
Reliability Analysis of
Deduplicated and Erasure-Coded Storage

Xiaozhou Li Mark Lillibridge Mustafa Uysal
Hewlett-Packard Laboratories
firstname.lastname@hp.com

ABSTRACT
Space efficiency and data reliability are two primary concerns for
modern storage systems. Chunk-based deduplication, which breaks
up data objects into single-instance chunks that can be shared across
objects, is an effective method for saving storage space. However,
deduplication affects data reliability because an object’s constituent
chunks are often spread across a large number of disks, potentially
decreasing the object’s reliability. Therefore, an important problem
in deduplicated storage is how to achieve space saving yet main-
tain each object’s original reliability. In this paper, we present ini-
tial results on the reliability analysis of HP-KVS, a deduplicated
key-value store that allows each object to specify its own reliability
level, and that uses software erasure coding for data reliability. The
combination of deduplication and erasure coding gives rise to sev-
eral interesting research problems. We show how to compare the
reliability of erasure codes with different parameters, and we show
how to analyze the reliability of a big data object given its con-
stituent parts’ reliabilities. We also outline several research chal-
lenges in designing large scale reliable deduplication systems.

1. INTRODUCTION
As the amount of important data that needs to be digitally stored

continues to explode, space efficiency and data reliability are two
primary concerns for modern storage systems. Several techniques
can address these concerns. For example, chunk-based dedupli-
cation is a space-saving technique where identical copies of data
fragments called chunks are identified and eliminated (e.g., [4, 5,
11]). Erasure codes (e.g., systematic Reed-Solomon codes [7]) pro-
vide data reliability by adding data redundancy. By adjusting their
parameters, erasure codes can achieve different trade-offs between
reliability and redundancy. For example, RAID [8] and data repli-
cation are two special forms of erasure coding.
Deduplication involves the following steps: 1) dividing an object

into small chunks and computing a hash for each chunk; 2) for each
chunk hash, determining whether it is already in the deduplicated
store by looking it up in an index; 3) storing the new chunks in the
data store; and 4) creating a manifest for each object that contains
pointers to its chunks. Deduplication fundamentally changes the re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

liability of objects: since chunks are shared across multiple objects,
the reliability of a given object is now determined by the reliabil-
ity of its constituent chunks, including the ones shared with other
objects. Furthermore, the chunks are potentially spread across a
much larger number of disks as each object can share chunks that
are already stored.
We consider several questions regarding the reliability of dedu-

plicated data. First, how do we characterize the effects of dedupli-
cation on the reliability of objects in the storage system? Ideally,
we want no degradation of reliability due to deduplication. Sec-
ond, how do we adjust the redundancy in deduplicated storage so
that object reliability is at least as good as in the non-deduplicated
stores? Ideally, we should be able to construct reliable deduplicated
stores based on the reliability requirements of individual objects.
In this paper, we present a reliability analysis of deduplicated

data. We show that deduplication need not result in loss of reliabil-
ity if the redundancy of the shared chunks is properly adjusted. We
also show how to calculate the minimum amount of redundancy to
keep space overhead low. We address these problems in the context
of the HP Key-Value Store (HP-KVS), a deduplicated and erasure-
coded key-value store.
We first outline how we carry out deduplication in HP-KVS (Sec-

tion 2). We then give a mathematical formulation for the reliability
in HP-KVS and derive the basic properties of this formulation, in-
cluding how the reliability changes as the parameters of the erasure
code change, and how the reliability of an object depends on those
of its constituent chunks (Section 3). We then outline a number of
open research problems (Section 4) and discuss related work (Sec-
tion 5) before concluding (Section 6).

2. THE HP KEY-VALUE STORE
We first give a brief summary of the HP-KVS system [1] (origi-

nally called Pahoehoe), highlighting the features that are most rele-
vant to our discussion. We then present our deduplication architec-
ture inside the HP-KVS.
HP-KVS is a key-value store tailored for large objects such as

pictures, audio files, VM images, and movies of moderate size (≈
100 MB to 100 GB). The high-level architecture of HP-KVS is
illustrated in Figure 1. Clients use a Representational State Trans-
fer (REST) interface to interact with a proxy server located in a
data center, which performs get and put operations on behalf of the
client. HP-KVS itself has two types of servers: key-lookup servers
and fragment servers. Key lookup servers store a metadata list for
each key, which maps it to the locations of its value’s fragments.
HP-KVS exports two interfaces for clients: put(key, value,

r-spec) and get(key). Put allows a client to associate a value
(or object) with a key and get allows a client to retrieve an object
version associated with the specified key. The redundancy specifi-

A1

fragment

key−lookup

proxies

REST API

clients

metadatareplicated
servers

servers A2 A3 B1 B2

Figure 1: Architecture of HP-KVS.

foreach (value to be deduplicated)
read the value’s fragments;
reconstruct the value;
run a chunking algorithm;
foreach (chunk)

if (chunk exists in some container)
point to that container;

else
put chunk in current open container;
if (open container full)

close container;
store container;
open another container;

Figure 2: The high-level deduplication procedure.

cation (or r-spec for short) contains the desired level of reliability
for the object being stored; more precisely, it specifies how to era-
sure encode the object and takes the form of two integers (k, m),
where k is the number of data fragments that the value should be
broken into and m is the number of parity fragments that should
be computed. Altogether, n = k + m fragments are stored such
that any k fragments (data or parity) can recover the original value.
For example, in Figure 1, the first value is stored with r-spec (2, 1)
where A1 and A2 are data fragments, and A3 is a parity fragment.
The second value is stored with r-spec (2, 0) where B1 and B2 are
both data fragments.
We deduplicate the objects stored in HP-KVS as follows. We

consider an offline deduplication process that runs periodically and
deduplicates stored values in batches. In HP-KVS, normally an ob-
ject’s metadata contains a list of its erasure-coded fragments. After
deduplication, this metadata is replaced with a list of pointers to the
chunks making up the object. Chunks are stored in chunk contain-
ers. The reliability of containers may vary with different containers
being encoded with different r-specs. Figure 2 outlines this proce-
dure.

3. RELIABILITY ANALYSIS
The key question we address in this paper is how to determine

the r-spec of the chunk containers as a function of the original ob-
jects’ r-specs so that after deduplication each object is at least as
reliable as it was before. In the absence of deduplication, each ob-
ject is erasure coded using some user-specified (k, m) r-spec, and
then stored across n = k + m disks. Note that n is typically much
smaller than the total number of disks in the data store. When an

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 1 2 3 4 5

L(
k,

m
)

k

q=0.001

m=1
m=2
m=3
m=4
m=5

Figure 3: Growth of L(k, m) versus k.

object is deduplicated, only the unique chunks in that object are
stored. Non-unique chunks are eliminated and replaced with point-
ers to the unique copies. This has a profound effect on the reliability
of individual objects: the data of a given object can potentially be
spread across many drives because its chunks may be spread across
many chunk containers. In other words, the reliability of individual
objects are potentially tied to the reliability of a large part of the
entire data store due to the sharing of chunks.
The primary contribution of this paper is a method for determin-

ing a proper r-spec for a container. To achieve this, we first present
our reliability model (Section 3.1), then derive the basic properties
of this model (Section 3.2), and finally use these properties to ob-
tain our main result (Section 3.3). We also mention some additional
analytical results that may be of independent interest (Section 3.4).

3.1 Reliability model
We adopt the following simple interpretation of a (k, m) r-spec.

Let p(t) be the probability that a disk remains functional after time
t and let q(t) = 1−p(t) be the probability that a disk fails be-
fore time t. Typically, p(t) is close to 1 and thus q(t) is close
to 0 for reasonably small values of t. We call a value a (k, m)-
value if the value is erasure coded with k data fragments and m
parity fragments and all fragments are stored on different disks.
Let n = k + m and let L(k, m, t) be the probability that a (k, m)-
value cannot be recovered after time t. We assume that all disk
failures are independent. Since t remains the same throughout the
entire analysis, we will omit explicitly writing down t. Under these
assumptions, we have:

L(k, m) =
n
X

i=m+1

n
i

!

pn−iqi. (1)

Some understanding of the behavior of L(k, m) can be gained
by numerical calculation. We have plotted L(k, m) for some typ-
ical values of k, m, and q in Figures 3 and 4. Figure 3 shows that
as k increases, L(k, m) increases, but only modestly. Figure 4
shows that as m increases, L(k, m) decreases, but much more
quickly. Careful examination of Figure 3 shows that if we fix n
then L(k, m) increases quickly as k increases (and m decreases):
compare L(2, 4), L(3, 3), and L(4, 2). The change of L(k, m)
with respect to k orm is roughly exponential (note the log-scale on
the y-axis). Different values of q result in similar observations, but
with different slopes.

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 1 2 3 4 5

L(
k,

m
)

m

q=0.001

k=1
k=2
k=3
k=4
k=5

Figure 4: Growth of L(k, m) versusm.

3.2 Basic properties of L(k, m)

Since the full definition of L(k, m) (Equation 1) is somewhat
difficult to work with, we will primarily work with an approxima-
tion of L(k, m). In particular, we will ignore all but the first term
of the definition of L(k, m) because subsequent terms decrease by
roughly a factor of q, which is close to 0. To be more precise, the
ratio between two subsequent terms in L(k, m) is (q/p) · ((n −

i)/(i + 1)). If n, and thus i, is not big, then the above expression
is largely determined by q. Therefore, a reasonable approximation
of L(k, m) is

L(k, m) ≈

n
m + 1

!

pk−1qm+1. (2)

How fast does L(k, m) decrease as we increasem, and how fast
does it increase as we increase k? Figures 3 and 4 have shown some
numerical values. To understand the trends analytically, we use our
approximation (Equation 2) and obtain

L(k, m + 1)
L(k, m)

≈
n
m

· q,
L(k + 1, m)

L(k, m)
≈

n
k
· p. (3)

That is, increasing m by one decreases L(k, m) greatly because
q is close to 0. Thus, with a small increase in space redundancy,
we can obtain a large increase in reliability. This is good news
because we wish to provide good reliability without much space
redundancy. On the other hand, increasing k by one only increases
L(k, m) modestly.
Some systems (e.g., HYDRAstor [4]) require a fixed value of n;

for such systems, it is necessary to consider trading-offm for k:

L(k + 1, m − 1)
L(k, m)

≈
m
k

·
p
q
. (4)

Here we see that increasing k by one and decreasing m by one
increases the L value significantly because of the 1/q factor. This
result implies that, for reliability considerations alone, we should
set k = 1. However, the shortcoming of doing so is that the space
efficiency of the resulting code, r = k/n, commonly known as the
rate of the code, is very low.
What is the largest δ such that L(k + δ, m+ 1) ≤ L(k, m)? We

can approximate this calculation as follows: Let r = k/n (i.e., the
rate) and r̄ = m/n (i.e., the redundancy). Then using Equation 3,
we want (p/r)δ · (q/r̄) ≤ 1. Approximating p ≈ 1, we have

δ ≤ log1/r(r̄/q). (5)

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

m
’

k’

(k,m)=(6,3), q=0.001
(k,m)=(4,2), q=0.01

(k,m)=(4,2), q=0.001
(k,m)=(4,1), q=0.001

x * log(2)/log(500)

Figure 5: Growth ofm′ versus k′.

To make sense of this expression, consider an example where n =
4, k = 2,m = 2, and q = 0.001. Then we have δ ≤ log2 500 ≈ 9.
In other words, a (2 + 9, 2 + 1) = (11, 3) code has the same L
value as a (2, 2) code, with the 9 as large as possible. We remark
that this is actually a very conservative estimate.
Figure 5 shows how L(k′, m′) can match L(k, m) for various

k, m, and q using numerical calculations. From this figure we ob-
serve several trends. First, the larger q, the faster the growth ofm′:
compare the plots for (k, m) = (4, 2), and q = 0.001 and 0.01.
Second, if we fix k, then m′ grows faster for a biggerm: compare
the plots for (k, m) = (4, 1) and (4, 2) with q = 0.001. Three,
for fixed k/m (i.e., the same space efficiency), the growth rates of
m′ are about the same: compare the plots for (k, m) = (4, 2) and
(6, 3), and q = 0.001. Lastly, the function x·log500 2 clearly grows
faster than the plot for (k, m) = (4, 2) and q = 0.001, indicating
that our estimate for the growth ofm′ is indeed conservative. (Note
that since we are plotting m′ as a function of k′, we have inversed
δ as log500 2 = 1/ log2 500.)

3.3 R-spec of a container
We now address the main question in this paper: What is a

proper r-spec for a container? We consider the following special
case as a first step. Suppose all objects in the KVS have the same
(k, m) r-spec, and after deduplication, each object consists of at
most s chunks. Suppose further each container is to be stored with
a (k, m+d) r-spec (i.e., same number of data fragments as the value
pre-deduplication). How big should d be? We derive an estimate
as follows. After deduplication, we have for any value v:

Pr[value v lost] = Pr[any of its chunks lost]
≤ s · Pr[a particular chunk lost]
= s · L(k, m + d).

The above inequality is due to the union bound, which holds for any
set of events, regardless of whether those events are mutually exclu-
sive or independent of each other. In other words, we do not have
to be concerned whether different containers are stored at overlap-
ping set of disks. To ensure no loss of reliability for v, it suffices
to set Pr[value v lost] ≤ s · L(k, m + d) ≤ L(k, m). Using our
approximation of L(k, m) (Equation 2), we have

s ·

n + d
m + d + 1

!

· pk−1qm+d+1
≤

n
m + 1

!

· pk−1qm+1.

 0

 1

 2

 3

 4

 1 10 100 1000 10000 100000 1e+06

d

s

(k,m)=(4,4)

q=0.01
q=0.005
q=0.001

log(x)/log(1/0.01)
log(x)/log(1/0.05)

log(x)/log(1/0.001)

Figure 6: Growth of d versus s.

Therefore, s · qd ≤ 1, meaning d ≥ log1/q s. A more careful
analysis, which we omit due to space limitations, shows that

d = log1/q s + ε, (6)

where ε is a small constant such as 1. Figure 6 plots the smallest d
such that s ·L(k, m+d) ≤ L(k, m) for (k, m) = (4, 4), based on
both numerical calculations and our analysis. As we can see, the
growth rate of log1/q s is a remarkably accurate prediction. (In this
figure, e.g., log(x)/ log(1/0.01) = log100 x.)
We now turn to the more general case: What if the container

can have a k′ that is different from an object’s k? To address this
case, we first make a few remarks on the impact of k and m on
the reliability, space efficiency, and access speed of the code. The
previous sections have explained how the reliability changes with
different k andm. The space efficiency of a (k, m) r-spec is simply
the rate of the code, k/(k + m) = k/n. The influence on access
speed is more subtle. For reads, since the k data fragments can
be read in parallel, increasing k tends to increase read speed, but
only to a certain extent because of the overhead of reading ever
smaller fragments. For writes, increasingm increases the encoding
overhead and number of I/O operations. Therefore, it is undesirable
to have a high value of n or a needlessly high value ofm.
Therefore, we assume that there is a fixed system-wide value n′

(cf. HYDRAstor [4]), and we need to determine k′ andm′ such that
(1) n′ = k′ + m′, (2) the original values’ reliabilities are matched
or exceeded, and (3) containers are space efficient (i.e., maximize
k′/n′). To do so, we let k′ = k + ∆k,m′ = m + ∆m + d, where
d is as given in Equation 6, and∆k and∆m satisfy∆k ≤ δ ·∆m,
where δ is given as in Equation 5. Then we have

Pr[value v lost] ≤ s · L(k + ∆k, m + ∆m + d)

≤ L(k + ∆k, m + ∆m)

≤ L(k, m).

In other words, we need to choose∆k and∆m such that (1)∆k +
∆m+k+m+d = n′, (2)∆k ≤ δ·∆m, and (3)∆k is maximized.
This task is straightforward. For example, if ε = 1, q = 0.001,
s = 1000, k = 2, m = 2, n = 4, and n′ = 12, then δ = 9 and
d = 2. Therefore, we have∆k = 5 and ∆m = 1. In other words,
the containers should be encoded with a (2+5, 2+1+2) = (7, 5)
code.
(Remark: The above analysis can be used to address related

questions in other contexts. For example, a common question is
the following: If one stores a big data object into s RAID-6 9-disk

(7+2) groups, then how big can s be until the overall object’s relia-
bility is below RAID-5 9-disk (8+1) reliability? By the analysis in
Section 3.3, we want to ensure s · L(7, 2) ≤ L(8, 1). Assuming
q = 0.001 and using Equation 4, we have s ≤ L(8, 1)/L(7, 2) ≈

(2p)/(7q) ≈ 300.)

3.4 Additional properties of L(k, m)

In this section, we present some additional properties ofL(k, m)
that may be of independent interest. The following property of
L(k, m) is straightforward: For all k and m, L(k, 0) = 1 − pk,
L(0, m) = 0. The next property of L(k, m) is somewhat surpris-
ing: For all k andm, L(k+1, m+1) = p ·L(k, m+1)+q ·L(k+
1, m). The proof of this property uses the well-known property of
binomial coefficients:

`

i+1

j

´

=
`

i
j

´

+
`

i
j−1

´

. The next property of
L(k, m) is intuitive: For all k and m, L(k, m) < L(k + 1, m)
and L(k, m) > L(k, m + 1). This property basically states that
increasing data fragments decreases the reliability, and increasing
parity fragments increases the reliability. Our current proof uses
the previous property combined with an inductive argument.
If one wishes to obtain a more precise estimate of L(k, m) than

Equation 2, one way is to take the first two or three terms (rather
than one) in the definition of L(k, m) and ignore the rest. Another
way is to treat L(k, m) as a power series where the ratio between
two subsequent terms is ((n− i)/(i+1)) ·(q/p) ≤ ((k−1)/(m+
2)) ·(q/p), because i ≥ m+1, which is less than 1 for most values
of k andm. Denote this by α and L(k, m) is upper bounded by its
first term times 1 + α + α2 + · · · = 1/(1 − α).

4. ONGOINGWORK
More refined reliability analysis. In this paper, we have used

L(k, m) as a simple combinatorial interpretation of the (k, m) r-
spec. We plan to consider other interpretations such as MTTDL.
However, additional considerations such as disk repairs and latent
sector errors [2] may make the analysis for such models very com-
plicated, if not intractable.
Space-reliability tradeoff. Under what circumstances is this en-

tire “dedupe and re-encode” procedure worthwhile? For example,
if the deduplication factor is expected to be small, then it might not
make sense. Can we determine the best tradeoff dynamically?
Multiple r-specs. We expect that for most use cases of HP-KVS,

the users would require several, but not many, different r-specs.
Multiple r-specs brings up several new technical challenges. For
example, what r-spec should a container have if it contains chunks
that are pointed to by values with different r-specs? Is it a good
idea to do cross-r-spec deduplication?
Severity of data loss. Another way to assess the impact of dedu-

plication on reliability is to consider not just the likelihood of data
loss, but also the severity of it. However, we argue that existing
reliability metrics are inadequate to assess this impact, thereby mo-
tivating the need for a new metric. Suppose we haveN data blocks,
and the blocks all have the same content but are stored on differ-
ent disks (Figure 7(a)). We run deduplication on these N blocks,
resulting in all metadata pointing to the same block (Figure 7(b)).
Which layout is more reliable? Assume that each disk fails with
probability q and has a failure rate of λ. Figure 8 summarizes the
reliability for this example using several common metrics. In all
cases, the deduped either wins or ties with the original in spite of
the fact that the chance of total data loss is far greater in the deduped
case. This simple example illustrates that deduplication increases
the severity of data loss but decreases the likelihood of it. Existing
metrics either only measure the likelihood (e.g., PDL, MTTDL)
or use a simple combination of the two (e.g., expected amount of
data loss, average data loss rate). Figure 7(c) suggests that one

A1

A

AN

data

metadata

(c) reinforced(a) original (b) deduped

1

A

N

data

metadata
A

A

A

data

metadata

1

N

Figure 7: ComparingN copies with one copy.

metric original deduped note
PDL 1 − pN 1 − p deduped wins
expected blocks lost Nq Nq tie
MTTDL 1/(Nλ) 1/λ deduped wins
average data loss rate Nλ Nλ tie

Figure 8: Comparing the original and the deduped.

can increase the reliability at the cost of storing more metadata by
pointing to multiple copies of the same data.

5. RELATED WORK
To our knowledge, Bhagwat et al. [3] are the first to address re-

liability concerns in deduplicated storage. They observe that dedu-
plication alters the reliability of stored data because of the shar-
ing of common chunks. Using a metric they call “robustness”—
the amount of data lost due to device failures (i.e., severity)—and
targeting replication-based storage, they argue that the number of
copies of a chunk should be logarithmic to the popularity of that
chunk. In contrast, our analysis targets erasure-coded storage and
our metric is per-value r-spec.
HYDRAstor [4] is a deduplicated secondary storage system that

allows chunks to be placed in different resilience classes, each of
which has a different level of reliability. However, the choice of
which resilience class to use for each chunk is left to the user and
has no relationship to the degree of sharing of the chunks. We
believe that our analysis can help HYDRAstor automatically decide
the proper resilience class for each chunk based on the importance
of the documents containing that chunk. No reliability metric was
used in this paper or proposed, nor is it clear how the reliability of
a chunk affects that of any given document.
Liu et al. [6] suggest that variable-length chunks should be pre-

ferred over fixed-size chunks because the former has proved to
yield more space savings. The variable-length chunks are first packed
into bigger fixed-size objects (i.e., chunk containers), which are
then erasure coded and placed on multiple storage nodes. How-
ever, all chunks are considered equally important and they are all
erasure coded using the same erasure code with the same redun-
dancy configuration. In short, the overall approach is “dedupe then
RAID.” As we have shown, this means that the minimum reliabil-
ity of a document under this scheme grows worse as the document
lengthens (i.e., has more chunks) and as more data is stored overall
(i.e., more storage nodes are required).
Our reliability analysis for per-value r-specs is largely along the

lines of that by Thomasian and Blaum [10]. Our current analysis is
combinatorial, and we plan to extend it to Markov analysis as well.
Disk failures in the field have been studied by Schroeder and

Gibson [9]. This study will be useful for determining proper values
of q in the empirical validation of our analysis.

6. CONCLUDING REMARKS
In this paper, we have outlined a few reliability analysis prob-

lems that arise from the deduplication of a erasure-coded key-value
store. Although the analysis problems arise in this particular con-
text, we believe that they are of independent interest and may shed
light on other related problems.

7. REFERENCES
[1] E. Anderson et al. Efficient eventual consistency in

Pahoehoe, an erasure-coded key-blob archive. In
Proceedings of the 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN
2010), June 2010. To appear.

[2] L. N. Bairavasundaram et al. An analysis of latent sector
errors in disk drives. In Proceedings of the 2007
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 289–300, June 2007.

[3] D. Bhagwat et al. Providing high reliability in a minimum
redundancy archival storage system. In Proceedings of the
14th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS ’06), pages 413–421, September 2006.

[4] C. Dubnicki et al. HYDRAstor: A scalable secondary
storage. In Proceedings of the Eighth USENIX Conference
on File and Storage Technologies (FAST), pages 197–210,
February 2009.

[5] M. Lillibridge et al. Sparse indexing: Large scale, inline
deduplication using sampling and locality. In Proceedings of
the Eighth USENIX Conference on File and Storage
Technologies (FAST), pages 111–123, February 2009.

[6] C. Liu et al. R-ADMAD: High reliability provision for
large-scale de-duplication archival storage systems. In
Proceedings of the 23rd international conference on
Supercomputing, pages 370–379, June 2009.

[7] F. J. MacWilliams and N. J. A. Sloane. The Theory of
Error-Correcting Codes. North Holland, Amsterdam, 1978.

[8] D. Patterson, G. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, pages 109–116, June
1988.

[9] B. Schroeder and G. A. Gibson. Understanding disk failure
rates: What does an MTTF of 1,000,000 hours mean to you?
ACM Transactions on Storage, 3(3):Article 8, October 2007.

[10] A. Thomasian and M. Blaum. Mirrored disk organization
reliability analysis. IEEE Transactions on Computers,
55(12):1640–1644, December 2006.

[11] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the Data Domain deduplication file system. In Proceedings
of the Seventh USENIX Conference on File and Storage
Technologies (FAST), pages 269–282, February 2008.

