M on input I halts with output O.)

It is a simple matter to restrict the transform to the subset of λ→,µ
v that contains

no disjoint sums, sumless λ→,µ
v . Terms of sumless λ→,µ

v may not contain leftA(M),
rightA(M), or M of left(x:A) => M1; right(y:B) => M2 as sub-terms. The re-
sulting transform yields terms in λ→,E

v minus disjoint sums (sumless λ→,E
v , defined

similarly). The proofs of correctness are almost identical, with the addition of the
following Lemma; we omit them to save space.

Lemma 20 (Closure)

1. If M is a sumless λ→,µ
v term and M ↪→ N under λ→,µ

v then N is a sumless λ→,µ
v

term.

2. If M is a sumless λ→,E
v term and M ↪→ N under λ→,E

v then N is a sumless λ→,E
v

term.

Proof: Proved by inspection of the one-step evaluation relations for λ→,µ
v and

λ→,E
v .

The correctness of the more restrictive transform will allow us to show that just
sumless λ→,E

v is Turing complete:

Corollary 2 (Reduction) If sumless λ→,µ
v is Turing complete then so is

sumless λ→,E
v (and hence λ→,E

v ).

Our next step is to establish that sumless λ→,µ
v is Turing complete; we will do

this by showing that it can be used to simulate the call-by-value untyped lambda
calculus.

4.3. Simulating the CBV untyped lambda calculus

The syntax of the call-by-value untyped lambda calculus (λv) is very simple:

Terms M ::= x | λx.M | M1 M2

λv has no type system; programs are simply closed terms. The semantics of λv is
defined as follows:

V ::= x | λx.M
E ::= [] | E M | V E
R ::= (λx.M)V

E[(λx.M)V ] ↪→ E[[V/x]M ]
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Lemma 21 (Progress) If M is a closed term, then either M is a value, or else
there exist a unique evaluation context E and unique redex R such that M = E[R].

Proof: Proved by induction on M .

It is well known that adding recursive types to the simply-typed lambda calculus
allows the full untyped lambda calculus to be simulated; see, for example, exercise
2.6.7 of Mitchell [20]. The following encoding of λv in sumless λ→,µ

v suffices for our
purposes:

 = µα. α → α

{x} = x
{λx.M} = roll�(λx:  . {M})
{M N} = unroll�({M}) {N}

Here roll and unroll convert between  →  and . Under appropriate assumptions,
the transform results in a well-formed sumless λ→,µ

v term:

Theorem 13 (Preservation) Suppose Γ is a λ→,µ
v assignment of the form x1:,

x2:,. . . , xn:, λ→,µ
v � Γ, and M is a λv term with FV(M) ⊆ dom(Γ) then:

1. {M} is a sumless λ→,µ
v term

2. λ→,µ
v � Γ � {M} : 

Proof: Proved by induction on M .

The transform is proved correct by the usual methods:

Lemma 22 (Substitution) {[V/x]M} = [{V }/x]{M}

Lemma 23 (Stopping) M is a λv value iff {M} is a sumless λ→,µ
v value.

Theorem 14 (Simulation) Suppose M is a closed λv term and M ↪→ N under
λv. Then {M} ↪→+ {N} under λ→,µ

v .

Proof: Proved by induction on M using Lemma 23 as needed. Sample case:

BETA: Here M = (λx.M ′)V ↪→ [V/x]M ′ = N under λv. Hence, {M} =
unroll�({λx.M ′}) {V } = unroll�(roll�(λx:  . {M ′})) {V } ↪→
(λx:  . {M ′}) {V } ↪→ [{V }/x]{M ′} = {[V/x]M ′} = {N} under λ→,µ

v by Lem-
mas 23 and 22.

Theorem 15 (Correctness) Suppose P is a λv program. Then
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1. The evaluation of P under λv terminates iff the evaluation of {P} under λ→,µ
v

terminates.

2. If P ↪→∗ V under λv then {P} ↪→∗ {V } under λ→,µ
v .

3. If {P} ↪→∗ V ′ under λ→,µ
v , then exists a λv value V such that {V } = V ′ and

P ↪→∗ V under λv.

Proof: Consider the (possibly infinite) chain of closed terms resulting from ap-
plying the one-step evaluation function of λv repeatedly to P (=P0): P1, P2, . . .

By repeatedly applying Theorem 14, we get that {P} (={P0}) ↪→+ {P1} ↪→+

{P2} ↪→+ . . . under λ→,µ
v . If evaluation of P does terminate, say at Pn, then

by Lemmas 21 and 23 Pn is a λv value and {Pn} is a λ→,µ
v value; moreover, by

Theorems 7, 13, and 8, evaluation of {P} under λ→,µ
v terminates at {Pn}, with all

previous evaluation steps being on non-λ→,µ
v values. The desired results follow.

Thus, we have that sumless λ→,µ
v (and hence sumless λ→,E

v ) is Turing complete
if λv is Turing complete, which we will show in the next section:

Corollary 3 (Reduction) If λv is Turing complete then so is sumless λ→,µ
v .

Proof: Follows from Theorem 15 and the fact that the transform defines an
algorithm.

By careful inspection of our transforms, we can sharpen this result to apply to
an even smaller subset of λ→,E

v , (unit→unit)→(unit→unit)-only:

Theorem 16 (Reduction)

If λv is Turing complete then so is (unit→unit)→(unit→unit)-only.

Proof: Observe that the transform from λv to sumless λ→,µ
v uses only one re-

cursive type, namely  = µα. α → α, and that we can construct a value of type
[/α] = → = (unit→unit) → (unit→unit) by using an identity function.

If we set fail(→) = λx:unit→unit. x, then the combined transform on a λv

term M ({M}) yields a term in (unit→unit)→(unit→unit)-only. The combina-
tion of Lemma 6, Theorem 15, and a slightly modified Theorem 12 (the proof is
essentially unchanged because only fail’s type matters) prove the combined trans-
form correct.

As a demonstration of the combined transform, we have provided working SML
code in Figure 7 that uses the transform to encode a non-terminating λv term. The
code is entirely monomorphic and uses only those features present in (unit→unit)→
(unit→unit)-only plus a small amount of syntactic sugar.
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(*
* Prepare to simulate values of the recursive type
* \mu a. a -> a using a ML exception of type
* (unit->unit)->(unit->unit):
*)
type star = unit -> unit;
exception E of star->star;

fun roll(x:star->star):star =
fn y:unit => raise E(x);

fun unroll(x:star):star->star =
(x(); (fn y:star => y)) handle E(z) => z;

(*
* Define an encoding of the untyped lambda calculus in
* ML using the previous simulation:
*
* The rules for encoding using the below functions are as
* follows:
*
* encode(x) = x
* encode(\x.M) = lam(fn x => encode(M))
* encode(M N) = app(encode(M),encode(N))
*)
fun app(x:star,y:star):star = (unroll x) y;
fun lam(x:star->star):star = roll(x);

(*
* As an example, we use the encoding of omega = w w
* where w = \x.x x to write a hanging function:
*
* (Omega reduces to itself in one beta-reduction step,
* resulting in an infinite reduction sequence.)
*)
fun hang() = let val w = lam (fn x => app(x,x))

in app(w,w) end;

Figure 7. SML code to encode the untyped lambda calculus
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4.4. The power of the CBV untyped lambda calculus (λv)

It is well known that the call-by-value lambda calculus is Turing complete; unfor-
tunately, we were unable to find any directly applicable results in the literature to
this effect. Accordingly, we will very briefly sketch in this section how such a proof
might go.

The basic idea is to simulate a Turing machine T by encoding its instantaneous
descriptions (its state, head location(s), and tape contents) as λv terms and by
writing a λv function that implements the move function for T . In order to perform
this encoding, we will need the ability to encode booleans, natural numbers, pairs,
and one-ofs (a one-of is either none, or some value). We use the standard encodings
(Church numerals, etc.) here; each value is represented by an equivalence class:

bool(true) = {M | ∀V1, V2. M V1 V2 ↪→∗ V1}
bool(false) = {M | ∀V1, V2. M V1 V2 ↪→∗ V2}

num(n) = {M | ∀V1, V2. M V1 V2 ↪→∗ V n
2 V1}

pair(V1, V2) = {M | M fst ↪→∗ V1 and M snd ↪→∗ V2}
fst = λx.λy. x
snd = λx.λy. y

none = {M | ∀V1, V2. M V1 V2 ↪→∗ V1}
some(V ) = = {M | ∀V1, V2. M V1 V2 ↪→∗ V2 V }

All terms, values, and reduction steps in this section are from λv. The meta-variable
n ranges over natural numbers while the meta-variable t ranges over booleans. The
notation MnN denotes M(M(. . . M(N) . . .)) where M is repeated n times. It can
be shown that these set definitions are closed under λv evaluation and that all of
their members must evaluate to a functional value.

These equivalence classes are non-empty:

true = λx.λy. x

false = λx.λy. y

n = λz.λs. sn z

pair(M1,M2) = (λv1.λv2. λc. c v1 v2) M1 M2

none = λx.λy. x
some(M) = (λv. λx.λy. y v) M

It is easy to verify that if M1, M2, and M evaluate to values then each of these
definitions results in a value that belongs to the appropriate equivalence class. For
example, n ∈ num(n). Given these definitions, we can define various operations on
these data types:
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not(M) = M false true
and(M1,M2) = λx.λy.M1 (M2 x y) y
or(M1,M2) = λx.λy.M1 x (M2 x y)

inc(M) = λz. λs. s (M z s)
dec(M) = λz. λs.M pair(z, z) (λp.pair(p snd, s(p snd))) fst

equal0(M) = M true (λx. false)
equaln+1(M) = and(equaln(dec(M)), not(equal0(M)))

is−none(M) = M true (λx. false)

Theorem 17 (Correctness) Suppose M1 ∈ bool(t1), M2 ∈ bool(t2), and N ∈
num(n). Then

1. not(M1) ∈ bool(¬t1)

2. and(M1,M2) ∈ bool(t1 ∧ t2)

3. or(M1,M2) ∈ bool(t1 ∨ t2)

4. inc(N) ∈ num(n + 1).

5. If n = 0 then dec(N) ∈ num(0) else dec(N) ∈ num(n − 1).

6. equaln′(N) ∈ bool(n = n′).

7. If M ∈ none then is−none(M) ∈ bool(true).

8. If M ∈ some(V ) then is−none(M) ∈ bool(false).

From these basic data types, it is easy to derive n-ary tuples and lists — a list is
defined as either none or some pair of a value (the head) and a list (the tail) — as
well as conditional expressions and switching based on a natural number. With this
machinery, it is easy to encode an instantaneous description of a Turing machine T
as well as the appropriate move function on encoded descriptions.

For example, if we use the definition of a Turing machine given in Section 7.2 of
Hopcroft et al. [15], then one of T ’s instantaneous descriptions can be encoded as
the tuple (q, σ1, s, σ2), where q is T ’s state (encoded as a natural number); σ1 is a
list of the tape symbols (represented by natural numbers) to the left of the head,
rightmost first; s is the tape symbol under the head; and σ2 is a list of the tape
symbols to the right of the head, leftmost first.

The move function for T , which maps instantaneous descriptions to the next
instantaneous description, is then implemented by branching on T ’s state followed
by the symbol under the head. Each branch simply returns the appropriate next
description, which is easily derived from the old one. If the original description
was d, then an action to move left after writing 2 then enter state 13 would look
something like (13, cons(2,#2 d), hd(#4 d), tl(#4 d)), where hd returns 0 — the
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blank symbol — and tl returns nil when applied to nil, and #n selects the nth
component of a tuple. It is also easy to write a function halted(d) that returns true
if d describes a instantaneous description of a halted Turing machine (just check to
see if d’s state is a final one).

Finally, to complete our simulation, we need to write a function run that takes a
starting instantaneous description and repeatedly applies the move function until
T is in a halting state. We will use the following fixpoint operator to do this:

fix(V ) = (λf. V λa. f f a) (λf. V λa. f f a)

It is easy to check that fix(−) defines a fixpoint:

fix(V ) ↪→ V λx.fix(V ) x

The definition of run using fix might then look like the following:

run = fix(λf.λd. if halted d then d else f(move d))

Theorem 18 (Turing Completeness) λv is Turing complete.

Proof: The proof sketch of this section can be fleshed out and turned into a
complete proof.

Corollary 4 (Turing Completeness)

The following languages are Turing complete: λ→,µ
v , sumless λ→,µ

v , λ→,E
v ,

sumless λ→,E
v , and (unit→unit)→(unit→unit)-only.

Proof: Follows from Theorems 18 and 16 plus Corollaries 3 and 2.

Throughout this paper, we have made the usual assumption when dealing with
lambda calculi that different result values such as true and false can be distin-
guished. If we instead only allow non-functional values to be distinguished from
each other (e.g., all functions are indistinguishable from each other), we need to
add at least two non-functional values (e.g., true and false) to λv to make it Turing
complete.

No additions, however, are required to prove sumless λ→,E
v Turing complete under

this alternative assumption because we can distinguish between our simulation of
λv yielding a value in bool(true) and a value in bool(false) using the following
sumless λ→,E

v function:

test(x) = {(x signal λy.y) (λz.z)}; ()

signal = packv(�→�, λx: � . raiseunit(()))
� = unit→unit

Here, if M ∈ bool(true) then test(M) evaluates {signal λz.z}, which raises a unit-
carrying exception, and if M ∈ bool(false) then test(x) evaluates to (). It is easy
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to use test to extract whatever information is required from a Turing machine’s
output.

A similar observation applies to (unit→unit)→(unit→unit)-only; we need only
change signal to raise a (unit→unit)→(unit→unit) exception instead.

4.5. Related work

Two previous papers by de Groote [6] and Rehof et al. [24], consider the termina-
tion (and hence complexity) of the simply-typed lambda calculus extended with a
non-standard notion of unchecked exceptions. Unlike the results of this paper, how-
ever, they show that their systems are strongly normalizing and hence not Turing
complete.

Their notion of exceptions differs greatly from ours because their motivation is
to create a language whose type system corresponds to classical logic through the
Curry-Howard isomorphism while we are interested in exceptions as used in real
programming languages. Unlike the exceptions we have been describing, their ex-
ception flavors are syntactically required to each have exactly one handler.

This requirement makes it impossible for a function to have an exceptional return
that different callers can choose to catch and process as they choose; their style of
exceptions is therefore not very useful for programming. Moreover, our encoding
of recursive types will not work in their system because we need this ability to
“smuggle” out information from exception-raising functions. Arguably, call/cc has
a similar limitation (each continuation can only be “handled” at one place), which
prevents using it to “smuggle” information out of functions.

5. Conclusion

We have shown by a novel method that unchecked exceptions can be used to sim-
ulate recursive types. From this result and the well known fact that the untyped
lambda calculus can be encoded in the simply-typed lambda calculus (λ→) plus
recursive types, it follows that the untyped lambda calculus can be encoded in λ→

suitably extended with unchecked exceptions. Because the untyped lambda calcu-
lus is Turing complete, this implies that all computable functions can be written in
an extension of λ→ with unchecked exceptions. The ability to have exceptions of
distinguishable flavors, possibly carrying values of different types, is not required.

From previous work of the author’s with Robert Harper [13], it is known that all
proposed sound methods of adding call/cc to Fω (a superset of λ→) preserve the fact
that all programs terminate. It follows from this that only a subset of the recursive
functions can be written in these extensions of Fω. Since the set of all computable
functions is proper superset of the recursive functions, λ→ when suitably extended
with unchecked exceptions is strictly more powerful than all reasonable extensions
of Fω with call/cc. Hence, under reasonable assumptions, not even a full global
transformation on programs can rewrite away unchecked exceptions in Fω extended
with call/cc.
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Notes

1. CLU does provide one built-in unchecked exception called failure, which carries a string.

2. For technical reasons, the paper actually uses a fully-applied version of the primitive described
here. However, all of the paper’s results apply immediately to this version as well.

3. More precisely, terms of the form Λα:K. M are allowed only when M is a call-by-value value.
(Because this strategy evaluates under lambda abstractions, Λα:K. M is considered a value
here only when M is itself a value.)

4. The condition on the exposed variables can always be satisfied by alpha-renaming C[M ]
appropriately.

5. Technically, we only need an isomorphism between the set of transformed terms with original
type µα.A and the set of transformed terms with original type [µα.A/α]A.

6. λ→,µ
v ’s type system ensures that closed values of recursive type A can only be constructed

using rollA(−).
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