
Polymorphic Type Assignment and CPS Conversion

(To appear: ACM SIGPLAN Workshop on Continuations, San Francisco, June 1992)

Robert Harper∗ Mark Lillibridge†

Carnegie Mellon University
Pittsburgh, PA 15213

May 17, 1996

Abstract

Meyer and Wand established that the type of a term in the simply typed λ-calculus may be related in
a straightforward manner to the type of its call-by-value CPS transform. This typing property may be
extended to Scheme-like continuation-passing primitives, from which the soundness of these extensions
follows. We study the extension of these results to the Damas-Milner polymorphic type assignment
system under both the call-by-value and call-by-name interpretations. We obtain CPS transforms for
the call-by-value interpretation, provided that the polymorphic let is restricted to values, and for the
call-by-name interpretation with no restrictions. We prove that there is no call-by-value CPS transform
for the full Damas-Milner language that validates the Meyer-Wand typing property and is equivalent to
the standard call-by-value transform up to βη-conversion.

1 Introduction

In their study of the relationship between direct and continuation semantics for the simply typed λ-calculus
(λ→), Meyer and Wand note that the type of a term in λ→ may be related in a simple and natural way to
the type of its call-by-value continuation passing style (CPS) transform [8]. This result may be extended
to the calculus that results from extending λ→ with Scheme-like continuation-passing primitives callcc and
throw (λ→ + cont) [1, 3]. Since λ→ under a call-by-value operational semantics is “type safe” in the sense of
Milner [9, 2], and since the call-by-value CPS transform faithfully mimics the call-by-value semantics [12], it
follows that λ→ + cont under a call-by-value operational semantics is also type safe.

In a subsequent study Duba, Harper, and MacQueen studied the addition of callcc and throw to Stan-
dard ML [10]. The extension of the Meyer-Wand transform to λ→ + cont establishes the soundness of the
monomorphic fragment of the language, but the soundness of the polymorphic language with continuation-
passing primitives was left open. It was subsequently proved by the authors [7] that the full polymorphic
language is unsound when extended with callcc and throw. The source of this discrepancy may be traced to
the interaction between the polymorphic let construct and the typing rules for callcc. Several ad hoc methods
for restricting the language to recover soundness have been proposed [6, 14].

In this paper we undertake a systematic study of the interaction between continuations and polymorphism
by considering the typing properties of the CPS transform for both the call-by-value and call-by-name variants
of the Damas-Milner language [2] and its extension with continuation-passing primitives. We obtain suitable
extensions of the Meyer-Wand theorem for the call-by-value CPS transform, provided that the polymorphic
let is restricted to values, and for the call-by-name transform, under no restrictions. Finally, we prove that
there is no call-by-value CPS transform for the full Damas-Milner language that both satisfies the Meyer-
Wand typing property and is equivalent to the usual transform up to βη-conversion. In particular, the
standard call-by-value CPS transform fails to preserve typability.

∗This work was sponsored by the Defense Advanced Research Projects Agency, CSTO, under the title “The Fox Project:
Advanced Development of Systems Software”, ARPA Order No. 8313, issued by ESD/AVS under Contract No. F19628–91–C–
0168.

†Supported by a National Science Foundation Graduate Fellowship.

1

2 Untyped Terms

The language of untyped terms is given by the following grammar:

e ::= x | λx.e | e1 e2 | let x be e1 in e2 | callcc | throw

Here x ranges over a countably infinite set of variables. We include the let construct as a primitive because
it is needed in the discussion of polymorphic type assignment. callcc and throw are continuation-passing
primitives whose definitions are derived from analogous constructs in Scheme [1] and Standard ML of New
Jersey [3].

We consider two CPS transforms for untyped terms, corresponding to the call-by-value and call-by-name
operational semantics [12]. Each CPS transform consists of a transformation |−| for untyped terms and a
transformation ||−|| for untyped values. Exactly what is considered a value depends on which operational
semantics is being used. Under call-by-value, variables, λ-abstractions, and constants1 are considered values.
Under call-by-name, only λ-abstractions and constants are considered values. We shall use v as a meta-
variable for call-by-value values and w as a meta-variable for call-by-name values.

Definition 2.1 (Call-by-Value CPS Transform)

|v|cbv = λk.k ||v||cbv
|e1 e2|cbv = λk.|e1|cbv (λx1.|e2|cbv (λx2.x1 x2 k))

|let x be e1 in e2|cbv = λk.|e1|cbv (λx.|e2|cbv k)

||x||cbv = x
||λx.e||cbv = λx.|e|cbv
||callcc||cbv = λf.λk.f k k
||throw||cbv = λc.λk.k (λx.λl.c x)

Lemma 2.2

1. || [v/x]v′ ||cbv = [||v||cbv/x] ||v′||cbv .
2. | [v/x]e |cbv = [||v||cbv/x] |e|cbv .
We shall also have need of a variant call-by-value CPS transform (cbv ′) defined on untyped terms sat-

isfying the restriction that all let expressions are of the form let x be v in e. I.e., the let-bound expression is
required to be a (call-by-value) value. Because of this restriction, a simpler rule can be given for the let case:

|let x be v in e|cbv ′ = λk.let x be ||v||cbv ′ in (|e|cbv ′ k)

This simpler rule for let expressions is the only difference between the two transforms.

Lemma 2.3 Let v and v′ be values obeying the restriction on let expressions and e be a term obeying the
restriction on let expressions. Then

1. || [v/x]v′ ||cbv ′ = [||v||cbv ′/x] ||v′||cbv ′ .

2. | [v/x]e |cbv ′ = [||v||cbv ′/x] |e|cbv ′ .

Definition 2.4 (Call-by-Name CPS Transform)

|w|cbn = λk.k ||w||cbn
|x|cbn = x

|e1 e2|cbn = λk.|e1|cbn (λx1.x1 |e2|cbn k)
|let x be e1 in e2|cbn = λk.let x be |e1|cbn in (|e2|cbn k)

||λx.e||cbn = λx.|e|cbn
||callcc||cbn = λf.λk.f (λf ′.f ′ (λl.l k) k)
||throw||cbn = λc.λk.k (λx.λl.c (λc′.x (λx′.c′ x′)))

1Note that callcc and throw are considered to be constants.

2

Lemma 2.5

1. || [e/x]w ||cbn = [|e|cbn/x] ||w||cbn .

2. | [e/x]e′ |cbn = [|e|cbn/x] |e′|cbn .

The correctness of these transforms may either be established by relating them to an independently-
defined operational semantics (as in [12, 4]), or else taken as the definition of call-by-value and call-by-name
semantics.

3 Simple Type Assignment

In this section we review Meyer and Wand’s typing theorem for the call-by-value CPS transform for the
simply-typed λ-calculus (λ→), and present an analogous result for the call-by-name CPS transform.

Definition 3.1 (λ→ Types and Contexts)

types τ ::= b | τ1 → τ2

contexts Γ ::= · | Γ, x:τ

Here b ranges over a countable set of base types. We assume that among the base types there is a distinguished
type α, which will be used in what follows to represent the “answer” type of a CPS transform.

Definition 3.2 (λ→ Typing Rules)
Γ � x : Γ(x) (var)

Γ, x:τ1 � e : τ2

Γ � λx.e : τ1 → τ2

(x �∈ dom(Γ)) (abs)

Γ � e1 : τ2 → τ Γ � e2 : τ2

Γ � e1 e2 : τ
(app)

Γ � e1 : τ1 Γ, x:τ1 � e2 : τ

Γ � let x be e1 in e2 : τ
(mono-let)

The type system λ→ + cont is defined by adding the type expression τ cont and the following typing rules
for the continuation-passing primitives:

Γ � callcc : (τ cont → τ) → τ (callcc)

Γ � throw : τ cont → τ → τ ′ (throw)

Definition 3.3 (Call-by-Value Type Transform for λ→)

|τ |cbv = (||τ ||cbv → α) → α

||b||cbv = b
||τ1→τ2||cbv = ||τ1||cbv → |τ2|cbv

The type transform is extended to contexts by defining ||Γ||cbv (x) = ||Γ(x)||cbv for each x ∈ dom(Γ).

Theorem 3.4 (Meyer-Wand)

1. If λ→ � Γ � v : τ , then λ→ � ||Γ||cbv � ||v||cbv : ||τ ||cbv .

3

2. If λ→ � Γ � e : τ , then λ→ � ||Γ||cbv � |e|cbv : |τ |cbv .
The call-by-value type transform is extended to λ→ + cont by defining ||τ cont||cbv = ||τ ||cbv → α. It is

straightforward to verify that Theorem 3.4 extends to λ→ + cont in this way [3].

Definition 3.5 (Call-by-Name Type Transform for λ→) 2

|τ |cbn = (||τ ||cbn → α) → α

||b||cbn = b
||τ1→τ2||cbn = |τ1|cbn → |τ2|cbn

The type transform is extended to contexts by defining |Γ|cbn(x) = |Γ(x)|cbn for each x ∈ dom(Γ).

Theorem 3.6

1. If λ→ � Γ � w : τ , then λ→ � |Γ|cbn � ||w||cbn : ||τ ||cbn .

2. If λ→ � Γ � e : τ , then λ→ � |Γ|cbn � |e|cbn : |τ |cbn .

The call-by-name CPS transform is extended to λ→ + cont by defining ||τ cont||cbn = ||τ ||cbn → α, just
as for call-by-value. It is straightforward to verify that Theorem 3.6 extends to λ→ + cont in this way.

4 Polymorphic Type Assignment

In this section we study the extension of the Meyer-Wand typing property to Damas and Milner’s polymorphic
type assignment system (DM).

The syntax of types and contexts in (DM) is defined by the following grammar:

Definition 4.1 (DM Types and Contexts)

monotypes τ ::= t | b | τ1 → τ2

polytypes σ ::= τ | ∀t.σ

contexts Γ ::= · | Γ, x:σ

Here t ranges over a countably infinite set of type variables. The typing rules of the Damas-Milner system
extend those of λ→ as follows:

Definition 4.2 (Additional DM Typing Rules)

Γ � e : σ

Γ � e : ∀t.σ
(t �∈ FTV (Γ)) (gen)

Γ � e : ∀t.σ

Γ � e : [τ/t]σ
(inst)

Γ � e1 : σ1 Γ, x:σ1 � e2 : τ2

Γ � let x be e1 in e2 : τ2

(x �∈ dom(Γ)) (poly-let)

The system DM + cont is defined by adding the type expression τ cont, as before, and adding the following
typing rules:

Γ � callcc : ∀t.(t cont → t) → t (callcc’)

Γ � throw : ∀s.∀t.s cont → s → t (throw’)

Let σcallcc and σthrow be the polytypes assigned to callcc and throw, respectively.
2The term “call-by-name type transform” is something of a misnomer since there exists a by-value CPS transform that

validates the by-name typing property [5]. Nevertheless we stick with the suggestive, if somewhat misleading, terminology.

4

4.1 Restricted Call-by-Value

Let DM− denote the sub-system of DM obtained by restricting let expressions so that the bound expression
is a call-by-value value. The Meyer-Wand typing theorem may be extended to terms of DM−, provided that
we use the variant call-by-value CPS transform (cbv ′) given in Section 2.

Definition 4.3 (Call-by-Value Type Transform for DM−)

|τ |cbv = (||τ ||cbv → α) → α
|∀t.σ|cbv = ∀t.|σ|cbv

||t||cbv = t
||b||cbv = b

||τ1 → τ2||cbv = ||τ1||cbv → |τ2|cbv
||∀t.σ||cbv = ∀t.||σ||cbv

This definition extends the Meyer-Wand type transform to polymorphic types. In the terminology of
Reynolds [13], polymorphic instantiation is given a “trivial” interpretation in that no interesting computation
can occur as a result of the specialization of a value of polymorphic type. The definition of |∀t.σ|cbv reflects
the fact that in DM− there is no need of continuations whose domain is a polymorphic type.

Lemma 4.4

1. ||[τ/t]σ||cbv = [||τ ||cbv / t] ||σ||cbv .
2. |[τ/t]σ|cbv = [||τ ||cbv / t] |σ|cbv .

Theorem 4.5

1. If DM− � Γ � v : σ, then DM− � ||Γ||cbv ′ � ||v||cbv ′ : ||σ||cbv .
2. If DM− � Γ � e : σ, then DM− � ||Γ||cbv ′ � |e|cbv ′ : |σ|cbv .

The proof hinges on the following observations. First, the definitions of the transformations |−|cbv and
||−||cbv on polytypes are such that the gen and inst rules carry over to applications of the same rule.
Specifically, if Γ � e : σ and t does not occur free in Γ, then t does not occur free in ||Γ||cbv ′ , and hence
||Γ||cbv ′ � |e|cbv ′ : ∀t.|σ|cbv is derivable by an application of gen and the induction hypothesis. A similar
argument suffices for the value transform. Uses of inst are handled similarly.

Second, the restriction on let expressions in DM− combined with the use of the variant transform ensure
that let’s are carried over to let’s, and hence that polymorphic typing is preserved. Specifically, if Γ �
v1 : σ1 and Γ, x:σ1 � e2 : τ2 are both derivable, then by induction ||Γ||cbv ′ � ||v1||cbv ′ : ||σ1||cbv and
||Γ||cbv ′ , x:||σ1||cbv � |e2|cbv ′ : |τ2|cbv are derivable, and hence ||Γ||cbv ′ � λk.let x be ||v1||cbv ′ in |e2|cbv ′ k :
|τ2|cbv is also derivable.

Theorem 4.5 extends to DM− + cont by defining ||τ cont||cbv = ||τ ||cbv → α. We need only verify that
||callcc||cbv ′ and ||throw||cbv ′ , given in Section 2, have types ||σcallcc||cbv and ||σthrow||cbv , respectively. The
soundness of DM− + cont under call-by-value follows from the extended theorem. (Same proof as for the
soundness of λ→ + cont under call-by-value.)

4.2 Call-by-Name

Theorem 3.6 (the Meyer-Wand-like typing theorem for call-by-name) can be extended to the unrestricted
DM langauge.

5

Definition 4.6 (Call-by-Name Type Transform for DM)

|τ |cbn = (||τ ||cbn → α) → α
|∀t.σ|cbn = ∀t.|σ|cbn

||t||cbn = t
||b||cbn = b

||τ1→τ2||cbn = |τ1|cbn → |τ2|cbn
||∀t.σ||cbn = ∀t.||σ||cbn

Lemma 4.7

1. || [τ/t]σ ||cbn = [||τ ||cbn / t] ||σ||cbn .

2. | [τ/t]σ |cbn = [||τ ||cbn / t] |σ|cbn .

Theorem 4.8

1. If DM � Γ � w : σ, then DM � |Γ|cbn � ||w||cbn : ||σ||cbn .

2. If DM � Γ � e : σ, then DM � |Γ|cbn � |e|cbn : |σ|cbn .

The proof proceeds along similar lines to that of the call-by-value case. For example, if Γ � e1 : σ1

and Γ, x:σ1 � e2 : τ2 are derivable, then by induction so are |Γ|cbn � |e1|cbn : |σ1|cbn and |Γ|cbn , x:|σ1|cbn �
|e2|cbn : |τ2|cbn , and hence so is |Γ|cbn � λk.let x be |e1|cbn in |e2|cbn k : |τ2|cbn , as required.

Theorem 4.8 extends to DM + cont by defining ||τ cont||cbn = ||τ ||cbn → α. We need only verify that
||callcc||cbn and ||throw||cbn , given in Section 2, have types ||σcallcc||cbn and ||σthrow||cbn , respectively. The
soundness of DM + cont under call-by-name operational semantics follows from the extended theorem in a
manner similar to that of the call-by-value case for DM− + cont.

4.3 Unrestricted Call-by-Value

Having established suitable typing properties for the variant call-by-value transform for DM− and the call-
by-name transform for full DM, it is natural to consider whether there is a call-by-value CPS transform for
full DM that satisfies a Meyer-Wand-like typing property. Since cbv ′ is only defined on terms with restricted
let expressions, we can not simply extend Theorem 4.5 to full DM.

Let us consider attempting to extend Theorem 4.5 to full DM by using cbv instead of cbv ′ as the transform.
Consider the induction step for the polymorphic let case. By induction we have

DM � ||Γ||cbv � |e1|cbv : |σ1|cbv
and

DM � ||Γ||cbv , x:||σ1||cbv � |e2|cbv : |τ2|cbv .

We are to show that
DM � ||Γ||cbv � λk.|e1|cbv (λx.|e2|cbv k) : |τ2|cbv .

Since the call-by-value interpretation of let requires that e1 be evaluated before e2, the call-by-value CPS
transform of let x be e1 in e2 involves a continuation whose argument may, in general, be of polymorphic type.
To capture this we must change the definition of |−|cbv so that |σ|cbv = (||σ||cbv → α) → α. But this takes
us beyond the limits of the Damas-Milner type system since ||σ||cbv is, in general, a polytype. We therefore
consider as target language the extension, DM+, of DM, in which the distinction between monotypes and
polytypes is dropped, leading to full polymorphic type assignment [11]. The decidability of type checking
for DM+ is unknown, but this is not important for our purposes. We shall rely, however, on the fact that
the subject reduction property holds for β-reduction in DM+ [11].

With these changes to the type transformation and the associated enrichment of the target type sys-
tem, the induction step for general let’s works. However, polymorphic generalization becomes problematic.
Specifically, if DM � Γ � e : σ with t �∈ FTV (Γ), then by induction DM+ � ||Γ||cbv � |e|cbv : |σ|cbv , and

6

t �∈ FTV (||Γ||cbv). We are to show DM+ � ||Γ||cbv � |e| : |∀t.σ|cbv , and there is no evident way to proceed.
We can indeed show that |e| has type ∀t.(||σ||cbv → α) → α, but this is not enough. In fact we shall prove
that any variant call-by-value CPS transform |e| verifying the Meyer-Wand typing property for DM must
not be βη-convertible to |e|cbv .

The argument proceeds by way of the extension of DM with continuation passing primitives. Under the
call-by-value evaluation strategy, DM + cont is unsound. Specifically, we can find a term e such that e has
a type τ , but whose value, when executed, fails to have type τ . In other words, evaluation fails to respect
typing. Assuming that we have base types int and bool, and constants3 0 : int and true : bool, the following
term is well-typed with type bool in DM + cont but evaluates under call-by-value to 0:

e0 = let f be callcc (λk.λx.throw k λy.x)
in (λx.λy.y) (f 0) (f true)

Using the typing rules of DM+cont, the let-bound identifier f is assigned the type ∀t.t→t, and hence may be
used at types int→int and bool→bool in the body. But the binding for f grabs the continuation associated
with the body of the let expression and saves it. Upon evaluation of f 0, the continuation is invoked and f is
effectively re-bound to a constant function returning 0. The body is re-entered, f 0 is evaluated once again
(without difficulty), but then f true is evaluated, resulting in 0.

It follows that there is no call-by-value CPS transform for DM + cont that preserves typability. Con-
sequently, any call-by-value CPS transform for DM must be of a somewhat different form than the usual
one.

Theorem 4.9 (No Call-by-Value CPS Transform) There is no call-by-value CPS transform |e| for DM
that simultaneously satisfies the following two conditions:

1. Equivalence: |e| =βη |e|cbv .
2. Typing: If DM � Γ � e : σ, then DM+ � ||Γ||cbv � |e| : |σ|cbv .

Proof: Given such a transform we could form |e0| (where e0 is given above) by regarding callcc and throw as
variables of polytype σcallcc and σthrow, respectively. By the typing property this term has type |bool|cbv , under
the assumption that callcc and throw have types ||σcallcc||cbv and ||σthrow||cbv , respectively. Consequently the
substitution instance e1 = [||callcc||cbv , ||throw||cbv/callcc, throw] |e0| has type |bool|cbv = (bool → α) → α.
But the corresponding substitution instance of |e0|cbv is precisely the call-by-value CPS transform of e0,
taking account of callcc and throw directly. Since βη-conversion is preserved under substitution, we have by
the equivalence property that e1 is βη-convertible to |e0|cbv . Now, we know that |e0|cbv λx.x evaluates under
call-by-value to 0. Consequently, this expression’s βη (and hence β) normal form is 0. Therefore, we have
that e1 λx.x is β-reducible to 0. But this is a violation of the subject reduction property of DM+ [11] since
e1 λx.x has type bool!

The conditions of Theorem 4.9 leave open the possibility of either finding a variant call-by-value transform
that is not convertible to the standard one, or else varying the type transform in such a way that a Meyer-
Wand-like typing property can be proved, or both. Any variant type transform must be such that either
||callcc||cbv or ||throw||cbv fail to have the required types under this transform so as to preclude extension to
DM + cont. We know of no such variants, but have no evidence that none exist.

4.4 Related Transforms

It seems worthwhile, however, to point out that there is a variant type transform that “almost” works. This
transform is defined by taking ||∀t.σ|| = ∀t.|σ|, and |σ| = (||σ|| → α) → α. The intuition behind this choice
is to regard polymorphic instantiation as a “serious” computation (in roughly the sense of Reynolds [13]).
This interpretation is arguably at variance with the usual semantics of ML polymorphism since it admits
primitives that have non-trivial computational effects when polymorphically instantiated. Nevertheless, we
can use this type transform to extend the Meyer-Wand theorem to a variant call-by-value CPS transform for

3This argument can be made without constants but at the cost of increased complexity. Constants of base type can easily
be added to any of the transforms presented in this paper by defining ||c|| = c, c a constant. Constants of non-base type must
be handled on a case-by-case basis.

7

DM− and to a variant call-by-name CPS transform for DM, provided that we restrict attention to programs
of monomorphic type. It does not provide a variant call-by-value CPS transform for full DM because of the
way in which polymorphic generalization is handled.

To make these observations precise, we sketch the definitions of variant CPS transforms based on this
type interpretation. The main idea is to define the CPS transform by induction on typing derivations so
that the effect of polymorphic generalization and instantiation can be properly handled. We give here only
the two most important clauses, those governing the rules gen and inst:

|Γ � e : ∀t.σ| = λk.k |e|, where
|Γ � e : σ| = |e|

|Γ � e : [τ/t]σ| = λk.|e| (λx.x k), where
|Γ � e : ∀t.σ| = |e|

This definition may be extended to the other inference rules in such a way as to implement either a call-
by-name or call-by-value interpretation of application. However, the transform fails (in general) to agree
with the usual (call-by-value or call-by-name) ML semantics on terms of polymorphic type. Specifically, the
transformation of a gen rule applies the current continuation to the suspended computation of e. If this
continuation is not strict, then an expression that would abort in ML terminates normally after transforma-
tion into CPS. For example, consider the principal typing derivation of the term hd nil in a context assigning
the obvious types to hd and nil. The resulting transform, when applied to λx.0, will yield answer 0, despite
the fact that the usual ML semantics leads to aborting in this case.

By restricting attention to programs of monomorphic type, we may obtain a correct CPS transform for
DM− (under call-by-value) and DM (under call-by-name). This is essentially because in DM− under call-
by-value there are no non-trivial polymorphic computations, and because in DM under call-by-name the
semantics is defined by substitution. But the above argument shows that this transform is incorrect for DM
under call-by-value. Specifically, it fails to correctly implement the usual ML semantics for expressions such
as let x be hd nil in 0 (which, under the above transformation yields result 0 rather than aborting).

5 Conclusion

The Meyer-Wand typing theorem for the call-by-value CPS transform for the simply-typed λ-calculus estab-
lishes a simple and natural relationship between the type of a term and the type of its call-by-value CPS
transform. Meyer and Wand exploited this relationship in their proof of the equivalence of the direct and
continuation semantics of λ→ [8]. A minor extension of this result may be used to establish the soundness
of typing for λ→ + cont, the extension of λ→ with continuation-passing primitives [3], under call-by-value.

In this paper we have presented a systematic study of the extension of the Meyer-Wand theorem to the
Damas-Milner system of polymorphic type assignment. Our main positive results are the extension of the
Meyer-Wand theorem to the call-by-value interpretation of a restricted form of polymorphism, and to the
call-by-name interpretation of the unrestricted language. These results have as a consequence the soundness
(in the sense of Damas and Milner [2]) of these programming languages. We have also argued that there is
no “natural” call-by-value CPS transform for the unrestricted language, but this leaves open the possibility
of finding a transformation that is radically different in character from the usual one.

Our investigation makes clear that there is a fundamental tension between implicit polymorphism and the
by-value interpretation of let. In particular, we are able to provide a CPS transform for the full Damas-Milner
language that extends to continuation-passing primitives, but which is “not quite” equivalent to the usual
call-by-value semantics. This suggests that a language in which polymorphic generalization and instantiation
are semantically significant would be well-behaved, and might be a suitable alternative to ML-style implicit
polymorphism. We plan to report on this subject in a future paper.

6 Acknowledgments

We are grateful to Olivier Danvy, Tim Griffin, Mark Leone, and the referees for their helpful comments on
earlier drafts of this paper.

8

References

[1] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for higher-level semantic algebra.
In Maurice Nivat and John C. Reynolds, editors, Algebraic Methods in Semantics, pages 237–250.
Cambridge University Press, Cambridge, 1985.

[2] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Ninth ACM Sympo-
sium on Principles of Programming Languages, pages 207–212, 1982.

[3] Bruce Duba, Robert Harper, and David MacQueen. Typing first-class continuations in ML. In Eighteenth
ACM Symposium on Principles of Programming Languages, January 1991.

[4] Matthias Felleisen, Daniel Friedman, Eugene Kohlbecker, and Bruce Duba. A syntactic theory of
sequential control. Theoretical Computer Science, 52(3):205–237, 1987.

[5] Timothy Griffin. Private communication., January 1992.

[6] Robert Harper, Bruce Duba, and David MacQueen. Typing first-class continuations in ML. Revised
and expanded version of [3], in preparation.

[7] Robert Harper and Mark Lillibridge. Announcement on the types electronic forum., July 1991.

[8] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda calculi (summary). In
Rohit Parikh, editor, Logics of Programs, volume 224 of Lecture Notes in Computer Science, pages
219–224. Springer-Verlag, 1985.

[9] Robin Milner. A theory of type polymorphism in programming languages. Journal of Computer and
System Sciences, 17:348–375, 1978.

[10] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press, 1990.

[11] John C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic
expressions. In 1986 Symposium on LISP and Functional Programming, pages 308–319, August 1986.

[12] Gordon Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoretical Computer Science,
1:125–159, 1975.

[13] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Conference
Record of the 25th National ACM Conference, pages 717–740, Boston, August 1972. ACM.

[14] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Technical Report
TR91–160, Department of Computer Science, Rice University, July 1991.

9

