Translucent Sums:
A Foundation for Higher-Order Module Systems

(Dissertation Summary)

Mark Lillibridge
December 12, 1996

Abstract

The ease of understanding, maintaining, and developing a large program depends
crucially on how it is divided up into modules, which is constrained by the available
modular programming facilities (“module system”) of the programming language be-
ing used. Experience with Standard ML’s module system has shown the usefulness of
functions mapping modules to modules and modules with module subcomponents. For
example, functions over modules permit abstract data types (ADTSs) to be parameter-
ized by other ADTs, and submodules permit modules to be organized hierarchically.
Module systems with such facilities are called higher-order, by analogy with higher-
order functions.

Previous higher-order module systems can be classified as either “opaque” or “trans-
parent.” Opaque systems totally obscure information about the identity of type com-
ponents of modules, often resulting in overly abstract types. This loss of type identities
precludes most interesting uses of higher-order features. Transparent systems, on the
other hand, completely reveal type identities by inspecting module implementations,
which subverts data abstraction and prevents separate compilation.

In this dissertation, I describe a novel approach that avoids these problems based
on a new type-theoretic concept, the translucent sum. A translucent sum is a kind
of weak sum that can optionally specify the identity of its type components. Under
my approach type identities are not determined by inspecting module implementations,
permitting separate compilation. By default, module operations reveal the connections
between the types in their input and output modules. However, these connections can
be obscured using type coercion. This controlled visibility permits data abstraction
where desired without limiting the uses of higher-order features. My approach also
allows modules to be treated as first-class values, a potentially valuable feature.

In order to lay out the groundwork for my new approach to designing higher-order
module systems and to demonstrate its utility, I develop in complete detail a kernel
system using my approach. I establish formally the theoretical properties of the system,
including soundness even in the presence of side effects. I also show how the system
may be effectively type checked.



1 Introduction

Many programming languages have a collection of facilities for building modular programs.
These collections of facilities, called module systems, play an important role in programming
languages, especially with regard to programming-in-the-large. This dissertation concerns
a new approach to designing module systems for statically typed programming languages.
The approach promises a substantially more powerful module system than those built with
previous approaches while at the same time eliminating the problems associated with the
previous approaches.

Traditional module systems, such as the one provided by Modula 2 [14], are first-order,
allowing only trivial manipulations of modules. Some newer programming languages provide
higher-order module systems. Higher-order module systems, unlike first-order ones, permit
the non-trivial manipulation of modules within the language. In particular, they at least
permit functions mapping modules to modules and may provide other higher-order features
such as modules containing modules as subcomponents and modules as first-class values.
Experience with Standard ML’s module system has shown the usefulness of functions map-
ping modules to modules and modules with module subcomponents. For example, functions
over modules permit abstract data types (ADTSs) to be parameterized by other ADTs, and
submodules permit modules to be organized hierarchically.

Previous higher-order module systems can be classified as either “opaque” or “transpar-
ent.” Opaque systems totally obscure information about the identity of type components of
modules, often resulting in overly abstract types. This loss of type identities precludes most
interesting uses of higher-order features. Transparent systems, on the other hand, com-
pletely reveal type identities by inspecting module implementations, which subverts data
abstraction and prevents separate compilation. My thesis is as follows:

By basing a module system on a new type-theoretic concept, namely a new kind
of weak sum that can contain both transparent and opaque type definitions called
a translucent sum, it is possible to obtain a higher-order module system with the
advantages of both the opaque and the transparent approaches, but none of their
disadvantages.

In order to demonstrate this thesis, I design a new programming language with a higher-
order module system based on translucent sums. The language I have created is a kernel
system that contains only the features relevant to module system design; considerable ex-
tension would be required to make it into a real programming language. The design of this
kernel system and the proofs required to establish formally its properties form the core of
this dissertation. Included are a proof of the system’s soundness and effective procedures
for type checking its programs.

The rest of this document is organized as follows: Section 2 provides the necessary
background about module systems, Section 3 explains the previous approaches to designing
higher-order module systems, Section 4 describes the basic ideas behind my new approach
to designing module systems, Section 5 describes what translucent sums are and how they
work, Section 6 briefly summarizes the features and properties of the kernel system, Section 7
briefly surveys related work, and Section 8 summarizes the dissertation’s contributions.

2



2 Module Systems

A module binds a set of values and types to names. For example, we might have

M = module
val x = 3;
val y = true;
type T = int;
end;

This statement creates a new module with three components, called x, y, and T. The compo-
nents x and y are value components, which are bound to the values 3 and true respectively;
the component T, by contrast, is a type component, which is bound to the type int. Once
this module is created, it is then bound to the name M; this binding will allow us to refer
to the new modules’ components as M.x, M.y, and M. T later on. Although in this example,
we named our new module, this is not required. Sometimes, for example, we may want to
create a new module then immediately apply a function to it; naming the new module serves
no purpose in this case.

Because I am dealing with statically typed languages, modules will have “types”, called
interfaces. For example, the module M has the following interface:

M : interface
val x:int;

val y:bool;
type T;
end;

This interface specifies that M has two value components, x with type int and y with type
bool, and one type component, T.!

First-order module systems have only the trivial module facilities discussed so far: mod-
ule creation, module naming, and module component extraction (M.x). Most traditional
module systems are of this type. Examples include Ada [12], CLU [g8], C [6], C++ [13], and
Modula 2 [14].

Higher-order module systems, by contrast, have non-trivial module manipulation facili-
ties. I shall be concerned in this dissertation primarily with three such facilities: functors,
submodules, and modules as first-class values. Functors are functions mapping modules to
modules. For example, we might define a rectangle ADT parameterized by a point ADT
using a functor:

MkRect = functor (p:POINT) :RECT
module
type T = p.T * p.T;

end;

'In my dissertation I deal with a more complicated version of modules that assigns “types”, called kinds,
to types; I have simplified things here.



The advantage of doing this is that we can create several rectangle ADTs from the same
code using different point ADTs. For example, if we have point ADTs CartPoint and
PolarPoint, we can create a rectangle ADT based on Cartesian points with CartRect =
MkRect (CartPoint) and a rectangle ADT based on polar points with PolarRect =
MkRect (PolarPoint).

Submodules are modules contained as components within other modules; they allow
packaging up a series of modules into a single unit. For example, if we had several search-
tree modules, we could package them up into a single module:

SearchTree = module

mod Binary = BinarySearchTree;
mod RedBlack = RedBlackSearchTree;
mod BTree = BTree;

end;

SearchTree, in turn, could be included as part of a larger library algorithms module.

Modules as first-class values refers to the ability to treat modules as if they were ordinary
values of the programming language. This means that anything that can be done with a
ordinary value can be done with a module. Thus, in languages with modules as first-class
values, modules can be passed to or returned by ordinary functions, stored in variables, or
selected using conditional statements. One useful way to use this facility is to select the most
efficient implementation for an ADT at runtime. For example, the best implementation for a
dictionary depends on the number of items it will contain; the following code sets Dictionary
at runtime to use an implementation that is efficient for n items:

Dictionary = if n<20 then LinkedList else HashTable;

The most well known programming language with a higher-order module system is Stan-
dard ML (SML) [4]. SML provides functors and submodules, but treats modules as second-
class values. The extensive experience of the SML community with functors and submodules
has established their value. Modules as first-class values shows promise as a valuable addi-
tion to module system toolkits, but since this facility has never been implemented together
with the other higher-order facilities, experience about its value is lacking. More extensive
examples of the use of these features and their value can be found in Section 1.2 of my
dissertation.

3 Previous Approaches

Previous approaches to designing higher-order module systems can be classified into “opaque”
and “transparent” approaches depending on how they treat module and functor boundaries.

3.1 The Opaque Approach

Under the opaque approach, module and functor boundaries are opaque, allowing no infor-
mation about the identity of type components to pass through. This is exactly what we

4



want when we build an ADT. For example, consider the following definition of an integer
stack ADT:

IntStack = module
type T = int list ref;
fun new() = new [];
fun push(s:T,e:int) = ...

end;

The identity of the integer stack type (T) is visible inside the module, allowing us to im-
plement its operations using the appropriate primitives on its representation type, but
its identity is obscured outside the module: IntStack.T is an abstract type. Thus, the
user of this ADT will be able to create and manipulate integer stacks using code like
IntStack.pop(IntStack.push(IntStack.new(), 3)), which returns 3, but will not be
able to depend in any way on which representation it uses.

Examples of programming languages which take this approach are John Mitchell and
Gordon Plotkin’s SOL [11] and Luca Cardelli’s Quest [1]. This approach provides data
abstraction at the module level, as we have just seen. It also allows separate compilation,
the ability to type check and compile individual module implementations using only the
interfaces of the modules they reference, because modules depend only on interfaces, not on
implementations. This approach is also compatible with modules as first-class values.

Unfortunately, because this approach obscures the identity of all type components, it
precludes most interesting uses of higher-order features. As an example, first imagine creat-
ing an abstraction of an “ordered type” for use as a parameter to ordered dictionaries and
the like:

ORDERED = interface

type T;
val cmp: T*T -> int;
end;

(Le., An ordered type is just a type T combined with an operation cmp that returns -1, 0,
or +1 depending on the ordering relationship between two objects of type T.)

Second, because we often want to extend an ordering on a type T to an ordering on the
type list of T (using lexical ordering), imagine writing down the code to do this in general
as a functor:

Lex0rd = functor (o:0RDERED) : ORDERED

module
type T = 0.T 1list;
val cmp = ... o.cmp ...
end;

Third, imagine trying to test the new code by trying it out on the built-in integer type:



IntOrd = module type T = int; ... end;

IntListOrd = Lex0rd(IntOrd);

The code runs fine, and we end up with a new ordered type, IntListOrd. Unfortunately,
the new type is useless because it has no relation to the built-in integer type: IntListOrd.T
is an abstract type, unrelated to int 1list. This means that we cannot create any values of
this type.

The problem with this example is an instance of a more general problem: there is no
way in the opaque approach to build modules “containing” other types; we can only build
modules containing unrelated new types (e.g., IntOrd.T # int). This fact means that we
cannot have type abbreviations and that we cannot extend ADTs by adding a few new
operations to an existing ADT. Another consequence is that many of the more useful idioms
using higher-order features are inexpressible [9].

3.2 The Transparent Approach

Unlike in the opaque approach, under the transparent approach, module and functor bound-
aries are transparent, allowing all information about the identities of type components to pass
through them; the transparent approach does this by inspecting module implementations
to determine the actual identity of type components. Because the transparent approach
requires access to the implementations of all the modules a module refers to in order to
compile that module, it cannot provide separate compilation.

The transparent approach also cannot provide data abstraction at the module level.
For example, under the transparent approach, in the previous IntStack example the type
IntStack.T is not abstract: we know that IntStack.T = int list ref and can manip-
ulate integer stacks using reference and list primitives. Also, the transparent approach is
incompatible with treating module as first-values because there is no way to determine the
actual identity of types when they depend on information available only at runtime. I show
in my dissertation that unsoundness results from attempting this.

However, the transparent approach does allow modules to “contain” other types. For ex-
ample, the Lex0rd example works fine under the transparent approach with IntOrd.T = int
and IntListOrd.T = int list. This fact allows most of the interesting use of higher-order
features to be used under the transparent approach. Examples of programming languages
that take this approach are David MacQueen’s DL [9]; Robert Harper and John Mitchell’s
XML [10]; and Robert Harper, John C. Mitchell, and Eugenio Moggi’s AML [5]

4 My Approach

Under my approach, which I call the translucent approach, module and functor bound-
aries are “translucent,” being opaque in some places and transparent elsewhere. Where the
boundaries are opaque is controlled by the programmer using interfaces. Each boundary has
an associated interface, which specifies which type component’s identity information can be
seen through the boundary.



In order to allow this specification, interfaces in my approach are extended to allow
specifying the identity of type components. For example, the following interface for a hash
table ADT specifies the type identity of the element type (elem) but not that of hash tables

(T):
HashTable : interface type elem = int;
type T;

end

Using this ability, the programmer specifies boundary properties by giving, in the interface
associated with a boundary, the type identities of only those components she wishes the
boundary to be transparent to; all other type components will be treated opaquely. Thus,
in the HashTable example above, the boundary will be transparent for the elem component
and opaque for the T component.

Because the programmer is required to provide the actual type identity of transparently-
treated type components in the interface (the type checker checks that the type identities
provided in the interface are correct when the interface is assigned to a module), the type
checker does not need to inspect the implementation of modules to determine the identity
of their type components; it can just believe the module’s interface. This fact means that
modules depend on only the interfaces of other modules; my approach is thus able to support
separate compilation without any trouble.

If the programmer does not supply an interface for a simple module (module ... end),
then the type checker infers a fully transparent interface by inspecting the module’s imple-
mentation. For example, under my approach, IntOrd would have been assigned the following
interface:

interface type T = int; val cmp: T*T -> int end

Using a shorthand notation due to Xavier Leroy [7], this interface could also be expressed
as ORDERED with T=int. (Leroy’s with notation is a syntactic shorthand that expresses the
result of adding information about type identities to an existing interface.)

Thus, under the transparent approach, the default is full transparency. Subtyping in my
system permits forgetting type identities; for example, ORDERED with T=int is a subtype
of ORDERED. This fact means that the programmer can use type coercions (M : interface

. end), to increase opaqueness where and when desired. For example, the following
code creates an initially transparent HashTable module then makes opaque just the T type
component:

HashTable = (module type elem = int;
type T = (string*elem) array;

end
: interface type elem = int;
type T;
end) ;



This technique provides module-level data abstraction under my approach.

The situation for non-simple module expressions without interfaces is more complicated,
particularly because modules under my approach are treated as first-class values. Briefly,
by the use of some clever type rules, an interface that is as transparent as possible given
soundness and reasonable compile-time information? constraints is inferred. Code that does
not involve using modules as first-class values, higher-order functors (functors that take or
return other functors as arguments), or type coercions will be given a fully transparent
interface. This category includes all programs written in non-extended SML.

Code using modules as first-class values may automatically lose type identity information
in order to avoid potential unsoundness. Consider again, for example, the code to select a
dictionary at runtime based on the number of items needed:

Dictionary = if n<20 then LinkedList else HashTable;

Suppose the programmer gave fully transparent interfaces to LinkedList, say DICTIONARY
with T=... list, and HashTable, say DICTIONARY with T=... array. Because the type
checker does not know what n’s value will be at runtime, it cannot safely determine
Dictionary.T’s type identity. Accordingly, it must be conservative and assign Dictionary
the more opaque interface DICTIONARY, which makes Dictionary.T abstract.

No special type rules are needed to implement this behavior: Because the normal if-then-
else type rule requires the then and else branches to have the same type and LinkedList
and HashTable have different types, the type checker is forced to use subsumption to coerce
both branches to a common supertype; all such types make Dictionary.T opaque. It is be-
cause of this ability to make types abstract when they cannot be determined at compile-time
that my approach is able to treat modules as first-class values without risking unsoundness.

Standard ML has a useful feature called type sharing that is used in interfaces to require
that (sub)-component types are equal. For example, the following interface specifies that
any module with it as an interface has equal T, U, and V types:

interface type T;

type U;

type V

sharing type T = U =V
end

The same effect can be gotten under my approach by using a series of with’s:

interface type T;
type U;
type V;
end with U=T with V=T

This basic idea — picking the type in an specified equivalence class with maximal scope and
then setting the other types in that class equal to it using with statements — can used to
translate any type sharing specification from SML into my system.

2In particular, the type checker makes no attempt to determine the run-time branching of conditionals,
instead assuming that they could branch either way at any time.

8



Summarizing, under my approach the identity of type components start out fully visible;
this visibility can later be obscured either automatically when modules are used in a first-
class manner in order to ensure soundness, or manually when the programmer inserts a type
coercion in order to produce abstraction. This controlled visibility permits data abstraction
where desired and modules as first-class values without limiting the uses of higher-order
features that depend on modules “containing” other types. My approach also supports
separate compilation because modules depend only on interfaces.

Since my approach gives the programmer control over the degree of visibility, she can
choose opaqueness or transparency as needed, getting the best of both worlds. Indeed,
because translucency permits the programmer to mix opaqueness and transparency in the
same module (e.g., the interface for HashTable), some new uses of higher-order features
become possible; see Chapter 3 of my thesis for one example.

5 Translucent Sums

My approach to building higher-order module systems is based on type theory and the \-
calculus. In it modules are a particular kind of value and interfaces are a particular kind of
type. These choices yield a simple and uniform design.

My recipe for constructing a higher-order module system is as follows: start with Girard’s
F, [3], a powerful type theory, to model the core language (the part without any module
features); add translucent sums to model modules; add dependent functions to model func-
tors (this choice allows a functor’s result type to depend on its input argument); and, finally,
add a notion of subtyping to model module implementation-interface matching.

The keystone here is the new type-theoretical construct I call a translucent sum; the
other constructs used in the recipe are from the extensive type-theory literature. A translu-
cent sum is an existential type (also called a weak sum) that has been enriched in several
ways. First, its types have been extended to allow optionally specifying information about
the identity of its type components; the equality relation on types is extended to use this
information. Second, it has been generalized to allow any number of components, to al-
low named components, and to allow dependencies on previous components. And, finally,
third, the subtyping on its types has been extended to allow forgetting information about
type-component identities, reordering components, and dropping components. (The later
two subtyping abilities allow a module with extra or differently ordered components to still
be used as a functor argument.)

Like existentials, translucent sums are ordinary values. Because translucent sums are
used to model modules, this fact has a number of important consequences: modules are
first-class values, modules can be components of other modules (a module is just another
value so no special handling is required), functors are simply ordinary functions and thus
first-class values as well, and higher-order functors exist (F, has higher-order functions).
If the ability to have modules as first-class values was not needed or desired, then the
system could be stratified by adding a separate level for constructs dealing with modules;
translucent sums could then be restricted to this level. This change would make modules
second-class values, but would also greatly simplify many of the associated proofs of the
system’s properties.



Because some components of translucent sums are types, some translucent sum expres-
sions have to be allowed to occur in types so that these type components can be used; this
fact means that types can depend on term variables in my system. An important question
here is exactly what sorts of translucent sum expressions to allow in types. The answer
impacts the ease of type checking strongly: Type checking requires being able to decide
questions like does M .T = N.T where M and N are translucent sum expressions that are
allowed to occur in types. Reasonable type checking requires that deciding these questions
not require having to evaluate general program expressions. (If the type checker had to
evaluate general code, it would take too long to be useful in many cases.)

My answer is to allow only translucent-sum wvalues, not arbitrary computations in types;
for this purpose, I consider values to be given by the normal grammar for call-by-value
values extended with rules for term variables and component selections on values (M .x).
(For example, module val x=M.x end is a value.) I show that by repeatedly reducing
selections (e.g., replacing module type T=int end.T with int) in types, well-typed values
in types can always be reduced to (repeated) selections on term variables (e.g., x.y.z). Type
equality is easy for this case since equality on type components of such values is syntactic
equality extended with any type abbreviations supplied by the term variable’s interface; no
evaluation of arbitrary code is required at any time.

One important consequence of this answer is that substitution of general terms is not
possible: Because types may contain term variables, substitution of M for a term variable
in a term can also involve substituting M into a type; this limits the set of terms that can
be substituted to the set that may appear in types. This fact means that my approach is
not compatible with call-by-name evaluation.

Allowing arbitrary terms in types in my system is not just problematic because of the
resulting difficulty of deciding type equalities; this choice also leads to unsoundness. To see
this fact, first consider the following definitions:

Int = module type T = int;
val v = 3;
val f = negate;

end;

Bool = module type T = bool;
val v = true;
val f = not;

end;

Each of these modules packages up a type, T, a value of that type, v, and a function on
values of that type, f.

Second, consider the following piece of code that I shall abbreviate by A. Note: this
abbreviation is not a definition within the language; the code on the right is to be mentally
substituted wherever A is used from now on.

A = if rnd()%2 = 0 then Int else Bool

10



The rnd function here is a pseudo-random number generator that returns an integer; ac-
cordingly, at runtime A.T is equal to the type int half the time and the type bool the rest
of the time.

Now, if general terms could appear in types, the following would type check:

A : interface type T = A.T;
val v : T;
val f : T->T;

end

This typing would allow the following code to type check:

X = A;
Y = A;
X.£(Y.v)

But, when run, half the time this code evaluates either not(3) or negate(true), which
generate runtime type errors!

6 The Kernel System

The kernel system forms the core of my dissertation. It provides a concrete example of
how my approach can be used to build a higher-order module system. Type theory is
something of a black art; how exactly to arrange the system and its associated proofs so
they are tractable is one of the major contributions of my dissertation. Many of the problems
encountered in proving the system’s properties are new, lacking any existing solution in the
literature. The proofs are especially difficult because the kernel system contains a number
of cyclic dependencies between its parts. For example, the type validity judgment depends
on the type equality judgment, which in turn depends on the type validity judgment.

As I mentioned earlier, the kernel system has been simplified so as to make its proofs as
easy as possible without losing any results. Among other simplifications, translucent sum
expressions in kernel-system types are limited to (repeated) selections on term variables® and
translucent sums have been factored into two simpler constructs, a standard dependent sum
and a new construct called a reified constructor (see Chapter 8 of my dissertation for details).
The more complicated version I described in the previous section can be recovered from the
kernel system by adding a pre-processing elaboration stage. I have also chosen to move the
problem of reordering and dropping translucent sum components to this elaboration stage.
I did this both to simplify the system and because there is some uncertainly about what the
best choice of subtyping rules is for handling component reordering.

In addition to giving the syntax, the typing rules, and the semantics for the kernel system,
I also give formal proofs of all the important properties for a programming language. In

3Values can still be substituted, however, because the kernel-system substitution operator does selection
reductions as it substitutes terms.

11



particular, I prove that type checking modulo subtyping is decidable and that the system
is sound even in the presence of side effects. Unfortunately, subtyping, and hence full
type checking, is only semi-decidable; this is unlikely to cause problems in practice though
because the semi-decidability is in the right direction (only ill-typed programs can cause
looping), the smallest known looping example requires more complexity than any normal
human-written program is likely to have, and a simple time limit can be used to detect bad
programs (programs either ill-typed or so complicated that they cannot be typed checked in
reasonable time).

7 Related Work

Along with the work I have already mentioned in Section 3, the most directly relevant work
to mine is Xavier Leroy’s work on manifest types [7]. This work, done independently, uses
similar ideas but differs most fundamentally from mine in that his system treats modules as
second-class values. This choice greatly simplifies the theoretical complexity of his system
and holds out the possibility of a decidable type system if named interfaces are prohibited.
His system also differs from mine in that his system is based on Damas-Milner style polymor-
phism [2] and is implicitly typed, while my system is based on Girard’s F,, and is explicitly
typed. He does not provide either a proof of soundness or a provably-correct type-checking
procedure* for his system.

8 Contributions

This dissertation is a major step forward in the design of higher-order module systems. For
the first time it is now possible to have a higher-order module system combining the best of
the previous approaches with none of their disadvantages, resulting in a system with all of
the following features:

e Data abstraction at the module level

e Support for Separate compilation

e Modules as first-class values

e Modules can “contain” other types

e Type abbreviations

e Transparency and opaqueness can be mixed in a single module
e Higher-order functors

e Type sharing

4He did give a type checking procedure and a “proof” of its correctness in his paper, but both were later
discovered to be flawed.

12



I have developed the necessary machinery and established the validity of this approach

by showing

e How to arrange the system and its associated proofs so they are tractable
e The system’s soundness even in the presence of side effects
e How to do type checking effectively

The negative results about soundness under certain extensions and the decidability of

subtyping (and hence type checking) are also contributions of my dissertation.

References

1]

2]

[10]

[11]

Luca Cardelli. Typeful programming. Technical Report 45, DEC Systems Research
Center, 1989.

Luis Damas and Robin Milner. Principal type schemes for functional programs. In Ninth
ACM Symposium on Principles of Programming Languages, pages 207-212, 1982.

Jean-Yves Girard. Interprétation Fonctionnelle et Elimination des Coupures dans
UArithmétique d’Ordre Supérieure. PhD thesis, Université Paris VII, 1972.

Robert Harper, Robin Milner, and Mads Tofte. The definition of Standard ML (version
3). Technical Report ECS-LFCS-89-81, Laboratory for the Foundations of Computer
Science, Edinburgh University, May 1989.

Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In Seventeenth ACM Symposium on Principles of Programming Lan-
guages, San Francisco, CA, January 1990.

Brian W. Kernighan and Dennis M. Ritchie. The C' Programming Language. Prentice-
hall, Inc., 1978.

Xavier Leroy. Manifest types, modules, and separate compilation. In Proceedings of
the Twenty-first Annual ACM Symposium on Principles of Programming Languages,
Portland. ACM, January 1994.

Barbara Liskov, Russell Atkinson, et al. CLU Reference Manual, volume 114 of Lecture
Notes in Computer Science. Springer-Verlag, 1981.

David MacQueen. Using dependent types to express modular structure. In Thirteenth
ACM Symposium on Principles of Programming Languages, 1986.

John Mitchell and Robert Harper. The essence of ML. In Fifteenth ACM Symposium
on Principles of Programming Languages, San Diego, California, January 1988.

John C. Mitchell and Gordon Plotkin. Abstract types have existential type. In Twelfth
ACM Symposium on Principles of Programming Languages, 1985.

13



[12] 1. C. Pyle. The Ada Programming Language. Prentice-Hall International, 1981.

[13] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing
Company, 1987.

[14] Niklaus Wirth. Programming in Modula-2. Texts and Monographs in Computer Science.
Springer-Verlag, 1983.

14



