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Abstract

The design of a module system for constructing and main-
taining large programs is a difficult task that raises a number
of theoretical and practical issues. A fundamental issue is
the management of the flow of information between program
units at compile time via the notion of an interface. Expe-
rience has shown that fully opaque interfaces are awkward
to use in practice since too much information is hidden, and
that fully transparent interfaces lead to excessive interde-
pendencies, creating problems for maintenance and separate
compilation. The “sharing” specifications of Standard ML
address this issue by allowing the programmer to specify
equational relationships between types in separate modules,
but are not expressive enough to allow the programmer com-
plete control over the propagation of type information be-
tween modules.

These problems are addressed from a type-theoretic view-
point by considering a calculus based on Girard’s system
Fω. The calculus differs from those considered in previous
studies by relying exclusively on a new form of weak sum
type to propagate information at compile-time, in contrast
to approaches based on strong sums which rely on substi-
tution. The new form of sum type allows for the specifica-
tion of equational, as well as type and kind, information in
interfaces. This provides complete control over the propa-
gation of compile-time information between program units
and is sufficient to encode in a straightforward way most
uses of type sharing specifications in Standard ML. Modules
are treated as “first-class” citizens, and therefore the sys-
tem supports higher-order modules and some object-oriented
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programming idioms; the language may be easily restricted
to “second-class” modules found in ML-like languages.

1 Introduction

Modularity is an essential technique for developing and
maintaining large software systems [46, 24, 36]. Most
modern programming languages provide some form of
module system that supports the construction of large
systems from a collection of separately-defined program
units [7, 8, 26, 32]. A fundamental problem is the man-
agement of the tension between the need to treat the
components of a large system in relative isolation (for
both conceptual and pragmatic reasons) and the need
to combine these components into a coherent whole.
In typical cases this problem is addressed by equipping
each module with a well-defined interface that mediates
all access to the module and requiring that interfaces be
enforced at system link time.

The Standard ML (SML) module system [17, 32]
is a particularly interesting design that has proved to
be useful in the development of large software sys-
tems [2, 1, 3, 11, 13]. The main constituents of the
SML module system are signatures, structures, and
functors, with the latter two sometimes called modules.
A structure is a program unit defining a collection of
types, exceptions, values, and structures (known as sub-
structures of the structure). A functor may be thought
of as a “parameterized structure”, a first-order function
mapping structures to structures. A signature is an in-
terface describing the constituents of a structure — the
types, values, exceptions, and structures that it defines,
along with their kinds, types, and interfaces. See Fig-
ure 1 for an illustrative example of the use of the SML
module system; a number of sources are available for
further examples and information [15, 39].

A crucial feature of the SML module system is the no-
tion of type sharing1 which allows for the specification

1The closely-related notion of structure sharing is not consid-
ered in this paper.



signature SYMBOL = sig

type symbol

val intern : string -> symbol

val pname : symbol -> string

val eq : symbol * symbol -> bool

end

structure Symbol : SYMBOL = struct

structure HashTable : HASH TABLE = ...

type symbol = HashTable.hash key

fun intern id =

HashTable.enter (HashTable.hash id) id

fun pname sym = HashTable.retrieve sym

fun eq (s1, s2) = HashTable.same key s1 s2

end

Figure 1: Example of the SML Module System

of coherence conditions among a collection of structures
that ensure that types defined in separate modules co-
incide. The classic example (adapted from MacQueen)
is the construction of a parser from a lexer and a sym-
bol table, each of which make use of a common notion
of symbol (see Figure 2). The parser is constructed by
a functor that takes as arguments two modules, a lexer
and a symbol table manager. The parser composes func-
tions from the lexer and symbol table manager; the com-
position is well-typed only if the two modules “share”
a common notion of symbol. Within the body of the
functor Parser the types L.S.symbol and T.S.symbol
coincide, as specified by the type sharing specification
in the parameter signature. See MacQueen’s seminal
paper for further examples and discussion [26, 17].

1.1 Transparency and Opacity

Module bindings in SML are “transparent” in the sense
that the type components of a module are fully visible
in the scope of the binding. For example, the structure
declaration

structure S = struct
type t = int
type u = t -> t
val f = fn x:t => x

end

introduces a structure variable S with type components
S.t and S.u and value component S.f. Within the
scope of S, the type S.t is equivalent to the type int
and the type S.u is equivalent to the type int->int.
These equivalences are not affected by the ascription of
a signature to the binding. For example, the signature
SIG defined by the declaration

signature LEXER = sig

structure S : SYMBOL

type token
...

end

signature SYMTAB = sig

structure S : SYMBOL
...

end

signature PARSER = sig

structure L : LEXER

val parse : string -> Lexer.token stream
...

end

functor Parser

(structure L:LEXER and T:SYMTAB

sharing type L.S.symbol=T.S.symbol):PARSER=

struct
...

end

Figure 2: Sharing Specifications

signature SIG = sig
type t
type u
val f : u

end

may be correctly ascribed to the structure S without
obscuring the bindings of S.t and S.u.

Functor bindings are similarly “transparent” in that
the type components of the result of any application
of the functor are fully visible within the scope of the
functor binding. For example, consider the following
functor declaration:

functor F(structure X:SIG):SIG = struct
type t = X.t * X.t
type u = X.u
val f = X.f

end

The bindings of the t and u components of any appli-
cation of F are fully visible as a function of the t and
u components of the parameter X. For example, within
the scope of the declaration

structure T:SIG = F(S)

the type T.t is equivalent to the type int*int and the
type T.u is equivalent to the type int->int.

It is possible only to a very limited extent in SML
to specify in a signature the bindings of the types in a



module. For example, we may augment the signature
SIG with a sharing specification to specify that t is int
as follows:

signature SIG’ = sig
type t
sharing type t=int
type u
val f : u

end

This method cannot be extended to specify the bind-
ing of u — sharing specifications may only involve type
names, not general type expressions. To fully determine
the type bindings in S requires a transparent signature:

signature FULL SIG S = sig
type t = int
type u = int -> int
val f : int -> int

end

Note that this is not a legal SML signature because of
the type equations. There is no way to express equa-
tions such as u = int -> int in SML signatures. The
signature FULL SIG S is the “full” signature of S since
it completely determines the bindings of its type com-
ponents.

The importance of transparent signatures only be-
comes apparent when we consider functors and the
closely-related abstraction bindings suggested by
MacQueen [26, 17]. Functor parameters are opaque in
the sense that the ascribed signature is the sole source
of type information for those parameters (this property
is the basis for the reduction of abstraction bindings
to functor applications). Fine control over the “degree”
of opacity of a functor parameter can be achieved by
admitting transparent, or, more generally, translucent,
signatures that allow for the partial (possibly full) de-
termination of the type components of a module. For
example, the translucent signature

signature PARTIAL SIG S 1 = sig
type t
type u = t -> t
val f : u

end

is a partially transparent signature that leaves the type
t unconstrained, but determines u up to the choice of t.
The structure S matches the signature PARTIAL SIG S 1
since S.u is equal to S.t->S.t which is itself equal to
int->int. Conversely, the translucent signature

signature PARTIAL SIG S 2 = sig
type t = int
type u
val f : u

end

determines t, leaving u unconstrained. This signature
is essentially equivalent to the signature SIG’ above.2 S
matches this signature.

Translucent signatures are particularly useful in con-
nection with higher-order functors [43]. Using equations
in signatures it is possible to specify the dependency of
the functor result on the functor argument. For exam-
ple, a natural signature for the functor F defined above
is the following functor signature which fully determines
the type components of F:

funsig FULL SIG F =
(structure X:SIG):
sig type t=X.t*X.t type u=X.u val f:u end

Another, less precise, signature for F is the functor sig-
nature

funsig PARTIAL SIG F =
(structure X:SIG):
sig type t type u=X.u val f:u end

which only specifies the behavior of F on the component
u, leaving its behavior on t unspecified.

Higher-order functors [43] are particularly important
in connection with separate compilation. A separately-
compiled module may be represented by a variable
whose signature is the “full” transparent signature of
the module itself [42]. By abstracting the client mod-
ule with respect to these variables we obtain a (possi-
bly higher-order) functor whose application models the
process of linking the clients of the module with its ac-
tual implementation. The signature matching process
ensures that the presumed signature of the separately-
compiled module is consistent with the module itself so
as to guarantee type safety. The full signature of the
separately compiled module is necessary to ensure that
separate and combined compilation yield the same re-
sult.

1.2 Static Semantics

The static semantics of SML [32] is defined by a col-
lection of complex elaboration rules that specify the
static well-formedness conditions for SML programs.
The main techniques employed in the semantics are the
use of “unique names” (or “generativity”) to handle
abstraction and sharing specifications, and the use of
non-deterministic rules to handle polymorphism, shar-
ing specifications, and signature matching. The static
semantics has proved useful as a guide to implementa-
tion [28, 2, 41, 40], but is remarkably difficult to modify

2It seems plausible that most uses of type sharing specifications
may be accounted for in this way, provided that we neglect local
specifications and re-binding of variables in specifications, both of
which are of questionable utility.



or extend (see, for example, [43]). The näıve attempt to
enrich signatures as sketched above is incompatible with
the crucial “principal signature” property [31]. But it is
not clear whether this failure is a symptom of an intrin-
sic incoherence in the language, or is merely an artifact
of the semantic method.3

In an effort to gain some insight into the complexi-
ties of the static semantics several authors have under-
taken a type-theoretic analysis of SML, especially its
module system [27, 33, 35, 7, 20, 19]. Previous studies
of the module system focused on the transparency of
SML-style structures through the use of “strong sum”
or “dependent product” types. These are types of the
form Σx:A.B(x) whose elements are pairs 〈M1,M2〉
that are accessed via projections π1(M) and π2(M).
The crucial properties of strong sums [29] are that if
M : Σx:A.B(x), then π2(M) : B(π1(M)), and that
π1(〈M1,M2〉) = M1. Together, these properties ensure
that type information is propagated in rough accord
with the SML static semantics. (See [27, 33, 20, 19]
for further discussion.) Substitution-based methods are
problematic in the presence of computational effects,
unless care is taken to account for the phase distinc-
tion [20]. Moreover, strong sums fail to account for
sharing specifications and the abstract nature (“gener-
ativity”) of structure and datatype bindings.

In this paper we extend the type-theoretic analysis of
SML-like module systems by presenting a calculus with
the following features:

• Translucent sum types, which generalize weak sums
by providing labeled fields and equations governing
type constructors. These mechanisms obviate the
need for substitution, and account for abstraction
and common uses of SML-style sharing specifica-
tions.

• A notion of subsumption that encompasses a “co-
ercive” pre-order associated with record fields and
a “forgetful” pre-order associated with equations
that represent sharing information.

• Treatment of modules as “first-class” values. The
typing rules ensure that visibility of compile-time
components is suitably restricted when run-time se-
lection is used (see also [34]). If run-time selection
is not used, modules behave exactly as they would
in a more familiar “second-class” module system
such as is found in SML.

Our calculus improves on previous work by providing a
much greater degree of control over the propagation of

3Based on the approach taken here, and a related idea due to
Leroy, Tofte has recently devised a way to accommodate a form
of type abbreviation in Standard MLs ignatures [44].

Kinds K ::= Ω | K⇒K′

Constructors A ::= α | Πx:A.A′ | {D1, . . . , Dn} |
λα::K.A | A A′ | V .b

Declarations D ::= b � α::K | b � α::K=A | y � x:A

Terms M ::= x | λx:A.M | M M ′ | M :A |
{B1, . . . , Bn} | M.y

Bindings B ::= b � α=A | y � x=M

Values V ::= x | λx:A.M | {Bv1, . . . , Bvn} |
V .y

Bv ::= b � α=A | y � x=V

Contexts Γ ::= • | Γ, α::K | Γ, α::K=A | Γ, x:A

Figure 3: Syntax rules (n ≥ 0)

type information at compile time so that we can achieve
the effect of SML-like sharing specifications and provide
direct support for abstraction.

2 Overview of the Calculus

Our system is based on Girard’s Fω [14] in much the
same way that many systems are based on the second-
order lambda calculus (F2). That is to say, our system
can be (roughly) thought of as being obtained from Fω

by adding more powerful constructs (translucent sums
and dependent functions) and a notion of subtyping and
then removing the old constructs (quantification4 (∀),
weak sums (∃), and non-dependent functions (→)) su-
perseded by the new ones. Subtyping interacts with the
rest of the calculus via implicit subsumption. Bounded
quantification is not supported.

Like Fω, our system is divided into three levels:
terms, (type) constructors, and kinds. Kinds classify
constructors, and a subset of constructors, called types,
having kind Ω classify terms. The kind level is neces-
sary because the constructor level contains functions on
constructors. Example: the constructor λα::Ω.α→α has
kind Ω⇒Ω and when applied to type Int yields Int→Int.

The syntax rules for our system are given in Figure 3.
The meta variable α ranges over constructor variables
and the meta variable x ranges over term variables. The
meta variable b ranges over constructor field names and
the meta variable y ranges over term field names. We

4Quantification is derivable from dependent functions and
translucent sums. The basic idea is to transform Λα::K. M into
λx:{b � α::K}. [x.b/α]M where x is not free in M and M [A] into
M {b � α=A}. Note that this implements constructor abstraction
as a delaying operation unlike the normal SML semantics. See [16]
for a discussion of the differences between these two interpreta-
tions of constructor abstractions and why this choice seems to be
preferable.



have placed field names in bold in order to help empha-
size that they are names, not variables. The complete
typing rules appear in appendix A.

Our handling of dependent functions (λx:A.M) is
standard [29] except that our elimination rule only al-
lows for the application of functions having arrow-types5

(non-dependent function types). The normal elimina-
tion rule for dependent functions does not have this re-
striction, requiring functions only to have a Π-type. We
make this restriction because we intend to extend this
system in future work with effect-producing primitives.
In the presence of effects, the unrestricted rule is un-
sound because of interactions with the first-class nature
of translucent sums.6

Translucent sums ({B1, . . . , Bn}), the central contri-
bution of the calculus, will be discussed at length in
the next section. Very briefly, they are n-ary labeled
dependent sums whose types can optionally contain in-
formation about the contents of their constructor fields.
Traditional records and weak sums (existentials) are de-
generate forms of translucent sums.

A mechanism (written M :A) for forcing a term M to
be coerced to a supertype A is provided. The subtyp-
ing relation allows for both generalized record subtyp-
ing [7, 6, 9] (fields which are not depended on by the
other fields in a translucent sum may be dropped) and
for the forgetting of information about the contents of
constructor fields.

There are two basic forms of constructor definitions.
A constructor definition is opaque if within the scope
of the definition there is no information available about
the identity of the constructor variable being defined.
By contrast, a transparent constructor definition makes
available the identity of the constructor variable that is
being defined.

Contexts in our system can contain both opaque
(α::K) and transparent (α::K=A) definitions. The ef-
fect of transparency is implemented by a typing rule
(ABBREV’) for the constructor equality relation judge-
ment that establishes that α = A when α::K=A is in
the context. (This is similar to mechanisms used in AU-
TOMATH and LEGO [12, 45, 25].)

Our calculus is intended to be interpreted using a call-
by-value semantics. The typing system is not sound
for call-by-name in the presence of effects.7 We re-
strict terms in constructors to values in order to avoid
the problem of trying to give a meaning to a construc-
tor containing a side-effecting term.8 In our system,

5The arrow-type A→A′ can be regarded as an abbreviation for
Πx:A.A′ where x is not free in A′.

6Abbreviated example: (((λx. x.y)M).2) (((λx. x.y)M).1)
where M is the example in section 4.6.

7To see this consider the outermost β-redex of (λx.(x.y.2)
(x.y.1)) M where M is the example in section 4.6.

8It is not clear that allowing general terms in constructors

values (V ) are considered to be term variables, term
λ-expressions, translucent sums containing only values
and constructors, and selections of term fields from val-
ues. We allow V .y to be a value in order to allow paths
like x.y.y′ to be values while still keeping the set of val-
ues closed under the substitution of a value for a term
variable.

3 Translucent Sums

A translucent sum has the form of a possibly empty
sequence of bindings written between curly braces
({B1, . . . , Bn}). The corresponding translucent sum
type is similar except that declarations are used instead
of bindings ({D1, . . . , Dn}).

Translucent sums differ from traditional records in
a number of ways. In addition to normal term fields,
they can contain constructor fields. The type or content
of later fields in a translucent sum can depend on the
content of earlier fields. As an example, consider the
following translucent sum, call it P , that packages up a
type with a value of that type:9

{b � α=Int, y � x=3} : {b � α::Ω, y � x:α}
Binding r to P would give r.b :: Ω and r.y : r.b.10

The scope of variables bound in bindings and decla-
rations is all the following bindings/declarations in that
translucent sum (type). For example, the scope of x in
the following translucent sum includes M ′ and A′ but
not M or A:

{b � α=A, y � x=M , y′ � x′=M ′, b′ � α′=A′}
Scoping for the other constructs is as normal. We re-
gard terms, constructors, etc., that differ only by α-
conversion of variables as equivalent.

Note that field names cannot be α-converted. Chang-
ing a field name in a translucent sum term/type results
in a different term/type because the set of legal field
names which can be selected changes. Failure to distin-
guish between field names which cannot be α-converted
and the internal names for fields which must be able
to α-convert in order to permit substitution to work,
leads to problems.11 For example, the equivalent of the

would be that useful anyway since the substitution of general
terms for term variables would be prohibited in a call-by-value
setting in any case.

9We suggest pronouncing “�” as “as”, “:” as “has type”, and
“::” as “has kind”.

10Note the distinction between r and P here: r is a term vari-
able (and hence a value) while P is a term meta-variable denot-
ing a non-value. This distinction is important because the typing
rules treat values specially.

11To avoid verbosity, a real programming language based on
our system would probably provide that by default only one name
need be given per field, to be used as both the field name and the
internal name.



following cannot be written straightforwardly in SML:12

{b � α=Int, y � x={b � α′=Bool, y′ � x′=λx:α′. 3}} :
{b � α::Ω, y � x:{b � α′::Ω, y′ � x′:α′→α}}

Because SML does not distinguish the two kinds of
names, it is problematic to express that the type of the
y′ field depends on both the outer and inner b fields.

The field names of any given translucent sum (type)
are required to be distinct. Translucent sum types that
differ only in that their declarations have been reordered
without violating any dependences are considered equiv-
alent. For example, the following first two types are
equivalent but both are different from the third type:

{b � α::Ω, b1 � α1::Ω=α, b2 � α2::Ω=α}
{b � α::Ω, b2 � α2::Ω=α, b1 � α1::Ω=α}
{b1 � α1::Ω=α, b � α::Ω, b2 � α2::Ω=α}

It may help to think of translucent sum types as be-
ing directed acyclic graphs (DAGs) where the nodes are
declarations and the edges are dependencies by one dec-
laration on a variable declared in another declaration.

It is possible to include information in a translucent
sum type on the contents of the constructor fields of
its instances. This ability can be used to give a more
expressive type to P :

{b � α=Int, y � x=3} : {b � α::Ω=Int, y � x:α}
If it can be shown that r has this type, then it can be
inferred that r.b = Int. This can not be inferred if it
can only be shown that r has the less expressive type.
The use of nested translucent sums and constructor field
component information can give rise to more complex
dependencies as the following example illustrates:

{y � x={b � α=Int}, y′ � x′=3, b � α=x.b} :
{y � x:{b � α::Ω}, y′ � x′:x.b, b � α::Ω=x.b}

3.1 Introduction and elimination rules

The introduction rule for translucent sums is as follows:

� Γ valid

∀i ∈ [1..n]. Γ, D1, . . . , Di−1 � Bi : Di

Γ � {B1, . . . , Bn} : {D1, . . . , Dn}
(TSUM)

(The overline function (D) merely strips off the field
name.) Note that each of the bindings is being type
checked under a context which takes account of the ef-
fect of all of the previous bindings. Constructor bind-
ings result in transparent definitions, both when type

12It is possible to write this in SML by using a combination of
local specifications and type sharing in the signature. Thanks to
Mads Tofte for pointing this out. Unfortunately, however, some
SML implementations (e.g., SML/NJ) do not implement local

specifications in signatures properly so this is not very helpful in
practice.

checking later bindings and in the resulting type. Thus,
the introduction rule gives P the more expressive type.
The less-expressive type is obtained by the use of the
subsumption rule afterwards.

There are two elimination forms with corresponding
rules for translucent sums, one for constructor fields and
one for term fields:

Γ � V : {b � α::K}
Γ � V .b :: K

(C-EXT-O)

Γ � M : {y � x:A}
Γ � M.y : A

(EXT-V)

In order to apply these rules to translucent sums with
multiple fields, it is first necessary to use the subsump-
tion rule to drop the fields that are not being selected.
The constructor field case may also require that type
information about the field to be selected be dropped.
Unlike traditional records, with translucent sums it is
not always possible to drop all the other fields because
the field we wish to select may depend in an essential
way on them. Thus, the fact that M has a translucent
sum type with a y field is not in itself sufficient to en-
sure that M.y is well-typed.13 It is always possible to
drop fields from the type of V because of the VALUE
rules which we will discuss in section 3.3.

3.2 Translucency

When x:A appears in the context where A is a translu-
cent sum type which contains information about the
contents of the constructor fields of its instances, it gives
rise to equations via the following rule:

Γ � V : {b � α::K=A}
Γ � V .b = A :: K

(ABBREV)

Thus it is possible to infer that r.b = Int when it can
be shown that r has the type ({b � α::Ω=Int, y � x:α})
but not when it can only be shown to have the type
({b � α::Ω, y � x:α}).

This rule also gives rise to equations such as
{b � α=Int, b′ � α′=Bool}.b′ = Bool. These equations
allow any valid constructor V .b to be reduced to a
constructor which contains only values of the form
x.y1 · · · .yn (n ≥ 0). Because of this, it is not neces-
sary in our system to consider the equality of arbitrary
values (and hence terms) at type-checking time.

When the equality rules compare the parts of a con-
structor that are in the scope of a variable binding, they
do so with the declaration associated with that vari-
able in the context. For example, the equality rule for

13For example, ({b � α=Int, y � x=3} : {b � α::Ω,
y � x:α}).y is not well-typed.



Π-types below compares A′
1 and A′

2 with x:A1 in the
context:

Γ � A1 = A2 :: Ω

Γ, x:A1 � A′
1 = A′

2 :: Ω

Γ � Πx:A1. A
′
1 = Πx:A2. A

′
2 :: Ω

(E-DFUN)

This allows use of the ABBREV rule to obtain equa-
tions such as the following:

Πx:{b � α::Ω=Int}. x.b = Πx:{b � α::Ω=Int}. Int
{b � α::Ω=Int, y � x:α} = {b � α::Ω=Int, y � x:Int}

A similar effect occurs while typing terms. For exam-
ple, in the following, we know that x.b = Int while type
checking M :

{y � x:{b � α::Ω=Int}, y′ � x′:M}

Because of the ability to substitute away transparently
bound names using the equality rules, no dependency
on a transparently bound name is ever truly essential.
This allows many more field selections and function ap-
plications to type check than would otherwise be the
case.

When translucent sums are given fully opaque types,
they act like weak sums which can be used to create
abstract data types (ADTs) [35]. Because we have de-
pendent functions and a form of dependent pairs (a pair
of terms where the type of the second term depends on
the first component of the pair), our elimination form
for weak sums is more powerful than usual [35, 7, 10].
Consider the following example in SML-like notation,
where weak is used to construct a weak sum:

let structure S = struct
structure Stack = weak

type T = (int ref) list
val makeStack:()->T = ...
val push:(int,T)->() = ...
...

end
val myStack = Stack.makeStack()

end in
S.Stack.push(1,S.myStack)

end

This example is well-typed in our system because we can
determine that S.myStack has type S.Stack.T which is
the argument type of the function S.Stack.push. Note
that there is no way to type this example using the
open elimination form for weak sums because there is
no scope containing both the initialization of myStack
and its use that is also inside the scope of Stack.

3.3 The VALUE rules

Suppose the typing context contains the following dec-
laration:

r:{b � α::Ω, y � x:α}
What types can we give to the expression r under this
context? Because we have a name, r, for the translucent
sum expression we are trying to type, we have a name
for the contents of its b field, namely r.b. This sug-
gests that we can give r the type {b � α::Ω=r.b, y � x:r.b}
which is a subtype of the context type for r.

This technique of giving a more expressive type to
translucent sums when we have a name for their con-
structor components can be generalized to work on ar-
bitrary translucent sum values. The name in this case is
simply V .b where V is the value in question. Attempt-
ing to extend the technique to general terms requires
dropping the restriction that only values may appear in
constructors and results in unsoundness in the presence
of effects.14 The following two typing rules implement
this technique:

Γ � V : {b � α::K, D1, . . . , Dn}
Γ � V : {b � α::K=V .b, D1, . . . , Dn}

(VALUE-O)

Γ � V .y : A′

Γ � V : {y � x:A, D1, . . . , Dn}
Γ � V : {y � x:A′, D1, . . . , Dn}

(VALUE-V)

(The VALUE-V rule is used in cases of nested translu-
cent sums to apply the technique recursively.)

By alternately applying the VALUE rules to convert
an opaque binding into a transparent one and the sub-
sumption rule to propagate that definition (and hence
removing any dependencies on that binding), we can
give any translucent sum value a fully transparent type
(there are no constructor components for which infor-
mation is lacking) with no dependencies between the
fields (or subfields). Because of this, field selection on
values as well as applications of functions to values do
not run into problems due to the inability to remove de-
pendencies. Without this kind of usage of the VALUE
rules, expressions such as r.y would not type check.

The more expressive type given by the VALUE rules
to translucent sum values is also critical to the propaga-
tion of typing information. For example, if s is bound to
the result of the expression r, it will be given the more
expressive type, allowing the fact that s.b = r.b to be
inferred.

14This would allow field selection to always succeed because
it would permit all dependencies to be removed. Unsoundness
example: (M.y.2) (M.y.1) where M is the example in section 4.6.



4 Selected Examples

4.1 Simple structures

Typical SML structures can be translated straightfor-
wardly into our system, with the only complication
being the treatment of polymorphism (as discussed
in [16].) Consider the following structure S considered
in the introduction:

structure S = struct
type t = int
type u = t -> t
val f = fn x:t => x

end

This translates as:

S = {t � t=Int, u � u=t→t, f � f=λx:t. x}
The translations of the signatures considered earlier
(only SIG here is actually a valid SML signature) are:

FULL SIG S = {t � t::Ω=Int, u � u::Ω=Int→Int,
f � f:Int→Int}

PARTIAL SIG S 1 = {t � t::Ω, u � u::Ω=t→t, f � f:u}
PARTIAL SIG S 2 = {t � t::Ω=Int, u � u::Ω, f � f:u}

SIG = {t � t::Ω, u � u::Ω, f � f:u}

The subtyping rules for our system establish that
FULL SIG S ≤ PARTIAL SIG S 1 ≤ SIG and
FULL SIG S ≤ PARTIAL SIG S 2 ≤ SIG. The signatures
PARTIAL SIG S 1 and PARTIAL SIG S 2 are incompara-
ble.

The signature given to S determines which equations
on S.t and S.u can be deduced. By default our system,
like SML, will give S its full signature, FULL SIG S. This
means that we will be able to deduce that S.t = Int
and S.u = Int→Int. If we insert a coercion to one of the
other signatures before the binding to S, fewer equations
will be deducable in our system. In SML, by contrast,
user-specified coercions never result in the loss of typing
information. They can, however, result in the loss of
fields. Thus, in order to translate a coercion from SML
into our system, we need to enrich the target signature
with all the available typing information.

4.2 Abstraction

SML/NJ [2] supports an extension to SML, called ab-
straction, which is an alternative to the normal struc-
ture binding mechanism. If the keyword abstraction
is used instead of the keyword structure when bind-
ing a structure, all information about the constructor
components of that structure is forgotten. Had S in
the previous example been bound with an abstraction
binding instead of the structure one we used, it would

have been as if we had given S in our system the signa-
ture SIG. That is to say, S.t and S.u would have been
bound opaquely. Note that it is not possible in SML/NJ
to give S a partial signature using this mechanism. Only
the fully transparent (via structure) and fully opaque
(via abstraction) alternatives are available.

Abstraction bindings can be translated into our sys-
tem by inserting a forced coercion just before the bind-
ing to the appropriate opaque type. For example, con-
sider the following implementation of an abstract data
type (ADT):

abstraction Stack = struct
type T = (int ref) list
val push:(T,int)->() = ...
val pop:T->int = ...
val isEmpty:T->bool = ...

end

This translates to:
Stack = ({ T � T=list(ref Int),

push � push=(. . .):(T, Int)→(),
pop � pop=(. . .):T→Int,
isEmpty � isEmpty=(. . .):T→Bool }

) : { T � T::Ω,
push � push:(T, Int)→(),
pop � pop:T→Int,
isEmpty � isEmpty:T→Bool }

Note that because the type information about the iden-
tity of the T field is lost in the coercion, the rest of
the program will be unable to break the abstraction.
SML provides an abstraction mechanism, abstype, at the
core language level. Because translucent sums are first-
class in our system, we can achieve the effect of SML’s
abstype using the abstraction binding mechanism.

4.3 Sub-structures

Sub-structures are also easily translated. For example,
suppose we wanted to use the Stack structure in a bigger
structure as follows:

structure Big = struct
structure ourStack = Stack
type T = ourStack.T
...

end

This translates into:

Big = {ourStack � ourStack=Stack, T � T=ourStack.T, . . .}
Big will be given the following full signature:

{ourStack � ourStack:{ T � T::Ω=Stack.T,
push � push:(T, Int)→(),
pop � pop:T→Int,
isEmpty � isEmpty:T→Bool },

T � T::Ω=ourStack.T, . . .}



Note that we have that Big.ourStack.T = Big.T =
Stack.T.

4.4 Functors

Functors translate into dependent functions in the ex-
pected way. Consider the following example from the
introduction:

functor F(structure X:SIG):SIG = struct
type t = X.t * X.t
type u = X.u
val f = X.f

end

This translates into:
F = λX:SIG. ( {t � t=X.t ∗ X.t, u � u=X.u, f � f=X.f} :

{t � t::Ω=X.t ∗ X.t, u � u::Ω=X.u, f � f:u})
(The coercion on the result type of the functor is an
abbreviation for a coercion on the functor body.) Note
the enriched signature we have to give instead of SIG
in order to make the coercion have the same effect as
it does in SML. Translating the functor signatures we
considered for F gives:

FULL SIG F = ΠX:SIG. {t � t::Ω=X.t ∗ X.t, u � u::Ω=X.u,
f � f:u}

PARTIAL SIG F = ΠX:SIG. {t � t::Ω, u � u::Ω=X.u, f � f:u}
SIG F = ΠX:SIG. SIG

Here, FULL SIG F ≤ PARTIAL SIG F ≤ SIG F.
Suppose T was bound to the result of applying F to

S. Before the APP rule can be applied to determine
T’s type, the subsumption rule must be used to co-
erce F’s type (FULL SIG F) to an arrow type. One way
this could be done is shown in Figure 4. First, F’s ar-
gument type is coerced to a subtype (remember that
FULL SIG S ≤ SIG) using the fact that subtyping of
function types is contra-variant. Next, the equality rules
are used to remove the dependencies on X by the result
type, resulting in an arrow type. The result is that T
gets assigned the following type:

{t � t::Ω=Int ∗ Int, u � u::Ω=Int→Int, f � f:u}
If F had instead had the type PARTIAL SIG F, T would
have been assigned the type:

{t � t::Ω, u � u::Ω=Int→Int, f � f:u}

4.5 Sharing specifications

The basic idea in translating sharing specifications is
that for each set of names that are asserted to be equal,
pick one with maximal scope as representative of the
equivalence class and set the others equal to it using
transparent definitions. For example, the following SML
signature:

signature H = sig
type t
type u
type v
sharing type t = u

and type v = u
end

translates into:

H = {t � t::Ω, u � u::Ω=t, v � v::Ω=t}
A more interesting case is provided by the argument
signature of the Parser functor in MacQueen’s example
from the introduction:

sig structure L:LEXER
structure T:SYMTAB

sharing type L.S.symbol=T.S.symbol
end

This translates into:

{L � L:LEXER, T � T:{S � S:{symbol � symbol::Ω=L.S.symbol,
. . .}, . . .}}

The omitted parts are the usual translation of the rest
of SYMTAB and SYMBOL. This translation method also
works on sharing between constructors in the argument
and result of a functor.

4.6 First-class modules

So long as we restrict ourselves to simple module op-
erations like binding, functor application of a named
functor to a named or fully transparent module, and se-
lection from a named module, we never lose any typing
information. In fact, the only module operation avail-
able in SML that causes a loss of information when used
in our system is coercing a module to a user-specified
type. This is not surprising, however, since the purpose
of coercions is controlled information loss.

Due to the fact that modules are first-class in our
system, it is possible to write module expressions which
force the loss of typing information in order to preserve
soundness. For example, consider the following:15

if flip() then {b � α=Int, y � x=(3, succ)}
else {b � α=Bool, y � x=(true, not)}

While both parts of the if can be given fully transpar-
ent types, these types are not equal. In order to make
the if type check, we must give them equal types. The
only way to do this is to use the subsumption rule to
coerce both of their types to {b � α::Ω, y � x:(α, α→α)}.

15For the unsoundness examples, flip is a function which al-
ternates returning true and false. It is easily implemented using
a global variable.



FULL SIG F

= ΠX:SIG. {t � t::Ω=X.t ∗ X.t, u � u::Ω=X.u, f � f:u}
≤ ΠX:FULL SIG S. {t � t::Ω=X.t ∗ X.t, u � u::Ω=X.u, f � f:u}
= ΠX:{t � t::Ω=Int, u � u::Ω=Int→Int, f � f:Int→Int}. {t � t::Ω=X.t ∗ X.t, u � u::Ω=X.u, f � f:u}
= ΠX:{t � t::Ω=Int, u � u::Ω=Int→Int, f � f:Int→Int}. {t � t::Ω=Int ∗ Int, u � u::Ω=Int→Int, f � f:u}
= FULL SIG S→{t � t::Ω=Int ∗ Int, u � u::Ω=Int→Int, f � f:u}

Figure 4: Steps in coercing F’s type to an arrow type

The system described in [34] displays similar behav-
ior, namely a forced loss of typing information when
using modules in conditionals and other primitives. In
that system, types are divided into two universes, U1,
the universe of “normal” types like Int and Bool→Int,
and U2, the universe of module types. The loss in this
system is caused by the need to apply an implicit co-
ercion from a strong sum (which belongs to U2) to a
weak sum (which belongs to U1) because primitives op-
erate only on terms with types in U1. This coercion
causes a total loss of typing information. Our system is
more flexible than this because it only loses just enough
information to ensure soundness.

The possible uses for first-class modules have not been
well explored. One known use discussed in [35] is to
select at runtime between two or more ADTs which im-
plement the same abstraction using different algorithms
based on expected usage conditions. For example, we
could use one particular hash table implementation for
small tables and another for large ones.

5 Related Work

An early influential attempt to give a comprehensive
type-theoretic analysis of modularity and abstraction
was undertaken by Burstall and Lampson with the ex-
perimental language Pebble [5]. Their work stresses the
role of dependent types and the mechanisms required to
support abstraction, but does not address the problem
of controlling the “degree” of abstraction. In particu-
lar, Pebble supports type and value bindings as primi-
tive notions, but with an “opaque” typing discipline, in
contrast to our calculus.

Cardelli’s language Quest [7] has exerted a strong
influence on the present work. Our approach shares
with Quest the emphasis on type-theoretic methods,
and is similarly based on Girard’s Fω enriched with a no-
tion of subsumption (though we depart from Cardelli’s
approach by omitting bounded quantification). Quest
does not provide an adequate treatment of modularity;
our work can be seen as providing the type-theoretic ba-
sis for an extension of Quest with an expressive module
system.

Mitchell, et al. [34] consider an extension of the SML
module system with first-class modules as a means
of supporting certain object-oriented programming id-
ioms. Their paper is primarily concerned with illustrat-
ing an interesting language design rather than with the
type-theoretic underpinnings of such a language, though
a brief sketch is provided. A comparison with their work
is given in Section 4.6.

The type-theoretic analysis of the SML modules sys-
tem was initiated by MacQueen [27], and further devel-
oped by Harper and Mitchell [33, 20, 19]. This work is
summarized and compared with the present work in the
introduction.

Our language bears some relationship to Russell [4]
and Poly [30], but a detailed comparison seems diffi-
cult in the absence of a type-theoretic analysis of these
languages (see [21] for an early attempt).

In an effort to address the problem of separate compi-
lation, Leroy has independently developed a variant of
the SML modules system based on the notion of a “man-
ifest type” which is similar in spirit to our translucent
sum types. See Leroy’s paper in this volume [23] for
a description of his system and some comments on its
relationship to ours.

6 Conclusions

The main contribution of this work is the design of a
calculus of modularity with the following features:

• Fine control over the “degree” of abstraction
through the notion of a translucent sum type.

• A treatment of modules as first-class entities with-
out sacrificing the control over type abstraction af-
forded by a second-class module system.

• Support for separate compilation in a form that
ensures the complete equivalence between separate
and integrated compilation of a large system.

The following are some important directions for fu-
ture research:



• Establish the soundness of the type system by prov-
ing preservation of typing under a call-by-value op-
erational semantics.

• Investigate the efficiency of type checking and de-
velop practical algorithms that may be used in an
implementation. We show in Appendix B that the
subtyping problem for our system, and hence the
type checking problem, is undecidable. There is
reason to believe, however, that this will not be a
problem in practice.

• Design an elaborator to translate an SML-like syn-
tax into the calculus, including a systematic treat-
ment of the reduction of symmetric sharing spec-
ifications to asymmetric definitions in signatures.

• Develop an treatment of structure sharing that ac-
counts for structure generativity and interacts well
with computational effects.
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A The Typing Rules

Definition A.1 (Judgements)

� Γ valid valid context
Γ � A :: K valid constructor

Γ � A = A′ :: K equal constructors
Γ � D = D′ equal declarations

Γ � A ≤ A′ subtype relation
Γ � D ≤ D′ subfield relation

Γ � M : A well-typed term
Γ � B : D well-typed binding

Definition A.2 (The field name stripping function)

b � α::K = α::K

b � α::K=A = α::K=A

y � x:A = x:A



Definition A.3 (Context Formation Rules)

� • valid (INITIAL-T)

� Γ valid α �∈ dom(Γ)

� Γ, α::K valid
(DEF-O)

� Γ, α::K valid Γ � A :: K

� Γ, α::K=A valid
(DEF-T)

Γ � A :: Ω x �∈ dom(Γ)

� Γ, x:A valid
(DEF-V)

Definition A.4 (Constructor Formation Rules)

� Γ valid α::K ∈ Γ

Γ � α :: K
(C-VAR-O)

� Γ valid α::K=A ∈ Γ

Γ � α :: K
(C-VAR-T)

Γ � V : {b � α::K}
Γ � V .b :: K

(C-EXT-O)

Γ, x:A � A′ :: Ω

Γ � Πx:A. A′ :: Ω
(C-DFUN)

� Γ valid

Γ � {} :: Ω
(C-UNIT)

Γ, D � {D1, . . . , Dn} :: Ω

Γ � {D, D1, . . . , Dn} :: Ω
(C-TSUM)

Γ, α::K � A :: K′

Γ � λα::K. A :: K⇒K′ (C-LAM)

Γ � A1 :: K2⇒K Γ � A2 :: K2

Γ � A1 A2 :: K
(C-APP)

Definition A.5 (Constructor Equality Rules)

Γ � A :: K

Γ � A = A :: K
(E-REFL)

Γ � A′ = A :: K

Γ � A = A′ :: K
(E-SYM)

Γ � A = A′ :: K Γ � A′ = A′′ :: K

Γ � A = A′′ :: K
(E-TRAN)

Γ � A1 = A2 :: Ω

Γ, x:A1 � A′
1 = A′

2 :: Ω

Γ � Πx:A1. A
′
1 = Πx:A2. A

′
2 :: Ω

(E-DFUN)

Γ � D = D′

Γ, D � {D1, . . . , Dn} = {D′
1, . . . , D

′
n} :: Ω

Γ � {D, D1, . . . , Dn} = {D′, D′
1, . . . , D

′
n} :: Ω

(E-TSUM)

Γ, α::K � A = A′ :: K′

Γ � λα::K. A = λα::K. A′ :: K⇒K′ (E-LAM)

Γ � A2 = A′
2 :: K

Γ � A1 = A′
1 :: K⇒K′

Γ � A1 A2 = A′
1 A′

2 :: K′ (E-APP)

Γ, α::K � A :: K′ Γ � A′ :: K

Γ � (λα::K. A) A′ = [A′/α]A :: K′ (E-BETA)

Γ, α::K � A α :: K′ Γ � A :: K⇒K′

Γ � λα::K. A α = A :: K⇒K′ (E-ETA)

Γ � V : {b � α::K=A}
Γ � V .b = A :: K

(ABBREV)

� Γ valid α::K=A ∈ Γ

Γ � α = A :: K
(ABBREV’)

Definition A.6 (Declaration Equality Rules)

� Γ, α::K valid

Γ � b � α::K = b � α::K
(EQ-O)

Γ � A = A′ :: K � Γ, α::K=A valid

Γ � b � α::K=A = b � α::K=A′ (EQ-T)

Γ � A = A′ :: Ω � Γ, x:A valid

Γ � y � x:A = y � x:A′ (EQ-V)

Definition A.7 (Subtyping Rules)

Γ � A = A′ :: Ω

Γ � A ≤ A′ (S-EQ)

Γ � A ≤ A′ Γ � A′ ≤ A′′

Γ � A ≤ A′′ (S-TRAN)

Γ � A2 ≤ A1

Γ, x:A2 � A′
1 ≤ A′

2 Γ � Πx:A1. A
′
1 :: Ω

Γ � Πx:A1. A
′
1 ≤ Πx:A2. A

′
2

(S-DFUN)

Γ � D ≤ D′ Γ � {D′, D′
1, . . . , D

′
m} :: Ω

Γ, D � {D1, . . . , Dn} ≤ {D′
1, . . . , D

′
m}

Γ � {D, D1, . . . , Dn} ≤ {D′, D′
1, . . . , D

′
m}

(S-TSUM)

Γ � {D1, . . . , Dn, D} :: Ω

Γ � {D1, . . . , Dn, D} ≤ {D1, . . . , Dn}
(S-THIN)

Definition A.8 (Subfielding Rules)

Γ � D = D′

Γ � D ≤ D′ (S-SAME)

Γ � A ≤ A′ � Γ, x:A valid

Γ � y � x:A ≤ y � x:A′ (S-VALUE)

� Γ, α::K=A valid

Γ � b � α::K=A ≤ b � α::K
(S-FORGET)



Definition A.9 (Term Formation Rules)

� Γ valid x:A ∈ Γ

Γ � x : A
(VAR-V)

Γ, x:A � M : A′

Γ � λx:A. M : Πx:A. A′ (LAM)

Γ � M1 : A1→A2 Γ � M2 : A1

Γ � M1 M2 : A2

(APP)

� Γ valid

∀i ∈ [1..n]. Γ, D1, . . . , Di−1 � Bi : Di

Γ � {B1, . . . , Bn} : {D1, . . . , Dn}
(TSUM)

Γ � M : {y � x:A}
Γ � M.y : A

(EXT-V)

Γ � V : {b � α::K, D1, . . . , Dn}
Γ � V : {b � α::K=V .b, D1, . . . , Dn}

(VALUE-O)

Γ � V .y : A′

Γ � V : {y � x:A, D1, . . . , Dn}
Γ � V : {y � x:A′, D1, . . . , Dn}

(VALUE-V)

Γ � M : A

Γ � M :A : A
(COERCE)

Γ � M : A′ Γ � A′ ≤ A

Γ � M : A
(SUBS)

Definition A.10 (Binding Formation Rules)

� Γ, α::K=A valid

Γ � b � α=A : b � α::K=A
(BIND-T)

Γ � M : A � Γ, x:A valid

Γ � y � x=M : y � x:A
(BIND-V)

Lemma A.11 (Properties of the typing system)

1. if Γ � A :: K then � Γ valid

2. if Γ � A1 = A2 :: K then Γ � A1 :: K and Γ � A2 :: K

3. if Γ � D1 = D2 then � Γ, D1 valid and � Γ, D2 valid

4. if Γ � A1 ≤ A2 then Γ � A1 :: Ω and Γ � A2 :: Ω

5. if Γ � D1 ≤ D2 then � Γ, D1 valid and � Γ, D2 valid

6. if Γ � M : A then Γ � A :: Ω

7. if Γ � B : D then � Γ, D valid

8. if � Γ, D valid then � Γ valid

B Undecidability of Subtyping

The subtyping relation for our system can be shown to
be undecidable by a slight modification to Benjamin
Pierce’s proof of the undecidability of F≤ subtyping
[38, 37]. The basic source of undecidability is the sub-
typing rule (FORGET) that allows the forgetting of
information about the type components of translucent
sums.

Even a vastly simpler system with transparent and
opaque sums and a forgetting rule is undecidable. In
order to demonstrate this as well as simplify the discus-
sion, we consider now a very simple fragment of our full
system.

B.1 The fragment λ→,∃,∃=

The fragment λ→,∃,∃= is obtained from our system by
restricting the set of constructors to include only types
and restricting the methods of building types to only
allow for arrow types, binary opaque sums (often called
weak sums), and binary transparent sums. We use a
slightly different notation to emphasize that these are
simpler constructs. The syntax for λ→,∃,∃= is as follows:

Types A ::= α | A1→A2 | ∃α.A | ∃α=A1.A2

As before, the meta-variable α ranges over type vari-
ables and we identify types that differ only by α-
conversion. The translation back to our earlier notation
is as follows:

α = α

A1→A2 = Πx:A1.A2

∃α.A = {b � α::Ω, y � x:A}
∃α=A1.A2 = {b � α::Ω=A1, y � x:A2}

The effect of the subtyping rules of our system on
this fragment is captured by the following simple set of
rules:

Definition B.1 (Subtyping rules for λ→,∃,∃=)

α ≤ α (VAR)

A′
1 ≤ A1 A2 ≤ A′

2

A1→A2 ≤ A′
1→A′

2

(ARROW)

A ≤ A′

∃α.A ≤ ∃α.A′ (SUM-O)

[A/α]A1 ≤ [A/α]A2

∃α=A.A1 ≤ ∃α=A.A2

(SUM-T)

[A/α]A1 ≤ [A/α]A2

∃α=A.A1 ≤ ∃α.A2

(FORGET’)



F(ρ) =

{
αi

∃α, α1, . . . , αn.¬(∃α′=α, α′
1=F(ρ1), . . . , α

′
n=F(ρn).¬F(ρ1))

∃α, α1, . . . , αn.¬α

if ρ = αi

if ρ = [α1, . . . , αn]<ρ1 . . . ρn>
if ρ = HALT

F(R) = ∃α=σ, α1=F(ρ1), . . . , αn=F(ρn).¬F(ρ1) ≤ σ where R = <ρ1 . . . ρn> and
σ = ∃α, α1, . . . , αn.¬(∃α′=α, α′

1=α1, . . . , α
′
n = αn.¬α)

Here, α, α′, and α′
1 through α′

n are fresh variables.

Figure 5: Modifications to Pierce’s encoding of row machines

Note that this set of rules is completely syntax di-
rected and does not require the use of a context because
of the explicit use of substitution. The proof that this
set of rules corresponds to the subtyping rules of the
original system on this fragment is omitted. For the
purposes of the undecidability proof, we will only need
the following lemma:

Lemma B.2 The subtyping relation for λ→,∃,∃= is re-
flexive.

The proof proceeds by structural induction on the size
of the type using the following measure:16

|α| = 0
|A1→A2| = 1 + |A1| + |A2|
|∃α.A| = 1 + |A|
|∃α=A1.A2| = 1 + |[A1/α]A2|

B.2 Undecidability of λ→,∃,∃= subtyping

Theorem B.3 If the FORGET’ rule is removed, then
λ→,∃,∃= subtyping is decidable.

Proof: Each use of the other rules strictly decreases the
following non-negative measure, so the simple syntax-
directed procedure always terminates in this case:
|A1 ≤ A2| = |A1| + |A2|. �

Note that use of the FORGET’ rule does not decrease
this measure and in fact can increase it because the type
on the right side can grow without limit in the recursive
call. This fact can be used to construct examples that
cause the simple syntax-directed procedure for checking
λ→,∃,∃= subtyping to loop. For example, consider the
following definitions:

¬A = A→α′

P (A) = ∃α=A.¬A where α fresh
Gα(A) = ∃α.¬A

The definition of ¬A is chosen so that ¬A1 ≤ ¬A2 iff
A2 ≤ A1. Any type constructor with a contravariant

16Note that |[A1/α]A2| = |[|A1|/α]A2| if we define |i| = i.

subtyping rule could be used here. An example which
causes cyclic behavior is then as follows:

P (Gα(P (α))) ≤ Gα(P (α))
= ∃α=Gα(P (α)).¬Gα(P (α)) ≤ ∃α.¬P (α)
⇒ [Gα(P (α))/α](¬Gα(P (α))) ≤ [Gα(P (α))/α](¬P (α))
= ¬Gα(P (α)) ≤ ¬P (Gα(P (α)))
⇒ P (Gα(P (α))) ≤ Gα(P (α))

...

Theorem B.4 λ→,∃,∃= subtyping is undecidable.

Pierce’s proof can be found in chapter 6 of his thesis
[38] or in [37]. Space considerations prevent outlining
it here. The modifications necessary to change his en-
coding of row machines so that it produces λ→,∃,∃=

subtyping questions instead are found in Figure 5. The
key differences are as follows:

• Use of ∃α=A.A1 ≤ ∃α.A2 instead of ∀α.A2 ≤
∀α≤A.A1.

• Use of reflexivity to halt computation instead of
the FTOP rule. (Compare the two definitions of
F(HALT))


