
Reliability Analysis of
Deduplicated and Erasure-Coded Storage

Xiaozhou Li Mark Lillibridge
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA

firstname.lastname@hp.com

Mustafa Uysal
∗

VMware
3401 Hillview Avenue

Palo Alto, CA

muysal@vmware.com

ABSTRACT
Space efficiency and data reliability are two primary concerns for
modern storage systems. Chunk-based deduplication, which breaks
up data objects into single-instance chunks that can be shared across
objects, is an effective method for saving storage space. However,
deduplication affects data reliability because an object’s constituent
chunks are often spread across a large number of disks, potentially
decreasing the object’s reliability. Therefore, an important prob-
lem in deduplicated storage is how to achieve space efficiency yet
maintain each object’s original reliability. In this paper, we present
initial results on the reliability analysis of HP-KVS, a deduplicated
key-value store that allows each object to specify its own reliabil-
ity level and that uses software erasure coding for data reliability.
The combination of deduplication and erasure coding gives rise to
several interesting research problems. We show how to compare
the reliability of erasure codes with different parameters and how
to analyze the reliability of a big data object given its constituent
parts’ reliabilities. We also present a method for system designers
to determine under what conditions deduplication will save space
for erasure-coded data.

1. INTRODUCTION
As the amount of important data that needs to be digitally stored

continues to explode, space efficiency and data reliability are two
primary concerns for modern storage systems. Several techniques
can address these concerns. For example, chunk-based dedupli-
cation is a space-saving technique where identical copies of data
fragments called chunks are identified and eliminated (e.g., [4, 6,
12]). Erasure codes (e.g., systematic Reed-Solomon codes [8]) pro-
vide data reliability by adding data redundancy. By adjusting their
parameters, erasure codes can achieve different trade-offs between
reliability and redundancy. For example, RAID [9] and mirroring
are two special forms of erasure coding.

Chunk-based deduplication involves the following steps: 1) di-
viding an object into small chunks and computing a hash for each
chunk; 2) for each chunk hash, determining whether it is already in
the deduplicated store by looking it up in an index; 3) storing the
new chunks in the data store; and 4) creating a manifest for each
object that contains pointers to its chunks. Deduplication funda-
mentally changes the reliability of objects: since chunks are shared
across multiple objects, the reliability of a given object is now de-
termined by the reliability of its constituent chunks, including the
ones shared with other objects. Furthermore, the chunks are poten-
tially spread across a much larger number of disks as each object
can share chunks that are already stored.

∗This research was performed when the author was at HP Labs.

We consider several questions regarding the reliability of dedu-
plicated data. First, how do we characterize the effects of dedupli-
cation on the reliability of objects in the storage system? Ideally,
we want no degradation of reliability due to deduplication. Sec-
ond, how do we adjust the redundancy in deduplicated storage so
that object reliability is at least as good as in the non-deduplicated
stores? Ideally, we should be able to construct reliable deduplicated
stores based on the reliability requirements of the objects.

This paper makes two primary contributions. Firstly, we show
that deduplication need not result in loss of reliability if the re-
dundancy of the shared chunks is properly adjusted. Secondly, we
also show how to calculate the minimum amount of redundancy to
keep space overhead low and how to calculate the net storage space
after deduplication and redundancy adjustment. We address these
problems in the context of the HP Key-Value Store (HP-KVS), a
deduplicated and erasure-coded key-value store.

This paper is organized as follows. We first give a brief overview
of the HP-KVS system and outline how we carry out deduplication
in HP-KVS in Section 2. We then give a mathematical formulation
for the reliability in HP-KVS and derive the basic properties of this
formulation, including how the reliability changes as the erasure
code’s parameters change in Section 3. We derive how the relia-
bility of an object depends on those of its constituent chunks and
how to adjust the erasure code parameters of chunk containers to
make up for any potential loss of reliability during deduplication
in Section 4. We present a method of calculating the net storage
space after deduplication and erasure code parameter adjustment in
Section 5. We discuss related work in Section 6 before concluding
the paper in Section 7.

2. THE HP KEY-VALUE STORE
HP-KVS [1] is a key-value store tailored for large data objects

such as pictures, audio files, VM images, and movies of moderate
size (≈ 100 MB to 100 GB). The high-level architecture of HP-
KVS is illustrated in Figure 1. Clients use a Representational State
Transfer (REST) interface to interact with a proxy server located
in a data center, which performs get and put operations on behalf
of the client. HP-KVS itself has two types of servers: key-lookup
servers and fragment servers. Key lookup servers store a metadata
list for each key, which holds the locations of its value’s fragments.
(Hereafter, to be consistent with key-value store terminology, we
use the word value in place of data objects.)

HP-KVS exports two interfaces for clients: put(key, value, r-
spec) and get(key). Put allows a client to associate a value with a
key and get allows a client to retrieve a value associated with the
given key. The redundancy specification (or r-spec for short) of
a value specifies the desired level of reliability. More precisely, it

4

A1

fragment

key−lookup

proxies

REST API

clients

metadata
servers

servers
A2 A3 B1 B2

replicated
metadata

Figure 1: Architecture of HP-KVS.

foreach (value to be deduplicated)
read the value’s fragments;
reconstruct the value;
divide the value into chunks;
foreach (chunk)

if (chunk exists in some container)
point to that container;

else
put chunk in current open container;
if (open container full)

close container;
store container;
open another container;

store value manifest as key-lookup server metadata;

Figure 2: The high-level deduplication procedure.

specifies how to erasure encode that value. An r-spec takes the form
of two integers (k, m), where k is the number of data fragments
that the value should be broken into and m is the number of parity
fragments that should be computed and stored. Altogether, n =
k + m fragments are stored such that any k fragments (data or
parity) can recover the original value. For example, in Figure 1, the
first value is stored with r-spec (2, 1) where A1 and A2 are data
fragments, and A3 is a parity fragment. The second value is stored
with r-spec (2, 0) where B1 and B2 are data fragments.

We deduplicate the values stored in HP-KVS as follows: We
consider an offline deduplication process that runs periodically and
deduplicates stored values in batches. In HP-KVS, normally a
value’s metadata contains a list of its erasure-coded fragments. Af-
ter deduplication, this metadata is replaced with a list of pointers
to the chunks making up the value. Chunks are stored in chunk
containers. The reliability of containers may vary with different
containers being encoded with different r-specs. Figure 2 outlines
this procedure. We stress that chunks and fragments are different
concepts. In particular, chunks (multiple KBs) are usually much
smaller than fragments (multiple MBs).

3. RELIABILITY MODEL
In this section, we present the basic assumptions and definitions

for the reliability analysis carried out in the rest of the paper. We
first present the reliability model and define the reliability metric,
and then present some useful properties of this metric. The cur-
rent reliability model and metric favor simplicity and ease of un-
derstanding over precision. We plan to refine them in the future.

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 1 2 3 4 5

L(
k,

m
)

k

m=1
m=2
m=3
m=4
m=5

Figure 3: L(k, m) vs. k for q = 0.001.

We also include some additional analytical results in Appendix A
that are useful for more refined analysis.

3.1 Reliability metric
We adopt the following simple interpretation of a (k, m) r-spec.

Let p(t) be the conditional probability that a disk remains func-
tional throughout time interval [0, t], given that it is functional at
time 0, and let q(t) = 1−p(t). Typically, p(t) is close to 1 and thus
q(t) is close to 0 for reasonably small values of t. Let n = k + m
and let R(k, m, t) be the conditional probability that a (k, m)-
encoded value remains recoverable throughout [0, t] given that all
disks are functional at time 0, and let L(k, m, t) = 1−R(k, m, t).
We assume that the failures of the disks in an r-spec are indepen-
dent. This assumption makes reliability analysis easier, but we real-
ize that it is a simplifying assumption. Still, in practice, the system
can choose disks from failure domains that are likely to be indepen-
dent of each other (e.g., disks in different servers, different racks, or
even different data centers). Since n is typically not a large number
(see Section 4.2), this assumption is reasonable. Since t remains the
same throughout the entire analysis, we will omit explicitly writing
down t hereafter. Under these assumptions, we have:

L(k, m) =
nX

i=m+1

Pr[exactly i disks failed]

=

nX
i=m+1

n

i

!
pn−iqi. (1)

We can obtain some basic understanding of L(k, m) by numer-
ical calculation. We have plotted L(k, m) for some typical values
of k, m, and q in Figures 3 and 4. Figure 3 shows that as k in-
creases, L(k, m) increases, only modestly. Figure 4 shows that
as m increases, L(k, m) decreases, much more quickly. Careful
examination of Figure 3 shows that if we fix n then L(k, m) in-
creases quickly as k increases (and m decreases): compare L(2, 4),
L(3, 3), and L(4, 2). The change of L(k, m) with respect to k or
m is roughly exponential (note the log-scale on the y-axis).

3.2 Basic properties of L(k, m)

Since the full definition of L(k, m) (Equation 1) is somewhat
difficult to work with, we will primarily work with an approxima-
tion of L(k, m), which favors ease of understanding over preci-
sion. In particular, we will ignore all but the first term of the def-
inition of L(k, m) because subsequent terms decrease by roughly

5

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 1 2 3 4 5

L(
k,

m
)

m

k=1
k=2
k=3
k=4
k=5

Figure 4: L(k, m) vs. m for q = 0.001.

a factor of q, which is close to 0. To be more precise, we ob-
serve that the ratio between two subsequent terms in L(k, m) is
q
p
· n−i

i+1
≤ q

p
·

n−(m+1)
(m+1)+1

= q
p
· k−1

m+2
. Since k and m are typically

small integers (see Section 4.2), the above expression is largely de-
termined by q. Therefore, an approximation of L(k, m) is

L(k, m) ≈

n

m + 1

!
pk−1qm+1. (2)

How fast does L(k, m) decrease as we increase m, and how fast
does it increase as we increase k? Figures 3 and 4 have shown
some numerical values. To understand the trends analytically, we
use Equation 2 and obtain

L(k, m + 1)

L(k, m)
≈

n

m
· q,

L(k + 1, m)

L(k, m)
≈

n

k
· p. (3)

Therefore, increasing m by one decreases L(k, m) significantly be-
cause q is close to 0. In other words, with a small increase in space
redundancy, we can obtain a substantial increase in reliability. This
is very important because we wish to provide good reliability with-
out much space redundancy. On the other hand, increasing k by
one only increases L(k, m) modestly.

Some systems (e.g., HYDRAstor [4]) require a fixed value of n;
for such systems, it is necessary to consider trading-off m for k:

L(k + 1, m − 1)

L(k, m)
≈

m

k
·
p

q
. (4)

Here we see that increasing k by one and decreasing m by one
increases the L value significantly because of the 1/q factor. This
result implies that, for reliability considerations alone, we should
set k = 1. However, the shortcoming of doing so is that the space
efficiency of the resulting code, r = k/n, commonly known as the
rate of the code, is very low.

What is the largest δ such that L(k + δ,m + 1) ≤ L(k, m)?
The answer to this question tells us, for each additional parity frag-
ment, how many more data fragments we can accommodate, while
achieving at least the original reliability. The hope is that, the rate
of the new code is better than that of the old code, i.e., k+δ

n+δ+1
> k

n
.

We carry out the calculation as follows. Let r = k/n (i.e., the rate)
and r̄ = m/n (i.e., the redundancy). Then using Equation 3, we
want L(k+δ,m+1)

L(k,m)
= L(k+δ,m+1)

L(k,m+1)
·

L(k,m+1)
L(k,m)

≈
`

p
r

´δ
·
`

q
r̄

´
≤ 1.

Approximating p ≈ 1, we have

δ ≤ log1/r(r̄/q). (5)

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

m
’

k’

actual, (k,m)=(4,2)
estimated rate, (k,m)=(4,2)

actual, (k,m)=(4,1)
estimated rate, (k,m)=(4,1)

Figure 5: m′ vs. k′ for q = 0.001.

To make sense of this expression, consider an example where n =
6, k = 4, m = 2, and q = 0.001. Then we have δ ≤ log1.5 333.3 ≈

14. In other words, a (4 + 14, 2 + 1) = (18, 3) code has the same
L value as a (4, 2) code, with the 14 being as large as possible. We
remark that this is actually a conservative estimate.

Figure 5 shows how m′ grows with k′. Each data point (k′, m′)
on an “actual” plot means that L(k′, m′) ≥ L(k, m), where m′ is
the smallest possible for a given k′, using numerical calculations.
The two “estimated” lines are drawn with slope 1/δ, where δ is
calculated using Equation 5. As we can see, our estimated growth
rates are conservative (as they grow faster than the actual plots) but
still reasonably accurate.

4. THE R-SPEC OF A CONTAINER
The key question we address in this paper is how to determine

what the r-spec of the chunk containers should be, as a function of
the original values’ r-specs so that after deduplication each value is
at least as reliable as it was before. In the absence of deduplication,
each value is erasure coded using some user-specified (k, m) r-
spec, and then stored across n = k + m disks. Note that n is
typically much smaller than the total number of disks in the data
store. When a value is deduplicated, only the unique chunks in
that value are stored. Duplicate chunks are eliminated and replaced
with pointers to the unique copies. This has a profound effect on
the reliability of individual values: the data of a given value can
potentially be spread across many drives because its chunks may be
spread across many chunk containers. In other words, the reliability
of individual values is potentially tied to the reliability of a large
part of the entire data store due to the sharing of chunks.

We now address the first main question in this paper: What is a
proper r-spec for a container? By proper we mean an r-spec that
(1) provides at least the original reliability for all the values that
have chunks in this container, and (2) the space overhead of the
container is minimal. We carry out our analysis in two steps. First
we analyze a special case, and then we develop the analysis for the
general case.

4.1 Special case
We consider the following special case as a first step. Suppose

all values in the HP-KVS have the same (k, m) r-spec. Let s be the
maximum number of chunks that any value is composed of after
deduplication. Suppose further each container is to be stored with
a (k, m+d) r-spec (i.e., same number of data fragments as the value

6

 0

 1

 2

 3

 4

 1 10 100 1000 10000 100000 1e+06

d

s

actual, q=0.01
estimated, q=0.01

actual, q=0.001
estimated, q=0.001

Figure 6: d vs s for (k, m) = (4, 4).

pre-deduplication). How big should d be? We derive an estimate
as follows. After deduplication, we have for any value v:

Pr[v lost] = Pr[any of its chunks lost]

≤ s · Pr[a particular chunk lost]

= s · L(k, m + d).

The above inequality is due to the union bound, which holds for any
set of events, regardless of whether those events are mutually exclu-
sive or independent of each other. In other words, we do not have
to be concerned whether different containers are stored at overlap-
ping set of disks. To ensure no loss of reliability for v, it suffices
to choose a d such that s · L(k, m + d) ≤ L(k, m). Using our
approximation of L(k, m) (Equation 2), we need

s ·

n + d

m + d + 1

!
· pk−1qm+d+1

≤

n

m + 1

!
· pk−1qm+1.

Since
`

n+d
m+d+1

´
>
`

n
m+1

´
, we need s · qd ≤ 1, meaning that we

need d ≥ log1/q s. A more careful analysis, which we omit due to
space limitations, shows that it suffices for

d = log1/q s + ε, (6)

where ε is a small constant such as 1. In essence, ε is a function that
depends on k, m, n, but since these parameters are typically small
integers, ε is typically at most 1. Figure 6 plots the smallest d such
that s ·L(4, 4+d) ≤ L(4, 4), based on both numerical calculations
and our analysis. As we can see, our analysis is fairly accurate.

4.2 General case
We now turn to the more general case: What if containers are en-

coded with a (k′, m′)-code, yet values are encoded with a (k, m)-
code, but k′ �= k? How should we properly set k′, m′ in this case?
To answer this question, we first make a few remarks on the impact
of k and m on the reliability, space efficiency, and access speed of
encoded data. The previous sections have explained how the reli-
ability changes with different k and m. The space efficiency of a
(k, m) r-spec is simply the rate of the code, k/(k+m) or k/n. The
influence on access speed is more subtle. For reads, since the k data
fragments can be read in parallel, increasing k tends to increase
read speed, but only to a certain extent because of the overhead of
reading ever smaller fragments. For writes, increasing m increases
the encoding overhead and number of I/O operations. Therefore, it
is undesirable to have needlessly high values of m, n.

Therefore, we assume that there is a fixed system-wide value n′

(cf. HYDRAstor [4]), and we need to determine k′ and m′ such
that (1) n′ = k′ +m′, (2) the original values’ reliability is matched
or exceeded, and (3) containers are space efficient (i.e., maximize
k′/n′). Let k′ = k +Δk, m′ = m+Δm+ d, where d is as given
in Equation 6. How do we ensure that the container’s reliability is
high enough so that all the values that have chunks in this container
are at least as reliable as before? In Equation 5, we have shown that
each additional parity fragment can accommodate δ additional data
fragments. As a rough extension to that equation, Δm additional
parity fragments can accommodate δ · Δm additional data frag-
ments. Therefore, if we require Δk and Δm satisfy Δk ≤ δ ·Δm,
then for any value v, we have

Pr[v lost] ≤ s · L(k + Δk, m + Δm + d)

≤ L(k + Δk, m + Δm)

≤ L(k, m).

In other words, we want to maximize Δk such that Δk + Δm +
k + m + d = n′ and Δk ≤ δ · Δm. This task is straightforward:
start with Δm = 1 and see if there is any Δk that can satisfy the
two constraints; if yes, we are done; if not, increase Δm by 1 and
repeat. For example, if ε = 1, q = 0.001, s = 1000, k = 2,
m = 2, n = k + m = 4, and n′ = 12, then δ = 9 and d = 2.
Therefore, we have Δk = 5 and Δm = 1, namely, the containers
should be encoded with a (2 + 5, 2 + 1 + 2) = (7, 5) code.

We remark that the above analysis can be used to address related
questions in other contexts. For example, a common question is
the following: If one stores a big data object into s RAID-6 9-disk
(7+2) groups, then how big can s be until the overall value’s relia-
bility is below RAID-5 9-disk (8+1) reliability? By the analysis in
Section 4.2, we want to ensure s · L(7, 2) ≤ L(8, 1). Assuming
q = 0.001 and using Equation 4, we have s ≤ L(8, 1)/L(7, 2) ≈

(2p)/(7q) ≈ 300.

5. THE NET STORAGE SPACE
In the previous section, we have seen that, in order to maintain

the original reliability guarantees, we may have to add some addi-
tional parity fragments for the containers, which introduces space
overhead. Therefore, a natural question is this: After the whole
process of deduplication and adjusting the erasure code parameters
of the containers (with additional parity fragments), do we manage
to save any storage space at all? A positive answer to this question
will justify the whole process, otherwise the process is not worth it.
This section presents an analysis of the net storage space.

To answer this question, many parameters have to be taken into
account, most of which have been discussed in the previous sec-
tion. However, one parameter that has not been discussed is the
compaction factor of deduplication, that is, the expected factor be-
tween the space used by the original data and that by the dedu-
plicated data. Clearly, whether the entire process ultimately saves
space or not depends on the compaction factor, a parameter that is
highly workload dependent. For example, for backup workloads,
this factor can be as high as 50–70, with 10–20 typical, but for
archival workloads, this factor is often around 1.5–3. By some
knowledge of the nature of the data set, the system designer of-
ten has a reasonable estimate of this factor. Using the compaction
factor and other parameters, we derive equations that tell us under
what conditions the net storage space will be less than the original.

5.1 Single r-spec
Let D be the original (i.e., non-deduplicated) data set size, D′ be

the deduplicated data set size, and c = D/D′ be the compaction

7

factor. By definition, c ≥ 1 (we ignore deduplication overheads
such as extra metadata). Let S be the original storage space, S′

be the net (i.e., deduplicated and then re-encoded) storage space.
We assume that all values have the same r-spec (k, m), and each
value is deduplicated into at most s unique chunks. It is easy to
see that S = D · m+k

k
= D · n

k
. We want to investigate under

what circumstances we can expect S′ ≤ S. We observe that S′ =
D
c
· n′

k′
. Therefore, we need D

c
· n′

k′
≤ D · n

k
, or equivalently,

c ≥ k
n
· n′

k′ = k
n
· n′

k+Δk
. In Section 4.2, we have seen how to

calculate Δk. Consider the following example. Suppose ε = 1,
q = 0.001, s = 1000, k = 2, m = 2, n = k + m = 4, and
n′ = 9. Then by Section 4.2, we have Δk = 2. Therefore, we
need c ≥ 2

4
· 9

2+2
= 9

8
= 1.125. In other words, only if we have a

data set that is likely to have a compaction factor at least 1.125 can
we expect the net storage space to be less than the original.

5.2 Multiple r-specs
HP-KVS allows for multiple r-specs, which will be useful for

applications in which data of different importance should have dif-
ferent levels of reliability. Most applications are likely to only re-
quire a few different r-specs. In this section, we consider a simple
yet typical case: two r-specs, (k1, m1) and (k2, m2), the first for
normal data and the second for important data. We assume that the
rate of the first one is larger than that of the second one, namely,
r1 = k1

k1+m1

= k1

n1

> r2 = k2

k2+m2

= k2

n2

. Suppose the data set
sizes are D1 and D2. The total non-deduplicated storage space is
therefore S = D1 · n1

k1

+ D2 · n2

k2

.
Suppose the respective compaction factors of these two data sets

are c1 and c2. After deduplication, the deduplicated data can be
divided into three parts: those present in D1 only (part I), those
present in D2 only (part II), and those present in both D1 and D2

(part III). Let part I’s size be α1 · D1

c1
, part II’s size be α2 · D2

c2
,

and part III’s size be (1 − α1) · D1

c1
= (1 − α2) · D2

c2
, where

0 ≤ α1, α2 ≤ 1.
To protect deduplicated data with multiple r-specs, we can use

containers that are encoded with the same new r-spec. However,
doing so may sacrifice space efficiency, because the r-spec of the
container has to have sufficient redundancy for the important data,
yet for normal data, such an r-spec is an overkill. Therefore, we
allow containers to have two different r-specs. Furthermore, for the
sake of simplicity, we assume that the containers use the same k1

and k2 as their data fragment numbers (i.e., the special case de-
scribed in Section 4.1). We note that the calculation below can
be easily extended to the general case described in Section 4.2.
By this assumption, part I of the deduplicated data set will be re-
encoded with r-spec (k1, m1 + d). Part II will be re-encoded with
(k2, m2 + d), where d = log1/q s + ε and where s is the maxi-
mum number of chunks for any value. Part III will be re-encoded
with the higher reliability r-spec (k2, m2 + d). Then the total
storage space after deduplication and re-encoding is S′ = α1 ·
D1

c1
· n1+d

k1

+ D2

c2
· n2+d

k2

(note the absence of α2 in this expres-
sion). We want to save space, i.e., we want S′ ≤ S. Therefore,

we need D1 ·
“

α1

c1
· n1+d

k1

− n1

k1

”
≤ D2 ·

“
n2

k2

− 1
c2

· n2+d
k2

”
. In

other words, only if the above inequality holds can we save space.
By plugging in the values of the various parameters, the system
designer can get an estimate whether and how much space can
be saved. Consider the following example: n1 = 4, k1 = 3,
n2 = 4, k2 = 1, d = 2, α1 = 0.8, D1 = 5D2. Then we have
4
c1

+ 3
c2

≤ 16
3

. Suppose we have c1 = 1.5 and c2 = 1.25 then the

above expression is satisfied because 8
3

+ 12
5

≤ 16
3

. However, in
practice, some parameters such as α1 can be difficult to estimate.

6. RELATED WORK
To our knowledge, Bhagwat et al. [3] are the first to address re-

liability concerns in deduplicated storage. They observe that dedu-
plication alters the reliability of stored data because of the sharing
of common chunks. Using a metric they call “robustness”—the ex-
pected amount of data lost due to device failures (i.e., severity)—
and targeting replication-based storage, they argue that the number
of copies of a chunk should be logarithmic to the popularity of that
chunk. In contrast, our metric is the likelihood of data loss, not
severity, and our findings indicate that the additional parity frag-
ments grow logarithmically with the maximum number of chunks
into which any value can be broken.

HYDRAstor [4] is a deduplicated secondary storage system that
allows chunks to be placed in different resilience classes, each of
which has a different level of reliability. However, the choice of
which resilience class to use for each chunk is left to the user and
has no relationship to the degree of sharing of the chunks. We
believe that our analysis can help HYDRAstor automatically decide
the proper resilience class for each chunk based on the importance
of the documents containing that chunk. No reliability metric was
used in that paper or proposed, nor is it clear how the reliability of
a chunk affects that of any given document.

Liu et al. [7] suggest that variable-length chunks should be pre-
ferred over fixed-size chunks because the former has proved to
yield more space savings. The variable-length chunks are first packed
into bigger fixed-size objects (i.e., chunk containers), which are
then erasure coded and placed on multiple storage nodes. How-
ever, all chunks are considered equally important and they are all
erasure coded using the same erasure code with the same redun-
dancy configuration. In short, the overall approach is “deduplicate
then RAID.” As we have shown, this means that the minimum re-
liability of a document under this scheme grows worse as the doc-
ument size increases (i.e., has more chunks) and as more data is
stored overall (i.e., more storage nodes are required).

Our reliability analysis for per-value r-specs is largely along the
lines of that by Thomasian and Blaum [11]. Our current analysis is
combinatorial, and we plan to extend it to Markov analysis as well.

Disk failures in the field have been studied by Schroeder and
Gibson [10]. Their study will be useful for determining proper val-
ues of q in the empirical validation of our analysis.

7. CONCLUDING REMARKS
In this paper, we have addressed a few reliability analysis prob-

lems that arise from the deduplication of a erasure-coded key-value
store. In particular, we showed how to adjust the erasure code pa-
rameters to make up for the potential loss of reliability after dedu-
plication, and we showed how to determine whether space can be
saved by deduplicating erasure-coded data. Although these analy-
sis problems arise in this particular context, we believe that they are
of independent interest and may shed light on other related prob-
lems. We have made simplifying assumptions on our reliability
model. In future work, we plan to refine our analysis to include
non-independent disk failures and latent sector errors [2].

We conclude by noting that the reliability metric used in this
paper has only considered the likelihood of data loss, but not the
severity of it, yet deduplication has impact on both. Existing relia-
bility metrics may be inadequate to address both and a new metric
may be needed. To see this, consider a simple example. Suppose
we have N data blocks, and the blocks all have the same content
but are stored on different disks (Figure 7(a)). We run deduplica-
tion on these N blocks, resulting in all metadata pointing to the
same block (Figure 7(b)). Which layout is more reliable? Assume

8

A1

A

AN

data

metadata

(c) reinforced(a) original (b) deduped

1

A

N

data

metadata

A

A

A

data

metadata

1

N

Figure 7: Comparing N copies with one copy.

metric original deduped note

PDL 1 − pN 1 − p deduped wins
expected blocks lost Nq Nq tie
MTTDL 1

Nλ
1
λ

deduped wins
average data loss rate Nλ Nλ tie

Figure 8: Comparing the original and the deduped.

that each disk fails with probability q and has a failure rate of λ.
Figure 8 summarizes the reliability for this example using several
common metrics. In all cases, the deduped case either wins or ties
with the original in spite of the fact that the chance of total data loss
is far greater in the deduped case. This simple example illustrates
that deduplication increases the severity of data loss but decreases
the likelihood of it. Existing metrics either only measure the likeli-
hood (e.g., probability of data loss or PDL, mean time to data loss
or MTTDL) or use a simple combination of the two (e.g., expected
amount of data loss, average data loss rate). Figure 7(c) suggests
that one can increase the reliability at the cost of storing more meta-
data by pointing to multiple copies of the same data. The search for
a meaningful reliability metric is an ongoing research topic, and we
refer the interested readers to recent proposals such as the one by
Greenan et al. [5].

8. REFERENCES
[1] E. Anderson et al. Efficient eventual consistency in

Pahoehoe, an erasure-coded key-blob archive. In
Proceedings of the 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN
2010), pages 181–190, June 2010.

[2] L. N. Bairavasundaram et al. An analysis of latent sector
errors in disk drives. In Proceedings of the 2007
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 289–300, June 2007.

[3] D. Bhagwat et al. Providing high reliability in a minimum
redundancy archival storage system. In Proceedings of the
14th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS ’06), pages 413–421, September 2006.

[4] C. Dubnicki et al. HYDRAstor: A scalable secondary
storage. In Proceedings of the Eighth USENIX Conference
on File and Storage Technologies (FAST), pages 197–210,
February 2009.

[5] K. Greenan, J. S. Plank, and J. J. Wylie. Mean time to

meaningless: MTTDL, markov models, and storage system
reliability. In Proceedings of the Second Workshop on Hot
Topics in Storage and File Systems, June 2010.

[6] M. Lillibridge et al. Sparse indexing: Large scale, inline
deduplication using sampling and locality. In Proceedings of
the Eighth USENIX Conference on File and Storage
Technologies (FAST), pages 111–123, February 2009.

[7] C. Liu et al. R-ADMAD: High reliability provision for
large-scale de-duplication archival storage systems. In
Proceedings of the 23rd international conference on
Supercomputing, pages 370–379, June 2009.

[8] F. J. MacWilliams and N. J. A. Sloane. The Theory of
Error-Correcting Codes. North Holland, Amsterdam, 1978.

[9] D. Patterson, G. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, pages 109–116, June
1988.

[10] B. Schroeder and G. A. Gibson. Understanding disk failure
rates: What does an MTTF of 1,000,000 hours mean to you?
ACM Transactions on Storage, 3(3):Article 8, October 2007.

[11] A. Thomasian and M. Blaum. Mirrored disk organization
reliability analysis. IEEE Transactions on Computers,
55(12):1640–1644, December 2006.

[12] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck
in the Data Domain deduplication file system. In Proceedings
of the Seventh USENIX Conference on File and Storage
Technologies (FAST), pages 269–282, February 2008.

APPENDIX

A. ADDITIONAL PROPERTIES OF L

We mention some additional mathematical properties of L(k, m)
that may be of independent interest. The following property of
L(k, m) is straightforward: For all k, m, L(k, 0) = 1 − pk and
L(0, m) = 0. The next property of L(k, m) is somewhat surpris-
ing: For all k and m, L(k+1, m+1) = p ·L(k, m+1)+q ·L(k+
1, m). The proof of this property uses the well-known property of
binomial coefficients:

`
i+1

j

´
=
`

i
j

´
+
`

i
j−1

´
. The next property of

L(k, m) is intuitive: For all k and m, L(k, m) < L(k + 1, m)
and L(k, m) > L(k, m + 1). This property basically states that
increasing data fragments decreases the reliability, and increasing
parity fragments increases the reliability. One can prove this prop-
erty using the previous property combined with an inductive argu-
ment.

If one wishes to obtain a more precise estimate of L(k, m) than
Equation 2, one way to go about it is to take the first two or three
terms (rather than one) in the definition of L(k, m) and ignore the
rest. Another way is to treat L(k, m) as a power series where the
ratio between two subsequent terms is n−i

i+1
· q

p
≤ k−1

m+2
· q

p
, which

is less than 1 for most values of k and m. Denote this ratio by α.
Observing 1+α+α2 + · · · = 1

1−α
, we can upper bound L(k, m)

by L(k, m) ≤ 1
1−α

`
n

m+1

´
pk−1qm+1.

9

