
Block-Level Security for Network-Attached Disks

Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John MacCormick, Erwin Oertli,
Dave Andersen, Mike Burrows, Timothy Mann, Chandramohan A. Thekkath

HP Systems Research Center∗

Palo Alto, CA

Abstract

We propose a practical and efficient method for adding
security to network-attached disks (NADs). In contrast
to previous work, our design requires no changes to the
data layout on disk, minimal changes to existing NADs,
and only small changes to the standard protocol for ac-
cessing remote block-based devices. Thus, existing NAD
file systems and storage-management software could in-
corporate our scheme very easily. Our design enforces
security using the well-known idea of self-describing ca-
pabilities, with two novel features that limit the need for
memory on secure NADs: a scheme to manage revoca-
tions based on capability groups, and a replay-detection
method using Bloom filters.

We have implemented a prototype NAD file system,
called Snapdragon, that incorporates our ideas. We eval-
uated Snapdragon’s performance and scalability. The
overhead of access control is small: latency for reads and
writes increases by less than 0.5 ms (5%), while band-
width decreases by up to 16%. The aggregate throughput
scales linearly with the number of NADs (up to 7 in our
experiments).

1 Introduction

Network-attached disks (NADs) are storage devices that
accept block read/write requests over the network. They
can be used to build file systems that provide better per-
formance than traditional distributed file systems such as
NFS [22]. In traditional systems, disks are attached di-
rectly to a file server, which provides file access to clients
across a network. Because all data must pass through
the server, it quickly becomes a bottleneck as the system
scales, limiting the achievable bandwidth.

NAD file systems, in contrast, allow clients to bypass

∗This work was done at the HP Systems Research Center in Palo
Alto. The authors with differing current affiliations are: Andersen,
MIT; Burrows and Thekkath, Microsoft Research; Mann, VMware.

the file server and go straight to disk to read and write file
data. Although clients must still talk to the file server for
metadata operations (e.g., file lookup and deletion), the
file server’s bandwidth no longer constrains the file sys-
tem’s bandwidth. Such asymmetric shared file systems
[18] excel at workloads with high bandwidth and rela-
tively few metadata operations. Commercial examples
of such file systems include Tivoli’s SANergy [25] and
SGI’s CXFS [11].

Network-attached disks commercially available today
do not provide any support for security: they honor any
request received. Thus, securing a NAD file system
today requires the NAD network and all attached ma-
chines and disks to be physically secured. In practice,
this forces the use of a separate LAN for storage (usu-
ally called a Storage Area Network, or SAN) and pre-
vents clients located outside a machine room or under
end-user control from directly accessing the NADs. Un-
fortunately, this means that NAD file systems cannot de-
liver high bandwidth to desktop machines, preventing
many useful applications (e.g., supplying training videos
to PCs and desktop data mining) from taking advantage
of NAD technology.

We believe that any practical approach to this prob-
lem should minimize the changes required in order for
commercial NAD file systems to use it. Schemes that
require major changes to commercial file systems, or
the creation of a commercial-quality file system from
scratch—both very expensive propositions—are unlikely
to be adopted. Also of concern are the changes needed to
storage-management software, such as monitoring, mir-
roring and backup tools.

Unfortunately, existing approaches that add security to
NADs require large changes: NASD [7, 8] replaces the
existing NAD block model with a variable-length data-
object model and moves most of the filesystem function-
ality onto the disk. SUNDR [13] indexes blocks by their
cryptographic hash instead of their (logical) position on
the disk and garbage collects blocks whose required-by
lists become empty. SNAD [5, 15] disks use special file

and key objects to keep track of which users can ac-
cess each block—in essence, access control lists must be
stored in a particular format so as to be understandable
to the disk. SNAD also stores a small client signature
(36-100 bytes) for each block, requiring it to either of-
fer clients a non-power-of-two raw block size or suffer a
substantial performance penalty.

We propose in this paper adding simple block-level se-
curity to network-attached disks. Our proposal maintains
the existing NAD sequentially-numbered raw-block view
of storage, allowing existing NAD clients to continue us-
ing their existing data layout and management strategies
(e.g., block-based backup); the only changes required are
to create and pass along authorization information from
the server through the clients to the disks. Using a raw-
block view allows for maximum flexibility—higher-level
primitives often limit what can be done. For example, it
seems difficult to implement a file system that can take
atomic snapshots on top of SNAD’s built-in primitives.

By having NADs verify that a request comes unaltered
from a client authorized to read or write that block, and
by encrypting network traffic, we can provide a reason-
able level of security even in an environment where end
users control client machines and the network is vulner-
able to attacks such as wiretapping and spoofing. Under
our system, requests are authorized by an appropriate ac-
companying capability. Similarly to the NASD security
approach [10], our central server, which we call a meta-
data server, issues and manages capabilities, setting pol-
icy, while the disks do only simple access checks.

Because the naive approach of one capability per
block has too much overhead, each of our capabilities
specifies access to one or more ranges of blocks (ex-
tents). Since we do not want our disks to have to un-
derstand which blocks belong to which files, we use self-
describing capabilities: the accessible blocks and access
mode can be determined from a capability without refer-
ence to any other data structures.

To allow revocation of capabilities, we require disks to
remember which capabilities have been invalidated; this
validity data must be held in RAM for speed reasons.
An important contribution of our work is our revocation
method based on capability groups, which dramatically
compresses the validity data without sacrificing perfor-
mance. Another contribution is our non-connection-
based method of handling replay attacks, which allows
for an unlimited number of clients while using only a
small amount of memory.

Because of these techniques, our disk protocol’s re-
quirements on the NADs are very low: standard crypto-
graphic functionality plus a small amount of RAM for

capability management and replay detection (on the or-
der of 128 KB). We believe this requirement is so small
that the scheme could be deployed in existing NADs by
simply changing their firmware, without modifying or
adding hardware. By comparison, existing approaches to
adding security to NADs require much deeper changes to
the disks, and they would cost significantly more to im-
plement.

The remainder of the paper is organized as follows:
Section 2 describes our basic scheme to achieve security.
Section 3 describes the implementation of a prototype
NAD file system we built to demonstrate our scheme.
Section 4 explains some other important aspects of our
design. Section 5 discusses the prototype’s performance,
including the cost of security and the prototype’s scala-
bility. Section 6 covers some limitations of our design.
Section 7 covers related work. And, finally, Section 8
concludes the paper.

2 Block-based security with modest
RAM

We assume that the server and disks can be trusted—they
are responsible for setting and enforcing security policies
under our approach. However, we assume clients can be
compromised and that the network is not secure, either
from eavesdropping or spoofing. Under these conditions,
our security ensures that attackers can access a user’s
data only by compromising a client machine logged into
by that user. Should encryption be turned off for per-
formance reasons, some privacy will be lost, as a wire-
tapper can see data read or written. The level of secu-
rity we offer is similar to that of an NFS system that
uses Kerberos for authentication, cryptographic check-
sums for integrity, and optional encryption for privacy.

Unforgeable, self-describing capabilities are the chief
mechanism we employ for adding security to a NAD file
system. We use the well-known idea of capabilities com-
posed of two parts: a self-describing certificate and an
associated secret. The secret is generated via a mes-
sage authentication code (MAC) from the certificate and
a hidden key known only to the server and the relevant
disk [10, 9, 16, 19]. This basic capability approach, re-
viewed in Section 2.1 below, is augmented by two new
techniques which permit RAM requirements on the sys-
tem’s disks to be very modest: a revocation scheme based
on capability groups, described in Section 2.2; and a
defense against replay attacks using Bloom filters, de-
scribed in Section 2.4.

group ID capability ID disk ID extents mode

Figure 1: Contents of a capability. The group ID and capa-
bility ID are used in our new revocation scheme. The disk ID,
extents, and mode describe the access granted by the capability.

2.1 The basic capability scheme

Our protocol for using capabilities is similar to that of
NASD [10, 9] and SCARED [19], except that our ca-
pabilities describe access in terms of blocks rather than
objects. Intuitively, a capability is a self-descriptive cer-
tificate that grants a specified type of access to parts of
a disk (see Figure 1) when used with an associated se-
cret. Our capabilities contain a group ID and a capability
ID, which are used for revocations as explained in Sec-
tion 2.2; a disk ID, which specifies the disk to which this
capability applies; a list of extents, the ranges of physical
blocks for which access is being granted; and an access
mode (read, write, or both).

The secret is used to prevent forgery of illegal capabil-
ities or of illegal requests using legal capabilities, as we
now explain. The secret is generated using a keyed-hash
message authentication code, or MAC [1]. A MAC func-
tion h(data, key) returns a string mac of fixed length with
the following unforgeability property: without knowing
the value of key, it is infeasible to find any new pairs of
mac and data such that mac = h(data, key). MAC func-
tions can be computed quite efficiently in practice, unlike
public-key signatures.

Every capability c is associated with a secret h(c, k),
where k is a secret key shared by the metadata server and
the disk whose ID is specified in c. (There is a different
key for each disk.) The use of this secret is best explained
by an example. Figure 2 shows a client opening a file for
the first time, and then reading or writing some data. To
open the file, the client contacts the metadata server as-
sociated with the file. If the file’s metadata is not cached
at the server, the server must retrieve it from the relevant
disk, shown by dashed lines in the figure (the metadata
server accesses the disk in the same way that the client
does, which we explain below).

The server checks if the client is permitted to access
the file, and if so it gives the client the following: (1) the
list of physical blocks comprising the file (its blockmap),
(2) a capability c for the file’s blocks1 with the requested
access mode (read, write, or both), and (3) the secret

1For simplicity, this example assumes that the file’s blocks can be
described using only one capability; in practice, highly fragmented files
may require multiple capabilities because capabilities have a fixed size
so that they can fit in a packet.

server

disk

1.
 o

pe
n

client
(knows secret k)

(knows secret k)

4. respose resp
 MAC h(resp, s)

3. operation op
 capability c
 MAC m = h(op,s)

return m
etadata

 if requested

2.
 b

lo
ck

m
ap

 b

 c

ap
ab

ilit
y

c

 s

ec
re

t s
 =

 h
(c

,k
)

(s
ec

ur
e

ch
an

ne
l)

Figure 2: Opening and accessing a file. When a client wishes
to access a file, it talks to the metadata server to get a capability
c and its associated secret s = h(c, k). The client can then ac-
cess the file directly from disk. The disk verifies that the access
is authentic by checking that the client has correctly computed
the “double MAC” m = h(op, s) = h(op, h(c, k)).

s = h(c, k) associated with c. The server’s reply (in par-
ticular s) must be sent over a secure channel (shown by
a darker line in the figure) to prevent eavesdroppers from
learning the secret needed to use the capability. A secure
channel can be obtained by encrypting under a block ci-
pher using a session key established by an authentication
protocol such as Kerberos.

Next, in order to read or write data from or to the file,
the client issues block requests to the disk using the ca-
pability that it obtained. More precisely, the client sends
to the disk an operation op that consists of (1) the type
of access (read or write); (2) the range of physical blocks
to be accessed; and (3) in case of a write operation, the
data to be written. Together with op, the client also
sends the capability c provided by the server and a MAC
m = h(op, s), where s is the secret associated with c.
Because m = h(op, s) = h(op, h(c, k)), we call this
trick the “double MAC”. (The double MAC is not new;
the earliest references we know of are Gobioff et al. [10]
and Mittra et al. [16].) The disk can verify that the MAC
is correct since it receives both c and op, and it has the
secret key k. Note that the double MAC serves a dou-
ble purpose: (1) it is a proof that the client knows s and
thus has been authorized to use the capability c to issue
the operation op, and (2) it prevents op from being tam-
pered with, because if an attacker changes op it would
not know how to compute the required new MAC. 2

2The reader might be wondering whether the application of a MAC
to its own output has somehow compromised its cryptographic proper-
ties. This is not the case, and the intuitive argument is as follows: Sup-

Once the disk has checked and executed the requested
operation op, it sends back a response resp together with
h(resp, s). Here resp contains data (if the request was a
read) or simply an acknowledgment (if the request was a
write). The client verifies that h(resp, s) was computed
correctly, which prevents responses from being forged.

For simplicity, we presented this example without en-
cryption for privacy. One simple way of adding encryp-
tion involves the server also giving the client a session
key e and a token, which is e encrypted under k; the
client and disk encrypt their messages using e, prepend-
ing the token in the clear so the disk can figure out which
session key to use.

2.2 Revoking capabilities

A revocation is required whenever a client should no
longer have the access granted by a previously issued
capability—due, for example, to a change in file permis-
sions, or a file truncation or deletion. We seek a revoca-
tion scheme that is memory efficient, so that it can ideally
be implemented in existing network-attached disks by
simply changing their firmware (rather than, say, adding
more hardware to them). The difficulty is that such disks
have little memory and most of it is used to cache data
(a typical cache size is 4 MB). It is thus important that
the adopted scheme not take much memory: tens of kilo-
bytes would be excellent, while megabytes would prob-
ably be too much.

Earlier schemes described in the literature, such as
NASD [10] and SCARED [19], use object version num-
bers for revocations. In these systems, capabilities con-
fer access only to a particular object version, so incre-
menting an object’s version number suffices to revoke
all old capabilities for it. Although this makes sense
for variable-length objects, whose headers must be read
first to find out where the desired data actually resides on
disk, it is problematic for blocks: changing the permis-
sions of a file would require updating a potentially large
number of version numbers. For example, a 512 MB file
could require updating 1 million version numbers, which
would span 8 thousand blocks assuming 32 bits per ver-
sion number.

Thus, we need a scheme that allows direct revocations
of capabilities, without having to access the blocks to

pose that it was feasible for an adversary who does not know the value
of k to produce values m, op, and c such that m = h(op, h(c, k)).
Then by the unforgeability property of h mentioned above, the adver-
sary must know the value of h(c, k) = s. Thus, the adversary can
produce c and s such that s = h(c, k). Therefore, by applying the
unforgeability property again, the adversary must know the secret key
k, a contradiction.

which the capability refers. A simple and economical
method is to assign capability ID’s to each capability so
that the disk can keep track of valid capabilities through
a bit vector. By doing so, it is possible to keep track
of 524,288 capabilities with 64 KB, a modest amount of
memory.

As a further optimization, we can assign the same ID
to different capabilities, thereby reducing the number of
possible revocations that need to be kept track of, but at
the cost of not being able to independently revoke capa-
bilities that share an ID. It makes sense to group together
all the capabilities describing the same kind of access to
different parts of one file, because they are almost always
revoked together (the exception being partial truncation).
One can further group together capabilities for the same
file with different access modes; this makes file creation
and deletion cheaper at the cost of making permission
changes (e.g., chmod), which are rare, slightly more ex-
pensive.

This straightforward approach has a problem though:
once an ID is revoked, its bit in the revocation vector
must be kept set forever, lest some attacker hold the re-
voked capability and much later illegally use it again if
the bit were cleared. Therefore, no matter how large the
number of ID’s, the system will sooner or later run out of
them.

One way to solve this difficulty is to change k (the
secret key shared by the disk and metadata server) when-
ever ID’s run out, causing all existing capabilities to be-
come stale. The disk’s bit vector can now be cleared
without fear of old invalidated capabilities springing
back to life and posing a security threat.

This scheme has the unfortunately problem that when
k is changed all capabilities become stale at once and will
be rejected by the disk, so all clients need to go back to
the metadata server to get fresh capabilities. Therefore,
the metadata server may get overloaded with a shower
of requests in a short period. We call this the burstiness
problem.

We solve the burstiness problem by using capabil-
ity groups. The basic idea is to place capabilities into
groups, and to invalidate groups when the system needs
to recycle ID’s. Intuitively, this avoids the burstiness
problem because only a small fraction of capabilities is
revoked when system runs out of ID’s. More precisely,
each capability has a capability ID and a group ID. The
disk keeps a list of valid group ID’s, and for each valid
group, a bitmap with the revocation state of ID’s. To
know if a capability is still valid, the disk checks if its
group ID is valid and, within that group, whether the ca-
pability ID is not revoked. To recycle the capability ID’s

Group ID Revoked capability ID’s
Index Counter (bitmap)

0 10 100010001000 . . .
1 5 001111011010 . . .
2 14 111011111000 . . .
...

...
...

63 3 000011010111 . . .

Figure 3: Keeping track of revocations. The table used by
the disk controller to keep track of revoked capabilities.

in a group, the group ID is removed from the list of valid
groups and it is replaced with a new group ID.3 Then, all
capability ID’s of the new group are marked valid.

In our particular implementation, we divide a group
ID into two parts: a 6-bit index and a 64-bit counter.
The index part is used to index a 64-entry table, each
entry of which contains a counter and 8,128 bits of re-
vocation data (see Figure 3). The table requires 64 ×
(8128 + 64) bits or 64 KB of RAM and supports up to
64×8128 = 520, 192 simultaneous capabilities. A capa-
bility is checked by looking up the entry corresponding
to the index part of its group ID, and verifying that the
counter matches the one in the capability’s group ID. If
so, the bit corresponding to the capability ID is tested.
Revocation of a capability is done similarly. Group in-
validation is done by clearing the group’s bitmap and in-
crementing its counter, effectively replacing its group ID
with a fresh new one. All these operations are very quick
(small constant time) and space efficiency is excellent:
each capability takes on average less than 1.01 bits.

Note that capability groups alone do not reduce the to-
tal work on the metadata server over time, but the work
gets spread over a longer period, avoiding the burstiness
problem. We have done simulations with real trace data
that confirm our predictions. Our simulations show that
the peak load on the metadata server is reduced signifi-
cantly with this technique (see Section 4.1 for more de-
tails).

2.3 Network partitions

When a network partition separates the metadata server
from a disk, the server is unable to revoke capabilities
for that disk, resulting in the access permissions of files
on that disk effectively being frozen; in some systems,

3Note that the group ID’s cannot be recycled, which means that
in theory the system will eventually run out of space. But by using
relatively few bits for the group ID’s—say 64 bits—it will take longer
than the life of the system for that to happen.

this could be considered a security breach. To avoid this
problem, we can require the metadata server to periodi-
cally refresh the table of groups and capabilities of each
disk. If a disk does not receive a refresh message within
a certain period of time, it disallows all accesses until it
receives the expected server refresh.

Of course, such a scheme can be disabled if the sys-
tem administrator believes that the overhead of the re-
fresh messages is too high for the protection it provides.

2.4 Preventing replay attacks

While it is infeasible for an adversary to forge new re-
quests, it is trivial to replay requests that have already
been sent to a disk. Hence, a NAD file system that
operates using an unsecured network must have robust
defenses against replay attacks. (Note that replay at-
tack prevention is harder than duplicate detection [2, 12],
which assumes all parties are honest.) Fortunately, it is
possible to achieve this at low cost in memory and com-
putation, without requiring per-client information. The
method, which we believe is novel in the context of re-
play attacks, employs a data structure called a Bloom fil-
ter [4] to remember recent requests.

Bloom filters are a highly efficient way of perform-
ing approximate set-membership queries; given a mem-
bership query, they answer either “probably an element”
or “definitely not an element”. A Bloom filter con-
sists of an array of K bits, denoted b1, b2, . . . , bK , to-
gether with n ≥ 1 hash functions, f1, . . . , fn. The hash
functions are chosen randomly from a family of inde-
pendent hash functions at filter construction time; each
maps requests to integers in {1, 2, . . . , K}. The filter
is defined to be empty when all bits are 0. A request
r is added to the filter by setting the bits with indices
f1(r), f2(r), . . . , fn(r)—i.e., we set bfi(r) = 1, for all
i. To answer the question “is request r in the filter?”, we
reply “probably” if bfi(r) = 1, for all i, and “definitely
not” otherwise.

A disk can detect replays by keeping a list of seen re-
quests in a Bloom filter. When a new request arrives, the
disk checks to see if it is already in the filter. If the filter
reply is “definitely not”, the disk can safely proceed to
process the request after adding it to the filter as it cannot
be a replay. Otherwise, it is likely that the request has
already been issued in the past, so the disk sends a replay
rejection message. The client continues to retransmit a
request until it receives either an acceptance or rejection
message for that request. If it gets a reply rejection mes-
sage, it changes the request’s nonce (so that it hashes dif-
ferently) and continues retransmitting. For the nonce, we

use a small sequence number, which serves no other pur-
pose. Note that in a system with message losses, a client
may sometimes end up executing its own request multi-
ple times consecutively, but this is not a problem when
requests are idempotent.

Of course, after enough requests have been added, the
filter will begin to have a non-negligible false-positive
rate. We consider a filter in need of replacement when
more than a fixed proportion of its bits are set. We
implement filter replacement by maintaining several fil-
ters at the disk together with a monotonically-increasing
epoch number, which is periodically checkpointed to
disk. Each filter is associated with a recent epoch. When
the filter corresponding to the current epoch needs re-
placement, the disk increments its epoch number, deletes
its oldest filter, and starts a new filter to handle the new
epoch. On reboot, the epoch number is incremented by
the number of filters; this prevents replaying messages
sent while the disk was down.

A client sends what it believes to be a disk’s latest
epoch number—each disk message includes the current
number—with every message to the disk. If the epoch
number in a client request is too old (i.e., more out of
date than the number of filters being maintained), the re-
quest is rejected. Otherwise, it is checked against the
appropriate Bloom filter. In this way, the switch to a new
filter can be made transparent to active clients of the disk.
(Clients idle sufficiently long will have their first request
rejected due to its out-of-date epoch number.)

It is worth pointing out the following optimization: in-
stead of applying the hash functions to the whole request
r, which can be quite large (e.g., it includes the data in
a write operation), it suffices to apply them to just the
request MAC m = h(op, s) (described in Section 2.1),
which is only a few bytes long. Note that the request
epoch number and nonce are included in the operation
op, which is guarded by the MAC, preventing an attacker
from altering them.

Another optimization involves not storing read re-
quests in the Bloom filter, allowing for even smaller fil-
ters. Note that read requests need only be checked if en-
cryption is turned off. And even in that case, it may not
be necessary to check recent read requests, because the
attacker could have snooped on the reply of the origi-
nal read. Thus, only very old read requests need to be
filtered out, and this can be accomplished by simply ver-
ifying that the request’s epoch number is valid; there is
no need to use the Bloom filter at all. (Epoch numbers
should be periodically advanced with this optimization.)
Our performance numbers do not include this optimiza-
tion.

Our method to prevent replay attacks with Bloom fil-
ters is simple, robust, and frugal. In contrast, exist-
ing methods such as [3], which keep per-client state,
have two drawbacks: (1) they can support only a lim-
ited number of clients when constrained to use similarly
small amounts of memory, and (2) they require the extra
complexity of authenticating clients to the disk to guard
against a rogue client claiming too large a share of the
client-state table.

Our approach is also different from NASD, which re-
lies on a real-time disk clock and expiration times instead
of an epoch number that can be bumped at any time.
Unfortunately the NASD scheme limits the maximum
rate of requests that NASD can handle to the maximum
size of its recent-request list (stored using a less space-
efficient array) divided by its expiration time [9]. This
could be a problem if many requests hit the disk cache.

2.5 Consistency attacks

If leases (i.e., locks with timeouts) are used to cache
filesystem data at the clients, an attacker that wishes to
create consistency problems can proceed as follows: A
client gets a lock for a file and issues a write request.
The attacker then launches a denial-of-service attack to
simultaneously capture and obliterate the write request
(and subsequent retries) so that it never reaches the disk.
After the lock has expired, the attacker sends the cap-
tured write request to the disk, which executes the write
without the lock held, potentially causing consistency
problems.

To guard against this type of attack, the system could
invalidate requests that are outstanding when the lock ex-
pires. To do that, the metadata server could revoke all ca-
pabilities issued to the client that holds the expired lock;
the metadata server then waits until the disk has acknowl-
edged the revocations before it breaks the lock.

2.6 Data structures and disk functionality

Our addition of security to a NAD file system requires
several data structures, which are listed in Figure 4. At
the metadata server, we maintain a hash table of all valid
capabilities for use in performing revocations: whenever
the access to a file changes, we need to find all capa-
bilities associated with that file and revoke them. The
server also maintains copies of each disk’s valid group
list plus the number of valid and revoked capabilities in
each group so that it can quickly choose which group to
invalidate next.

At the metadata server:

• hash table of all currently valid capabilities, indexed by
inode number

• for each disk, a list of valid groups, with the number of
valid and revoked capabilities in each

At a client:

• a cache of capabilities issued to this client that are not
known to have been revoked

At a disk:

• one counter and bitmap per valid group (64 KB)
• Bloom filters of recent requests (64 KB)

Figure 4: Additional data structures for security.

new functionality equivalent lines of C

cryptography 340

capability groups and revocations 60

miscellaneous (refresh timer, RPC 610
handlers, logging)

Figure 5: Additional disk functionality. The left column de-
scribes the purpose of the additional functionality that would
be required on a secure disk; the right column gives the num-
ber of lines of C devoted to that functionality in our software
implementation.

Clients cache issued capabilities to cut down on
metadata-server traffic. No invalidation protocol is
needed because if a client uses a cached capability that is
no longer valid, the disk will reject it, leading the client
to request a new one from the metadata server. The data
structures at a disk have already been discussed in the
sections on capability management (Section 2.2) and re-
play attacks (Section 2.4).

Figure 5 lists the modest extra functionality required to
add our block-based security to a NAD. Combined with
the fact that the additional data structures could use as
little as 128 KB of RAM (see Figure 4), this suggests
that our approach requires minimal changes to disks.

3 Implementation

We have implemented a prototype NAD file system,
called Snapdragon, that uses our security approach. To
do so, we modified Linux’s existing kernel-based imple-
mentation of NFS version 2. (We used version 2 as a base
because version 3 is not available as a loadable mod-
ule, hindering debugging.) NFS and its utilities com-
prise about 45,000 lines of C. To this we added: (1)

VFS

ext2

rddev

snapd

NAD

Figure 6: Snapdragon server and NAD. When the Snap-
dragon server (snapd) receives a client request, it passes it to
Linux’s VFS, which invokes the underlying filesystem (ext2
in our case), which in turn issues block requests to the device
driver rddev. The latter translates these requests to NAD re-
quests containing “allow-all” capabilities.

new filesystem code comprising 7,500 lines (4,000 at the
server and 3,000 at the client); (2) new disk functional-
ity comprising about 1,000 lines (see Figure 5); and (3)
a security library of about 14,000 lines, the vast majority
of which was imported from openssl.

3.1 Overview

Snapdragon clients run two kernel modules: a stan-
dard NFS lock daemon and a module that contains the
core filesystem functionality, including requesting and
caching capabilities and (partial) blockmaps. The sec-
ond module exports through Linux’s Virtual File System
(VFS) interface the new filesystem type “snapfs”.

The Snapdragon metadata server consists of a filesys-
tem kernel module (snapd), a device driver (rddev) and a
lock daemon (lockd). Lockd is identical to NFS’s. Snapd
and rddev are shown in Figure 6. Snapd translates client
requests into the filesystem-independent operations. In
Linux such operations are handled by the VFS layer,
which invokes filesystem-specific code (in our case ext2)
that implements the operation by issuing low-level block
requests to the device driver, rddev in this case. Rddev
translates these block requests to messages to the disk
controller (NAD) using the same protocol as the clients
use, but using “allow-all” capabilities. This architecture
allows Snapdragon to be independent of the underlying
file system and allows the data layout on remote disks to
be exactly the same as if the disks were local. This has
nice implications for deployment as we explain in Sec-
tion 4.3.

The Snapdragon disk controller is implemented as a
PC connected to the network. The PC runs a small multi-
threaded user-level program that listens for, checks, and
executes block requests.

3.2 Changes to the NFS protocol

The Snapdragon metadata server implements a superset
of the NFS protocol. Snapdragon clients do not issue
the NFSREAD and NFSWRITE RPCs to the metadata
server, because reading and writing are handled locally
at the client by issuing block read and write requests di-
rectly to the relevant NAD based on cached blockmaps
and capabilities. Unmodified legacy NFS clients can
continue to talk to a Snapdragon metadata server using
standard NFS RPCs. Metadata consistency is ensured
because all metadata commands are still handled by the
server.

Three commands were added to the NFS protocol:
OPEN, CLOSE, and GETCAPS. When issuing a GET-
CAPS call, the client passes a file handle, an access
mode, and a range of logical blocks in the file, presum-
ably because it would like to read or write these blocks
in the future. The metadata server returns a blockmap
specifying the corresponding physical blocks and capa-
bility(s) giving the client the requested access to the re-
quested blocks. To keep messages within a reasonable
size, if the range of requested blocks is very large or
fragmented, the server returns a blockmap and set of ca-
pabilities which cover a range as large as possible, and
the client must send another request for the remaining
blocks.

Because GETCAPS returns a blockmap as well as ca-
pabilities, we can invalidate a file’s blockmap by revok-
ing the file’s capabilities: any attempt by a client to use
the old blockmap will result in an revoked-capability er-
ror from the disk, forcing the client to do a GETCAPS
before it can proceed, giving it the new blockmap.

The OPEN and CLOSE commands are necessary only
for caching file contents at the client, not for security.
In our system, every open file is in either exclusive or
non-exclusive mode. A file is in exclusive mode if ei-
ther precisely one client has it open (reading or writing)
or no client has it open for writing. When a client has
a file open that is in exclusive mode, it knows that the
file cannot undergo changes it is not aware of, and there-
fore it can cache the file’s contents. In other situations,
clients must use short timeouts on their cache in order
to achieve acceptable levels of consistency. (We provide
the same consistency as NFS.4) Because the server is no-
tified whenever a client opens or closes a file, it knows
when the exclusivity of a file changes, and can notify the
clients that have that file open by using callbacks.

4A higher level of consistency could be implemented using the same
basic technique as Spritely NFS [24]: channeling reads and writes for
non-exclusive–mode files through the metadata server.

We take advantage of the need for an OPEN call, by
piggybacking (on the reply to the client) a blockmap and
capabilities for the opened file covering as many blocks
as possible. This dramatically reduces the need for GET-
CAPS calls.

One might think that the separation of metadata and
data in a NAD file system would require appending to a
file be given special treatment. It turns out that append
operations can be subsumed under standard write oper-
ations, by using Unix’s bmap function with the allocate
flag set. This function maps a logical block of a file to
a physical block. If the block is not yet mapped and the
allocate flag is set, the block is allocated according to the
specifics of the underlying file system. Thus, to append
to a file, a client issues a standard GETCAPS call for
write access to logical blocks beyond the current end of
the file. The metadata server can then simply call bmap
to simultaneously allocate and get the newly appended
block.

3.3 Capabilities

The design of our capability format was guided by study-
ing the properties of the AdvFS file systems at our 30-
person research laboratory. Recall that a capability in-
cludes a fixed-size list of extents, which are contiguous
ranges of physical blocks. Files occupy one or more
extents; for example, /foo/bar might occupy blocks
[243-256], [9323-9992], and [20-50]. In our file systems,
a single extent covers, on average, 150 KB. Moreover, it
turns out that 90% of files require four or fewer extents,
and that 95% require 13 or fewer extents. Hence, we
decided that any single capability would have space allo-
cated for four extents. Files with more than four extents
can be accessed with multiple capabilities.

3.4 Bloom filter parameters

We use two 32KB bloom filters (262,144 bits each). We
determined the other parameters by optimizing, using
statistical simulation, for the maximum number of re-
quests on average that can be supported per epoch sub-
ject to a maximum false-positive rate, measured over the
last 1,000 requests, of 0.1%. The resulting parameters—
n = 9 hash functions and about 47% of bits used in a full
filter—yield epochs lasting 18,640 requests on average,
or 30 minutes under the request rate of the trace used in
Section 4.1.

3.5 Cryptographic details

Wherever a MAC is required, we use HMAC with the Se-
cure Hash Algorithm SHA-1 [17]. This function returns
20-byte hashes, can be computed extremely fast, and
possesses no known collisions. The client/server secure
channel (see Figure 2) is achieved using the Blowfish
block cipher algorithm [23] with a 16-byte key. When
privacy is desired, we use DES encryption on messages
to and from the disk.

Key management is rudimentary in the current proto-
type: all keys are read from configuration files and re-
main fixed indefinitely. Naturally, in a mature system,
one could use a more elaborate scheme like the one de-
scribed by Gobioff et al. [10].

3.6 Packet security overhead

Capabilities occupy 72 bytes using generous 64-bit val-
ues for block numbers. The replay epoch number has 64
bits, the nonce plus random padding for encryption use
128 bits, and the MAC has 160 bits. Thus, the total secu-
rity data in a disk request is 116 bytes compared to up to
8192 bytes of payload.

4 Discussion

4.1 Practical benefit of capability groups

Is the capability group method beneficial in practice? In
particular, do capability groups reduce the burstiness of
capability allocations, thus reducing the chance of the
metadata server being overloaded? To answer this ques-
tion, we simulated the behavior of secure NADs using
the trace of a 500 GB file system used by about 20 re-
searchers over 10 days [21]. The results are shown in
Figure 7, which is a histogram of how many capability al-
locations were performed by the metadata server in each
1-second period. The amount of memory for capability
storage was fixed at 64 KB. The black bars show results
for the straightforward method of Section 2.2, which uses
a single bitmap to store all capabilities; this is precisely
equivalent to the capability group method, with the num-
ber of groups g = 1. The white bars are for a configura-
tion using the same amount of memory, but divided into
g = 64 groups.

Note that for this particular workload, the metadata
server could hardly be described as “overloaded”: the
peak load of around 500 capabilities/second can easily

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Burstiness of capability allocations

fr
eq

ue
nc

y

one group
64 groups

64−127 128−255 256−511

number of capability allocations in 1−second period

Figure 7: Using 64 groups instead of 1 substantially
reduces the burstiness of capability allocations.

be handled since it takes less than 2 ms to issue a ca-
pability. Nevertheless, these results demonstrate that the
capability group approach substantially reduces bursti-
ness. If the stress on the server were greater (e.g., if it
served more disks), the capability group approach would
improve performance by reducing periods of overload.

4.2 Choice of underlying file system

Our approach to security can be achieved by incremen-
tally modifying most types of file systems. The major
exceptions are file systems that store data from multi-
ple files in the same block, such as ReiserFS [20] and
FFS [14], which store the tails of multiple files in a single
block. These file systems cannot be used because they
require clients be given access to only part of a block,
which our block-based capabilities cannot handle.

4.3 Deployment

Our approach is easy to deploy incrementally in existing
legacy NFS environments. So long as the same underly-
ing file system (and hence, disk layout) is kept, we could
take existing disks with data and use them (without refor-
matting) as NADs by attaching them to the network via a
controller that checks for capabilities and replay attacks.
(Of course, this controller would have to be specially
manufactured for use with our protocol.) By having our
metadata server also export the Snapdragon file system
via plain NFS, we can support legacy NFS clients, albeit

with poorer performance. This allows an NFS system to
be converted one client at a time.

4.4 Optional improvements to capability
groups

There are some improvements that could be applied to
our basic technique of capability groups, which we now
describe for completeness. However, for practical pur-
poses we found that Snapdragon performed quite well
even without these optimizations—in fact, our perfor-
mance numbers in Section 5 do not include them.

Note that when a group is invalidated, there will be
some unintended revocations, that is, valid capabilities
will be revoked even though the permissions of their files
have never changed. This of course does not break the
correctness of the protocol: the client with an invalid
capability can simply request a new capability from the
metadata server. However, performance is affected be-
cause this procedure costs two extra network round trips:
one when the client, unaware, attempts to use the invalid
capability and gets rejected, and another round trip when
the client requests the new capability.

It is desirable to minimize the number of such unin-
tended revocations. An obvious strategy is to choose for
invalidation a group with many revoked capabilities and
few valid ones. In addition, one can exploit the fact that
different capabilities have different (probabilistic) life-
times. For example, a read-only capability for a shared li-
brary is unlikely ever to be revoked, whereas a read/write
capability for a recently-created private file in /tmp is
likely to have a much shorter lifetime. Thus, we could
designate certain groups as volatile and others as stable,
possibly with gradations in between, and assign capabil-
ities to appropriate groups. Volatile groups would then
become good candidates for low-cost invalidations.

Another way to minimize unintended revocations is to
do background cleaning. When the metadata server is
idle, it can help increase the number of available capa-
bility ID’s by choosing one or more capability groups—
preferably groups with many entries in the revocation
list—and slowly migrating their valid capabilities to
other groups. Migrating a capability means issuing an
equivalent replacement capability in a different group
and giving it out to clients that have the old capabil-
ity; the clients replace the old capability with the new
one. Once all valid capabilities in a group have been
migrated, the metadata server can invalidate that group
without causing any unintended revocations. Note that
this scheme requires the metadata server to issue call-
backs to the clients.

5 Performance

We ran experiments to evaluate the following: (1) the
overhead of security, including MAC computation, ca-
pability revocation, and encryption; and, (2) system
throughput and scalability under a bandwidth-intensive
workload. Since the motivation of this work is to extend
the performance benefits of NAD file systems to insecure
environments, it is essential that the performance advan-
tages of NAD file systems not be significantly reduced
when security is added. We repeated each experiment
using several different setups for comparison purposes.

The setups we used include the following: non se-
cure, Snapdragon with all security turned off; secure,
Snapdragon with access control, but without encryption;
private, Snapdragon with access control and encryption;
and, NFS, an NFS server with an attached local disk. Ac-
cess control refers to the capability operations and replay
detection needed to prevent unauthorized operations. Ex-
cept where otherwise noted, encryption in this section
refers to the encryption of all messages to and from the
disk for privacy, and not to the encryption used for the
client/server channel, which is part of Snapdragon’s ac-
cess control and hence present in both the secure and pri-
vate setups. The non-secure setup does no MAC calcula-
tions, replay detection, capability operations, or encryp-
tion of any kind.

Our experiments were conducted on 3 to 8 Celeron
400 MHz PC’s running Linux kernel version 2.4.12 and
connected with a gigabit Ethernet switch. “Jumbo”
9,000-byte frames were enabled for network commu-
nications. Each machine has a locally-attached IDE
disk with a maximum bandwidth of approximately
25 MB/second. In each experiment, one machine acts
as the diskless metadata server, while others act as simu-
lated disk controllers or diskless clients. (A simulated
disk controller is the user-level program described in
Section 3.1, which uses a raw disk partition as its backing
store.)

A major difference between a real hardware NAD and
our simulated one lies in the amount of memory available
for the data cache. A commodity disk drive typically has
a few megabytes, while the machines hosting our simu-
lated NAD have 128 MB. Such a large cache would have
a significant impact on NAD performance, because the
disk controller could buffer and coalesce small random
accesses into large sequential ones, improving the uti-
lization of raw disk bandwidth.

Therefore, in order to make our simulated disk con-
trollers more realistic, we limit their cache to 2 MB for
these setups; that is, we force a sync to disk for ev-

ery 2 MB of dirty data that a simulated NAD receives;
such scheme is appropriate for the streaming perfor-
mance tests that we ran. In addition, we took the fol-
lowing measures to minimize the unintended effects of
buffer caches: we freshly mounted the file systems and
invalidated all block-device buffer caches before each ex-
periment started, and flushed all buffer caches and un-
mounted the file systems before each experiment com-
pleted.

The capability scheme used in the experiments is the
capability group method as described in Sections 2.2
and 3.4. But with the parameter values suggested
there, group invalidations are very rare. To ensure the
experiments included any performance implications of
group invalidations, we used a much smaller store of
capabilities—a strictly pessimistic alteration. Specifi-
cally, we set the number of groups (g) to 20, and the
maximum number of capabilities in each group (wB) to
500, allowing a maximum of 10,000 allocated capabili-
ties. Therefore, for every 500 capabilities allocated be-
yond the first 10,000, a group needed to be invalidated.

5.1 Latency breakdown

We ran a set of micro benchmarks on Snapdragon and
measured the latency of each operation in order to eval-
uate the various overheads associated with our security
scheme. All the latency benchmarks were run on a col-
lection of 700 files, each of size 4 KB. In each bench-
mark, a fixed filesystem operation (e.g., read or chmod)
was performed on each of the files in a randomized order.
For the read and write cases, the metadata server, simu-
lated NAD, and client driver were instrumented to report
the time spent in fine-grained sub-operations.

Figure 8 shows the latency breakdown of the read
and write operations with empty and synchronous write-
through caches respectively. The physical disk access
time averaged 9.3 ms for reads and 10.2 ms for writes.
The MAC computation overhead was 0.4 ms and the en-
cryption overhead was 1.4 ms. The disk-communication
latency for all operations was 1.6 ms. If the client needs
to request a capability for an operation, it requires an ad-
ditional round trip from the client to the metadata server,
which costs 2.3 ms. If a client attempts to use a revoked
capability (not shown), it will get a rejection from the
disk, which costs an extra 1.8 ms (secure setup) or 2.5 ms
(private setup).

Figure 9 shows the latency of metadata operations.
The chmod operation involves a round trip from the
metadata server to the simulated NAD that requires MAC
computation, while the unlink operation involves multi-

0

2

4

6

8

10

12

14

16

18

read-
non

read-
sec

read-
pri

read-
nocap-

sec

read-
nocap-

pri

write-
non

write-
sec

write-
pri

write-
nocap-

sec

write-
nocap-

pri

L
at

en
cy

 (
m

s)

CommToDisk DiskAccess Security CommToMeta

Figure 8: Latency breakdown of read and write op-
erations for non-secure setup (non), secure setup (sec),
and private setup (pri). Operations labeled with “nocap”
means that the client does not have the appropriate capa-
bility and thus it has to request one to the metadata server.
Latency is divided into the following categories: com-
munication to the metadata server (CommToMeta), com-
munication to the disk controller (CommToDisk), disk
access, and security (including MAC computation and
encryption).

ple such trips because ext2’s unlink code writes multi-
ple disk blocks. The open operation involves both MAC
computation (to compute the secret s) and encryption of
the capability, whether or not encryption for privacy is
used. For operations that do not require revocations, the
overhead for access control is less than 1 ms and the over-
head for privacy is less than 3 ms. The operations involv-
ing revocations (i.e., chmod-rev and unlink-rev) require
an additional round-trip from the metadata server to the
disk, roughly 1.4 ms.

In summary, access control (i.e., MAC computation
and replay detection) increases the latency of reads and
writes by less than 0.5 ms (5%); encryption an additional
overhead of 1.4 ms; and capability revocation increases
the latency of read or writes latency by roughly 2.3 ms.
For metadata operations, access control costs can cost
1 ms and privacy can cost 3 ms for certain operations.

5.2 Aggregate throughput and scalability

We ran a benchmark to measure the bandwidth of reads
and writes by multiple clients on a single disk with var-
ious file sizes. There were 6 clients in our experiments,
each running on a separate machine. Each client opened
one file at a time and sequentially read or wrote in 64 KB
chunks. Each experiment lasted between 5 and 25 min-

0

2

4

6

8

10

12

chmod chmod-
rev

unlink unlink-
rev

open close

La
te

nc
y

(m
s)

NonSecure Secure Private

Figure 9: Latency of metadata operations under the
non-secure, secure, and private setups. Operations la-
belled with “rev” require a capability revocation message
to be sent from the metadata server to the disk.

utes. All the files were stored on the same disk, but no
file was accessed by more than one client or more than
once during each experiment. All files within an exper-
iment have the same size, but size varies from 4 KB to
4 MB between experiments.

The larger the file size, the less open/close overhead
is incurred per transferred byte. There is also overhead
associated with capability-group invalidation; the bench-
marks using file sizes of 4 KB and 16 KB accessed more
than 10,000 files and hence triggered group invalidation.

Figure 10 shows the system throughput as a function
of file size for the write benchmarks. (The read bench-
mark results have similar trends and are not shown.)
With file size 256 KB or less, the secure and non-secure
setups have comparable bandwidth. With file sizes larger
than 256 KB, the secure system performs up to 16%
worse than the non-secure system. The difference is
caused by CPU contention on the disk machine. Fig-
ure 11 shows the average percentage of idle time on the
machine where the simulated NAD was hosted. The
simulated disk controller in the secure setup consumes
a considerable amount of cycles for MAC computation.
Since it is implemented as a user-level process, it also
consumes cycles for context switching and moving data
across PCI buses and the kernel boundary.

We ran the same benchmark on an NFS server with
a locally-attached disk (the NFS setup) for comparison.
NFS performs comparably to Snapdragon (secure and
non secure) for file sizes of 64 KB or less, and notice-
ably better for file sizes larger than 64 KB. This better
performance is due to the NFS server’s large data cache.
Therefore, we ran the same benchmark again using the

0

1

2

3

4

5

6

7

4KB 16KB 64KB 256KB 1MB 4MB

T
hr

ou
gh

pu
t (

M
B

/s
)

File Size

"write-nfs"
"write-off"

"write-on"
"write-un"

Figure 10: Aggregate write bandwidth with 1 disk and
6 clients for the secure setup (on), the non-secure setup
(off), the NFS setup, which has no cache limit (nfs),
and the non-secure setup modified to have no cache limit
(un).

non-secure setup modified so that the simulated NADs
can use as much cache as possible, up to the 128 MB
physical memory capacity. The result is shown in Fig-
ures 10 and 11 as “write-un”. The non-secure setup
with no cache limit performed significantly better than
the standard non-secure setup, which has only 2 MB of
cache. This suggests that it would be worth increasing
the data cache capacity in NADs (secure or non secure)
in order to maximize bandwidth utilization for streaming
I/O of large files by many concurrent users.

The idle time of the NFS server (shown in Figure 11)
is not monotonic because the NFS server is performing
both metadata and I/O operations. As the file size in-
creases, the rate of metadata operations decreases, but
the I/O rate increases.

We also ran a benchmark to measure the aggregate
throughput for various numbers of disks and clients. Due
to the limited number of machines available for our ex-
periments, we had to collocate a client with a simulated
NAD controller on each machine. Each client sequen-
tially read or wrote files on a NAD hosted by another
machine and each NAD was accessed by exactly 1 client.
We ran the benchmark with 2 through 7 such machines.
The file size was 256 KB and each client accessed 600
files in each run. Figure 12 shows the aggregate band-
width as a function of the number of disks.

The results show that the aggregate read or write band-
width of all clients scales linearly with the number of

0
10
20
30
40
50
60
70
80
90

100

4KB 16KB 64KB 256KB 1MB 4MB

D
is

k
Id

le
 T

im
e(

%
)

File Size

"write-nfs"
"write-off"

"write-on"
"write-un"

Figure 11: Average percentage of idle CPU time on
disk machines.

disks, which indicates that the metadata server imposes
very low overhead to a high-bandwidth workload and has
not become a bottleneck in a system with up to 7 disks.
Figure 13 shows the average percentage of idle CPU time
on the metadata server machine. The metadata-server
machine was underloaded (i.e., 86-92% idle) in these ex-
periments. Therefore, we expect it to be able to support
a considerably larger number of disks. The throughput
of the non-secure setup grew faster than that of the se-
cure setup because the access control overhead, which is
dominated by MAC computation, is proportional to the
data bandwidth.

5.3 Andrew benchmark with Linux kernel
source

We ran a variant of the Andrew benchmark to show that
Snapdragon has acceptable performance on a standard
benchmark, even though Snapdragon was not designed
for such workloads (e.g., with extensive metadata opera-
tions and small files). Our variant of the Andrew bench-
mark differs only in that it uses as input the Linux kernel
source, which contains 690 directories, 10,528 files and
roughly 127 MB of data. Phase I of the Andrew bench-
mark duplicates the 690 directories 5 times in the file sys-
tem being tested; phase II copies the files into one of the
duplicated directories; phase III recursively lists all the
duplicated directories; phase IV scans each copied file
twice; and, phase V does a “make dep” and then “make”
in the copied Linux kernel source directory, generating
1,362 new dependency and object files, or 13 MB of data.

0

2

4

6

8

10

12

14

2 3 4 5 6 7

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of Disks

"read-off"
"read-on"
"write-off"
"write-on"

Figure 12: Aggregate read/write bandwidth with mul-
tiple disks for secure setup (on) and non-secure setup
(off).

0
10
20
30
40
50
60
70
80
90

100

2 3 4 5 6 7

S
er

ve
r

Id
le

 T
im

e
(%

)

Number of Disks

"read-off"
"read-on"
"write-off"
"write-on"

Figure 13: Average percentage of idle CPU time on the
metadata server.

The configuration for the Andrew benchmark includes
only one client and NAD (or NFS server), each using
separate machines. Figure 14 shows the elapsed time for
each phase of Andrew benchmark for the secure, non-
secure, and NFS setups.

In all phases, Snapdragon performed almost the same
whether security was turned on or off, suggesting that
the overhead of security is low. Snapdragon and NFS
differed somewhat in phases I and II. The difference in
phase I occurs because, for each new directory to be cre-
ated, the Snapdragon metadata server needs to access
the disk across the network, while the NFS server ac-
cesses the local disk directly. The difference in phase
II is due to the overhead in opening and closing small
files in Snapdragon—the Linux kernel source consists of
mostly small files: 97% of the files are less than 64 KB,

0

200

400

600

800

1000

1200

1400

mkdir cp ls -l grep + wc make

Phase

E
la

p
se

d
 t

im
e

(s
)

NFS NonSecure Secure

Figure 14: Andrew benchmark with Linux kernel
source.

all but one file is less than 900 KB, and the largest file is
roughly 2 MB. In phases III, IV and V, NFS and Snap-
dragon performed almost the same.

6 Limitations

One limitation of our block-based security approach is
that we do not support files that are writable but not read-
able. This is because, under our scheme, to execute par-
tial writes (writes to only part of a block), the client first
needs to read the block’s old contents—which requires
read access—so that he can modify it. However, it is
possible to overcome this problem by either having the
disks support partial writes directly, or by having all such
writes go through the metadata server.

We also do not support underlying file systems in
which a block can contain data belonging to multiple
files (e.g., file systems in which the tails of many files are
stored in a single block), because a block is the small-
est unit of access control in our scheme. However, this
problem can be overcome by changing capabilities so
that they can optionally restrict access to a range of bytes
within a block and by allowing disks to accept partial
read and write requests.

Finally, with a log-based file system, it is not easy to
exploit direct client access to disk when writing to the
log, because accesses to the log need to be serialized.
(This is not, however, a drawback of our security scheme,
but rather a general limitation of asymmetric shared file
systems with network-attached disks.) One possible so-
lution is to make the disk the serialization point, but do-
ing so would require adding considerable functionality to
the disk.

7 Related work

NASD [7, 8, 10, 9] introduced the basic security architec-
ture we use, where a central server decides policy and the
disks implement only a simple access mechanism based
on cryptographic capabilities. We differ in our handling
of revocations and replay attacks, as described in Sec-
tions 2.2 and 2.4, and in the fact that our capabilities
specify permission in terms of ranges of physical blocks
rather than object IDs. SCARED [19] generalizes the
NASD security framework to allow for identity-based
access, where the client proves its identity to the disk,
which then decides what access should be allowed based
on its understanding of file access-control lists (ACLs).
We prefer a capability-based scheme, however, because
it does not require restrictions on the disk layout so that
the disk can decode ACLs.

NASD’s network-attached disks are complicated
pieces of machinery, possessing most of the functional-
ity of a file server: rather than simply serving raw blocks
as our NADs do, they present the abstraction of a collec-
tion of numbered, but unnamed, variable-size data ob-
jects, which are byte sequences with a small number
of attributes. A central server manages a collection of
NASD disks, providing clients with the usual illusion of
a hierarchical file system. This is done (in the absence
of striping) by mapping each directory or data file to a
single NASD object.

SUNDR [13] and SNAD [5, 15] do away with the
central server altogether and use more powerful cryp-
tographic methods (e.g., blocks on disk are encrypted
and “signed” using keys known only to clients) to stop
an attacker that can control disks from reading or unde-
tectably altering user data. Most of their complexity is
due to this stronger security level, which is not useful for
the scenarios that we envision, where the people most
likely to be able to compromise servers or disks (i.e., the
system administrators) would also easily be able to com-
promise clients, defeating these systems’ security.

SUNDR and SNAD use the encrypt-on-disk strategy,
where data is concealed by keeping it encrypted on the
disk. Revoking access in such systems is expensive be-
cause the involved data must be re-encrypted using a new
key. Riedel et al. [21] argue that encrypt-on-disk may
offer better performance when privacy is desired than
encrypt-on-wire systems such as ours, because encrypt-
on-disk encrypts and decrypts data only at the client, not
at both the client and disk.

Although encrypt-on-disk leaks more information to
eavesdroppers (blocks can be identified on the wire be-
cause they are re-encrypted only when rewritten, in-

stead of each time they are transmitted), should the ex-
tra encryption prove burdensome we think it is possi-
ble to modify Snapdragon to get the performance benefit
(but not the security benefit) of encrypt-on-disk without
changing our disk protocol.5

The Netstation project sketches how their Derived Vir-
tual Device (DVD) abstraction, a very general mech-
anism for securely delegating access to an arbitrary
subset of a network-attached device, can be used to
create a block-oriented secure NAD file system called
STORM [26]. Rather than use capabilities for security,
they use Kerberos authentication to authenticate client
requests, which specify a DVD ID. Devices maintain a
table of which DVDs each client is allowed to access as
well as detailed information about the access restrictions
of each DVD. While the notion of DVDs is very elegant,
it may be too inefficient to be of use in a production file
system: the DVD access information (largely blockmap
information for STORM) requires extra network trips to
be installed by the server, uses a lot of disk memory, and
seems to be installed by downloading functions written
in Scheme.

We believe our paper is the first one to use Bloom fil-
ters to protect against replay attacks. However, Bloom
filters have long existed and have other uses. Superfi-
cially related to our paper is the work of [6], which uses
Bloom filters for revocations (instead of replay attacks).

8 Conclusion

In this paper we have presented a new block-based secu-
rity scheme for network-attached disks (NADs). In con-
trast to previous work, our scheme requires no changes
to the data layout on disk and only minor changes to
the standard protocol for accessing remote block-based
devices. Thus, existing NAD file systems and storage-
management software could incorporate our new secure
NADs with only incremental changes. Moreover, our
scheme’s demands on the NADs are modest: standard
cryptographic functionality plus very little RAM. The
low need for RAM is achieved by two novel features:
our revocation scheme based on capability groups, and a
replay-detection method using Bloom filters. We believe
our design could be easily deployed in existing NAD’s or
in disk arrays with minimal changes.

We implemented a prototype secure NAD file system
using our scheme, and evaluated its performance and
scalability. The cost of access control is small: Latency

5We would store blocks encrypted on disk, but the keys would be
managed by the metadata servers.

for reads and writes increases by less than 0.5 ms (5%),
and the bandwidth decreases by up to 16%. The sys-
tem throughput scales linearly with the number of disks
supported by a single metadata server (up to 7 in our ex-
periments).

Hence, we believe our scheme is a practical and ef-
ficient method for incorporating security into existing
NADs with minimal change—a scheme that could lib-
erate NAD file systems from the confines of the machine
room and data center, allowing them to reach a broader
range of users directly, yet securely.

Acknowledgments

We would like to thank Fay Chang and John Wilkes for
useful discussions as well as our shepherd Greg Ganger
and the anonymous referees for helpful suggestions.

References

[1] M. Bellare, R. Canetti, and H. Krawczyk. Keying
hash functions for message authentication. Lecture
Notes in CS, 1109:1–15, 1996.

[2] A. D. Birrell and B. J. Nelson. Implementing re-
mote procedure calls. ACM Transactions on Com-
puter Systems, 2(1):39–59, February 1984.

[3] Andrew D. Birrell. Secure communication us-
ing remote procedure calls. ACM Transactions on
Computer Systems, 3(1):1–14, February 1985.

[4] Burton Bloom. Space/time trade-offs in hash cod-
ing with allowable errors. Communications of
ACM, 13(7):422–426, 1970.

[5] W. Freeman and E. Miller. Design for a decen-
tralized security system for network-attached stor-
age. In Proceedings of the 17th IEEE Symposium
on Mass Storage Systems and Technologies, pages
361–373, March 2000.

[6] Eran Gabber and Abraham Silberschatz. Agora:
A minimal distributed protocol for electronic com-
merce. In The Second USENIX Workshop on Elec-
tronic Commerce Proceedings, pages 223–232,
1996.

[7] G. Gibson, D. Nagle, K. Amiri, F. Chang,
H. Gobioff, E. Riedel, D. Rochberg, and J. Ze-
lenka. Filesystems for network-attached se-
cure disks. Technical Report CMU–CS–97–112,
Carnegie Mellon, March 1997.

[8] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler,
Fay W. Chang, H. Gobioff, C. Hardin, E. Riedel,
D. Rochberg, and J. A. Zelenka. Cost-effective,
high-bandwidth storage architecture. In Proceed-
ings of the 8th Conf. on Architectural Support for
Programming Languages and Operating Systems,
pages 92–103, October 1998.

[9] Howard Gobioff. Security for a High Performance
Commodity Storage Subsystem. PhD thesis, CMU,
1999.

[10] Howard Gobioff, Garth Gibson, and Doug Ty-
gar. Security for network attached storage
devices. Technical Report CMU–CS–97–185,
Carnegie Mellon, October 1997.

[11] Kent Koeninger. CXFS: A clus-
tered SAN filesystem from SGI.
http://www.sgi.com/Products/PDF/2691.pdf.

[12] Barbara Liskov, Liuba Shrira, and John Wro-
clawski. Efficient at-most-once messages based on
synchronized clocks. ACM Transactions on Com-
puter Systems, 9(2):125–142, May 1991.

[13] D. Mazières and D. Shasha. Don’t trust your file
server. In Proceedings of the 8th IEEE Workshop
on Hot Topics in Operating Systems (HotOS-VIII),
pages 99–104, May 2001.

[14] M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S.
Fabry. A fast file system for UNIX. ACM Trans. on
Computer Systems, 2(3):181–197, 1984.

[15] Ethan L. Miller, William E. Freeman, Darrell D. E.
Long, and Benjamin C. Reed. Strong security for
network-attached storage. In Proceedings of the
FAST 2002 Conference on File And Storage Tech-
nologies, pages 1–14, January 2002.

[16] S. Mittra and T. Woo. A flow-based approach
to datagram security. In Proc. ACM SIGCOMM,
1997.

[17] NIST. Secure hash algorithm, 1995. FIPS 180-1.

[18] Matthew T. O’Keefe. Shared file systems and Fibre
Channel. In Proceedings of the Sixth NASA God-
dard Conference on Mass Storage Systems, pages
1–16. IEEE Computer Society Press, 1998.

[19] B. Reed, E. Chron, D. Long, and R. Burns. Au-
thenticating network attached storage. IEEE Micro,
20(1), January 2000.

[20] Hans Reiser. Reiserfs v.3 whitepaper, 2000.
http://www.namesys.com/.

[21] Erik Riedel, Mahesh Kallahalla, and Ram Swami-
nathan. A framework for evaluating storage system
security. In Proceedings of the 1st Conference on
File and Storage Technologies (FAST), pages 15–
30, January 2002.

[22] R. Sandber, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon. Design and implementation of the Sun
network file system. In Proceedings of USENIX
Summer Conference, 1985.

[23] Bruce Schneier. Applied Cryptography. John Wiley
& Sons, 1996.

[24] V. Srinivasan and J. C. Mogul. Spritely NFS: Ex-
periements with cache-consistency protocols. In
Proceedings of the Twelfth ACM Symposium on Op-
erating Systems Principles, pages 45–57, Decem-
ber 1989.

[25] Tivoli. Tivoli SANergy: Helping you reach
your full SAN potential. http://www.tivoli.com/-
products/documents/datasheets/sanergy ds.pdf.

[26] Rodney Van Meter, Gregory Finn, and Steven Hotz.
Derived virtual devices: A secure distributed file
system mechanism. In Ben Kobler, editor, Proc.
Fifth NASA Goddard Conference on Mass Storage
Systems and Technologies, September 1996.

