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Abstract. Meyer and Wand established that the type of a term in the simply typed λ-
calculus may be related in a straightforward manner to the type of its call-by-value CPS
transform. This typing property may be extended to Scheme-like continuation-passing
primitives, from which the soundness of these extensions follows. We study the extension
of these results to the Damas-Milner polymorphic type assignment system under both
the call-by-value and call-by-name interpretations. We obtain CPS transforms for the
call-by-value interpretation, provided that the polymorphic let is restricted to values,
and for the call-by-name interpretation with no restrictions. We prove that there is
no call-by-value CPS transform for the full Damas-Milner language that validates the
Meyer-Wand typing property and is equivalent to the standard call-by-value transform
up to operational equivalence.

1. Introduction

In their study of the relationship between direct and continuation seman-
tics for the simply typed λ-calculus (λ→), Meyer and Wand note that the
type of a term in λ→ may be related in a simple and natural way to the
type of its call-by-value continuation passing style (CPS) transform [13].
This result may be extended to the calculus that results from extend-
ing λ→ with Scheme-like continuation-passing primitives callcc and throw
(λ→ + cont) [1, 4]. Since λ→ under a call-by-value operational semantics is
“type safe” in the sense of Milner [14, 2], and since the call-by-value CPS
transform faithfully mimics the call-by-value semantics [17], it follows that
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λ→ + cont under a call-by-value operational semantics is also type safe.
In a subsequent study Duba, Harper, and MacQueen studied the addition

of callcc and throw to Standard ML [15]. The extension of the Meyer-Wand
transform to λ→ + cont establishes the soundness of the monomorphic frag-
ment of the language, but the soundness of the polymorphic language with
continuation-passing primitives was left open. It was subsequently proved
by the authors [9] that the full polymorphic language is unsound when
extended with callcc and throw. The source of this discrepancy may be
traced to the interaction between the polymorphic let construct and the
typing rules for callcc. Several ad-hoc methods for restricting the language
to recover soundness have been proposed [8, 23].

In this paper we undertake a systematic study of the interaction between
continuations and polymorphism by considering the typing properties of
the CPS transform for both the call-by-value and call-by-name variants of
the Damas-Milner language [2] and its extension with continuation-passing
primitives. We obtain suitable extensions of the Meyer-Wand theorem for
the call-by-value CPS transform, provided that the polymorphic let is re-
stricted to values, and for the call-by-name transform, under no restrictions.
Finally, we prove that there is no call-by-value CPS transform for the full
Damas-Milner language that both satisfies the Meyer-Wand typing prop-
erty and is equivalent to the usual transform up to operational equivalence.
In particular, the standard call-by-value CPS transform fails to preserve
typability.

2. Untyped Terms

The language of untyped terms is given by the following grammar:

e ::= x | λx.e | e1 e2 | let x be e1 in e2 | callcc | throw

Here x ranges over a countably infinite set of variables. We include the let
construct as a primitive because it is needed in the discussion of polymor-
phic type assignment. The constants callcc and throw stand for continuation-
passing primitives whose definitions are derived from analogous constructs
in Scheme [1] and Standard ML of New Jersey [4].

We consider two CPS transforms for untyped terms, corresponding to
the call-by-value and call-by-name operational semantics [17]. Each CPS
transform consists of a transformation |−| for untyped terms and a trans-
formation ||−|| for untyped values. Exactly what is considered a value de-
pends on which operational semantics is being used. Under a call-by-value
interpretation, the set of values is given by the following grammar:

v ::= x | λx.e | callcc | throw
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Since throw is a two-argument function, it is possible to regard throw v as
a value. We choose to not regard it as a value because to do so compli-
cates somewhat both the transform and the associated theorems due to the
resulting overlap between the application and value cases. Under a call-by-
name interpretation, the set of values is given by the following grammar:

n ::= λx.e | callcc | throw

Definition 1 (Call-by-Value CPS Transform) 1

|v|cbv = λk.k ||v||cbv
|e1 e2|cbv = λk.|e1|cbv (λx1.|e2|cbv (λx2.x1 x2 k))

|let x be e1 in e2|cbv = λk.|e1|cbv (λx.|e2|cbv k)

||x||cbv = x
||λx.e||cbv = λx.|e|cbv
||callcc||cbv = λf.λk.f k k
||throw||cbv = λc.λk.k (λx.λl.c x)

The transformation of let expressions is chosen to reflect the usual “sequen-
tial” evaluation strategy for let’s in a call-by-value language in which the
let-bound expression, e1, is fully evaluated prior to evaluation of the body,
e2. (Compare this with the call-by-name transform in Definition 2 below.)
The transformation of callcc differs from that in Scheme since continuations
are not here represented as functions which are applied to their arguments,
but rather are represented directly as continuations which are invoked us-
ing the throw primitive. (See Harper, Duba, and MacQueen [8] for further
discussion of this point.)

The call-by-value CPS transform is compositional in the sense that it
commutes with substitution.

Lemma 1

1. || [v/x]v′ ||cbv = [ ||v||cbv/x ] ||v′||cbv .
2. | [v/x]e |cbv = [ ||v||cbv/x ] |e|cbv .

Proof: The proof proceeds by simultaneous induction on the struc-
ture of v′ and e. We give here a few illustrative cases; the remainder
follow by a similar argument. We drop the “cbv” subscript for the
sake of readability.

1In each equation any bound variable occurring on the right that does not also occur
on the left is assumed to be chosen so as to avoid capture.
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v′ = x :
We have by definition ||x|| = x, and hence [||v′||/x]||x|| = ||v′|| =
||[v′/x]x||.

v′ = x′ �= x :
We have by definition ||x′|| = x′, and hence [||v′||/x]||x′|| = x′ =
||[v′/x]x′||.

v′ = λy.e :
We may assume without loss of generality that y �= x and that
y does not occur freely in ||v||.

||[v/x]λy.e|| = ||λy.[v/x]e||
= λy.|[v/x]e|
= λy.[||v||/x]|e| (by induction)
= [||v||/x]λy.|e|
= [||v||/x] ||λy.e||

e = v′ :
We may assume without loss of generality that k does not occur
freely in ||v′||. Note that values are stable under substitution of
a value for a variable.

|[v/x]v′| = λk.k ||[v/x]v′|| ( [v/x]v′ is a value)
= λk.k [||v||/x]||v′|| (by induction)
= [||v||/x]λk.k ||v′||
= [||v||/x] ||v′||

e = e1 e2 :
We may assume without loss of generality that the variables x1,
x2, and k do not occur freely in ||v||.
|[v/x](e1 e2)| = |[v/x]e1 [v/x]e2|

= λk.|[v/x]e1| (λx1.|[v/x]e2| (λx2.x1x2k))
= λk.[||v||/x]|e1| (λx1.[||v||/x]|e2| (λx2.x1x2k))
= [||v||/x]λk.|e1| (λx1.|e2| (λx2.x1x2k))
= [||v||/x]|e1 e2|

We shall also have need of a variant call-by-value CPS transform (cbv ′)
defined on untyped terms satisfying the restriction that all let expressions
are of the form let x be v in e — i.e., the let-bound expression is required to
be a (call-by-value) value. Because of this restriction, a simpler rule can be
given for the let case:

|let x be v in e|cbv ′ = λk.let x be ||v||cbv ′ in (|e|cbv ′ k)

This simpler rule for let expressions is the only difference between the two
transforms.
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Lemma 2 Let v and v′ be values obeying the restriction on let expressions
and e be a term obeying the restriction on let expressions. Then

1. || [v/x]v′ ||cbv ′ = [ ||v||cbv ′/x ] ||v′||cbv ′.

2. | [v/x]e |cbv ′ = [ ||v||cbv ′/x ] |e|cbv ′.

Definition 2 (Call-by-Name CPS Transform) 2

|n|cbn = λk.k ||n||cbn
|x|cbn = x

|e1 e2|cbn = λk.|e1|cbn (λx1.x1 |e2|cbn k)
|letx be e1 in e2|cbn = λk.let x be |e1|cbn in (|e2|cbn k)

||λx.e||cbn = λx.|e|cbn
||callcc||cbn = λf.λk.f (λf ′.f ′ (λl.l k) k)
||throw||cbn = λc.λk.k (λx.λl.c (λc′.x (λx′.c′ x′)))

The reader may find it helpful to bear in mind that in call-by-name variables
are bound to suspensions, rather than to values. The rather complicated
definitions of ||callcc||cbn and ||throw||cbn may be attributed to this fact.

Lemma 3

1. || [e/x]n ||cbn = [ |e|cbn/x ] ||n||cbn .

2. | [e/x]e′ |cbn = [ |e|cbn/x ] |e′|cbn .

Proof: By simultaneous induction on the structure of n and e′.

The relationship between the call-by-value and call-by-name CPS trans-
forms and the corresponding call-by-value and call-by-name operational se-
mantics was established for pure λ-terms by Plotkin [17] and was extended
to continuation-passing primitives (for the call-by-value case) by Griffin [6].
(See also [5, 19, 20, 21, 3].)

Theorem 1 (Plotkin, Griffin) The closed expression e evaluates to v
under call-by-value iff |e|cbv (λx.x) evaluates to ||v||cbv under either call-
by-value or call-by-name.

In particular, if e evaluates to a constant c, then |e|cbv (λx.x) evaluates
to c, and vice-versa, assuming that ||c||cbv = c. A similar result for the
call-by-name interpretation may also be proved [17].

2In each equation any bound variable occurring on the right that does not also occur
on the left is assumed to be chosen so as to avoid capture.
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3. Simple Type Assignment

In this section we review Meyer and Wand’s typing theorem for the call-
by-value CPS transform for the simply-typed λ-calculus (λ→), and present
an analogous result for the call-by-name CPS transform.

Definition 3 (λ→ Types and Contexts)

types τ ::= b | τ1 → τ2

contexts Γ ::= • | Γ, x:τ

Here b ranges over a countable set of base types. We assume that among
the base types there is a distinguished type α, which will be used in what
follows to represent the “answer” type of a CPS transform.

Definition 4 (λ→ Typing Rules)

Γ � x : Γ(x) (var)

Γ, x:τ1 � e : τ2

Γ � λx.e : τ1 → τ2
(x �∈ dom(Γ)) (abs)

Γ � e1 : τ2 → τ Γ � e2 : τ2

Γ � e1 e2 : τ
(app)

Γ � e1 : τ1 Γ, x:τ1 � e2 : τ

Γ � let x be e1 in e2 : τ
(x �∈ dom(Γ)) (mono-let)

The type system λ→ + cont is defined by adding the type expression
τ cont and the following typing rules for the continuation-passing primitives:

Γ � callcc : (τ cont → τ) → τ (callcc)

Γ � throw : τ cont → τ → τ ′ (throw)

Definition 5 (Call-by-Value Type Transform for λ→)

|τ |cbv = (||τ ||cbv → α) → α

||b||cbv = b
||τ1→τ2||cbv = ||τ1||cbv → |τ2|cbv
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The type transform is extended to contexts by defining ||Γ||cbv (x) = ||Γ(x)||cbv
for each x ∈ dom(Γ).

Theorem 2 (Meyer-Wand)

1. If λ→ � Γ � v : τ , then λ→ � ||Γ||cbv � ||v||cbv : ||τ ||cbv .
2. If λ→ � Γ � e : τ , then λ→ � ||Γ||cbv � |e|cbv : |τ |cbv .

The call-by-value type transform is extended to λ→ + cont by defining
||τ cont||cbv = ||τ ||cbv → α. It is straightforward to verify that Theorem 2
extends to λ→ + cont in this way [4].

Definition 6 (Call-by-Name Type Transform for λ→) 3

|τ |cbn = (||τ ||cbn → α) → α

||b||cbn = b
||τ1→τ2||cbn = |τ1|cbn → |τ2|cbn

The type transform is extended to contexts by defining |Γ|cbn(x) = |Γ(x)|cbn
for each x ∈ dom(Γ).

Theorem 3

1. If λ→ � Γ � n : τ , then λ→ � |Γ|cbn � ||n||cbn : ||τ ||cbn .

2. If λ→ � Γ � e : τ , then λ→ � |Γ|cbn � |e|cbn : |τ |cbn .

The call-by-name CPS transform is extended to λ→ + cont by defining
||τ cont||cbn = ||τ ||cbn → α, just as for call-by-value. It is straightforward
to verify that Theorem 3 extends to λ→ + cont in this way.

4. Polymorphic Type Assignment

In this section we study the extension of the Meyer-Wand typing property
to Damas and Milner’s polymorphic type assignment system (DM).

The syntax of types and contexts in (DM) is defined by the following
grammar:

3The term “call-by-name type transform” is something of a misnomer since there
exists a by-value CPS transform that validates the by-name typing property [20, 7].
Nevertheless we stick with the suggestive, if somewhat misleading, terminology.
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Definition 7 (DM Types and Contexts)

monotypes τ ::= t | b | τ1 → τ2

polytypes σ ::= τ | ∀t.σ

contexts Γ ::= • | Γ, x:σ

Here t ranges over a countably infinite set of type variables. The typing
rules of the Damas-Milner system extend those of λ→ as follows:

Definition 8 (Additional DM Typing Rules)

Γ � e : σ

Γ � e : ∀t.σ
(t �∈ FTV (Γ)) (gen)

Γ � e : ∀t.σ

Γ � e : [τ/t]σ
(inst)

Γ � e1 : σ1 Γ, x:σ1 � e2 : τ2

Γ � let x be e1 in e2 : τ2
(x �∈ dom(Γ)) (poly-let)

The system DM + cont is defined by adding the type expression τ cont,
as before, and adding the following typing rules:

Γ � callcc : σcallcc (callcc’)

Γ � throw : σthrow (throw’)

where σcallcc = ∀t.(t cont → t) → t and σthrow = ∀s.∀t.s cont → s → t.

4.1. Restricted Call-by-Value

Let DM− denote the sub-system of DM obtained by restricting let ex-
pressions so that the bound expression is a call-by-value value. The Meyer-
Wand typing theorem may be extended to terms of DM−, provided that we
use the variant call-by-value CPS transform (cbv ′) given in Section 2.

Definition 9 (Call-by-Value Type Transform for DM−)

|τ |cbv = (||τ ||cbv → α) → α
|∀t.σ|cbv = ∀t.|σ|cbv
||t||cbv = t
||b||cbv = b

||τ1 → τ2||cbv = ||τ1||cbv → |τ2|cbv
||∀t.σ||cbv = ∀t.||σ||cbv
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This definition extends the Meyer-Wand type transform to polymorphic
types. In the terminology of Reynolds [19], polymorphic instantiation is
given a “trivial” interpretation in that no interesting computation can occur
as a result of polymorphic instantiation. The definition of |∀t.σ|cbv reflects
the fact that in DM− there is no need of continuations whose domain is a
polymorphic type.

Lemma 4

1. ||[τ/t]σ||cbv = [ ||τ ||cbv / t ] ||σ||cbv .
2. |[τ/t]σ|cbv = [ ||τ ||cbv / t ] |σ|cbv .

Proof: By induction on the structure of σ.

With this in mind we may establish type preservation for the variant
call-by-value CPS transform on the sublanguage DM−.

Theorem 4

1. If DM− � Γ � v : σ, then DM− � ||Γ||cbv � ||v||cbv ′ : ||σ||cbv .
2. If DM− � Γ � e : σ, then DM− � ||Γ||cbv � |e|cbv ′ : |σ|cbv .

Proof: Both parts are proved simultaneously by induction on the
structure of typing derivations. We give a few illustrative cases; the
rest follow a similar pattern.

var Suppose that DM− � Γ � x : σ by an application of rule var.
But then Γ(x) = σ, and thus DM− � ||Γ||cbv � ||x||cbv ′ : ||σ||cbv
since ||x||cbv ′ = x.

abs Suppose that DM− � Γ � λx.e : τ1→τ2 by an application of
rule abs. Then DM− � Γ, x:τ1 � e : τ2, where x /∈ dom(Γ),
by a smaller typing derivation. Therefore we have, by induc-
tion, DM− � ||Γ||cbv � |e|cbv ′ : |τ2|cbv , and consequently that
||Γ||cbv � λx.|e|cbv ′ : ||τ1||cbv→|τ2|cbv . The result follows from
the definitions of the term and type transforms.

let Suppose that DM− � Γ � let x be v1 in e2 : τ2 by an applica-
tion of rule poly-let. Then DM− � Γ � v1 : σ1 and DM− �
Γ, x:σ1 � e2 : τ2, where x /∈ dom(Γ), by smaller typing deriva-
tions. (Recall that the restriction on DM− ensures that the
let-bound expression must be a value.) By induction it follows
that DM− � ||Γ||cbv � ||v1||cbv ′ : ||σ1||cbv and that DM− �
||Γ||cbv , x:||σ1||cbv � |e2|cbv ′ : |τ2|cbv . It is easy to check that
||v1||cbv ′ is always a value, and hence it follows that DM− �
λk.let x be ||v1||cbv ′ in |e1|cbv ′ k : |τ2|cbv , from which the result
follows by the definition of the alternate term transform.



10 HARPER AND LILLIBRIDGE

gen Suppose that DM− � Γ � e : ∀t.σ by an application of rule gen.
Then DM− � Γ � e : σ by a smaller derivation, where t /∈
FTV (Γ). By induction DM− � ||Γ||cbv � |e|cbv ′ : |σ|cbv , from
which it follows that DM− � ||Γ||cbv � |e|cbv ′ : ∀t.|σ|cbv by
an application of rule gen, from which the result follows by
observing that |∀t.σ|cbv = ∀t.|σ|cbv .

inst Suppose that DM− � Γ � e : [τ/t]σ by an application of rule inst.
Then DM− � Γ � e : ∀t.σ by a smaller derivation, and thus, by
induction, DM− � ||Γ||cbv � |e|cbv ′ : |∀t.σ|cbv . Consequently,
DM− � ||Γ||cbv � |e|cbv ′ : [||τ ||/t]|σ|, which is sufficient for the
result, by an application of Lemma 4.

Theorem 4 extends to DM− + cont by defining ||τ cont||cbv = ||τ ||cbv → α.
We need only verify that ||callcc||cbv ′ and ||throw||cbv ′ given in Section 2,
have the types ||σcallcc||cbv and ||σthrow||cbv , respectively. The soundness
of DM− + cont under call-by-value follows by the same reasoning as for
λ→ + cont.

4.2. Call-by-Name

Theorem 3 (the Meyer-Wand-like typing theorem for call-by-name) can
be extended to the unrestricted DM language.

Definition 10 (Call-by-Name Type Transform for DM)

|τ |cbn = (||τ ||cbn → α) → α
|∀t.σ|cbn = ∀t.|σ|cbn
||t||cbn = t
||b||cbn = b

||τ1→τ2||cbn = |τ1|cbn → |τ2|cbn
||∀t.σ||cbn = ∀t.||σ||cbn

Lemma 5

1. || [τ/t]σ ||cbn = [ ||τ ||cbn / t ] ||σ||cbn .

2. | [τ/t]σ |cbn = [ ||τ ||cbn / t ] |σ|cbn .

Proof: By induction on the structure of σ.

Theorem 5
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1. If DM � Γ � n : σ, then DM � |Γ|cbn � ||n||cbn : ||σ||cbn .

2. If DM � Γ � e : σ, then DM � |Γ|cbn � |e|cbn : |σ|cbn .

Proof: Similar to that of Theorem 4.

Theorem 5 extends to DM + cont by defining ||τ cont||cbn = ||τ ||cbn → α.
We need only verify that ||callcc||cbn and ||throw||cbn , given in Section 2,
have types ||σcallcc||cbn and ||σthrow||cbn , respectively. The soundness of
DM + cont under call-by-name operational semantics follows from the ex-
tended theorem in a manner similar to that of the call-by-value case for
DM− + cont.

4.3. Unrestricted Call-by-Value

Having established suitable typing properties for the variant call-by-value
transform for DM− and the call-by-name transform for full DM, it is natural
to consider whether there is a call-by-value CPS transform for full DM that
satisfies a Meyer-Wand-like typing property. The problem is to extend
the CPS transform to general let expressions, i.e. those not necessarily
satisfying the restriction that let-bound expressions be values.

Let us consider a näıve attempt to extend Theorem 4 to full DM by
considering the cbv term transform instead of the specialized cbv ′ trans-
form. Consider the polymorphic let case. By induction we have DM �
||Γ||cbv � |e1|cbv : |σ1|cbv and DM � ||Γ||cbv , x:||σ1||cbv � |e2|cbv : |τ2|cbv , and
we are to show that DM � ||Γ||cbv � λk.|e1|cbv (λx.|e2|cbv k) : |τ2|cbv . Since
e1 is a general computation, a continuation to receive its value (should
it have a value) is required. But since e1 may be polymorphic, the def-
inition of |σ|cbv given earlier is no longer appropriate — we require that
|σ|cbv = (||σ||cbv → α) → α, irrespective of whether or not σ is a quanti-
fied type. The definition of ||σ||cbv remains the same, in keeping with the
intuition that a value of polymorphic type is a value of all instances of that
type.

These modifications to the type transform take us beyond the Damas-
Milner type system since now quantified types can occur as the domains of
functions. Accordingly we generalize the target language of the CPS trans-
form to the language DM+ which is defined by eliminating the distinction
between monotypes and polytypes in DM. The resulting system is equiva-
lent to full polymorphic type assignment [16]. Although the decidability of
type inference in DM+ remains an open problem, this is not important for
our purposes. The main property of DM+ that we require is closure under
β-reduction [16].
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With these changes to the type transformation and the associated en-
richment of the target type system, the putative proof of type preservation
goes through in the case of let expressions, but now polymorphic general-
ization is problematic. Specifically, if DM � Γ � e : σ with t �∈ FTV (Γ),
then by induction DM+ � ||Γ||cbv � |e|cbv : |σ|cbv , and t �∈ FTV (||Γ||cbv ). It
follows that DM+ � ||Γ||cbv � |e|cbv : ∀t.|σ|cbv , but this is not enough — we
must show that DM+ � ||Γ||cbv � |e| : |∀t.σ|cbv , and there is no evident way
to proceed.

In fact typing is not preserved. The argument proceeds by way of the
extension of DM with continuation passing primitives. Under the call-by-
value evaluation strategy, DM + cont is unsound in that there is a term e
such that e has a type τ , but whose value when evaluated under call-by-
value fails to have type τ . Assuming that we have base types int and bool,
and constants 0 : int and true : bool, the following term is well-typed with
type bool in DM + cont but evaluates under call-by-value to 0, a constant
of type int:4

e0 = let f be callcc (λk.λx.throw k λy.x)
in (λx.λy.y) (f 0) (f true)

Using the typing rules of DM + cont, the let-bound identifier f is assigned
the type ∀t.t→t, and hence may be used at types int→int and bool→bool
in the body. But the binding for f grabs the continuation associated with
the body of the let expression and saves it. Upon evaluation of f 0, the
continuation is invoked and f is effectively re-bound to a constant function
returning 0. The body is re-entered, f 0 is evaluated once again (without
difficulty), but then f true is evaluated, resulting in 0.

It follows that the call-by-value CPS transform for DM + cont does not
preserve typability in the sense of Meyer & Wand, for by the correctness of
the call-by-value CPS transform for DM+cont, the expression |e0|λx.x also
evaluates to 0 (under call-by-name or call-by-value), yet has type bool, a
violation of the subject reduction property of DM+ [16]. Consequently the
call-by-value CPS transform does not verify the Meyer-Wand typing prop-
erty even in the absence of continuation-passing primitives. For otherwise
we could extend such a transform for the pure DM language to DM + cont
by first regarding callcc and throw as variables, and then replacing them
by the expressions ||callcc||cbv and ||throw||cbv . The substitution preserves
typing, and results in a correct call-by-value CPS transform for DM+ cont,
which is impossible.

4This argument can be made without constants but at the cost of increased complexity.
Constants of base type can easily be added to any of the transforms presented in this
paper by defining ||c|| = c, where c is a constant. Constants of non-base type must be
handled on a case-by-case basis.
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It is natural to inquire whether there is some other CPS transform for
the pure DM language (without continuation-passing primitives) that is
correct for the call-by-value interpretation and satisfies the Meyer-Wand
typing property. Although we are unaware of such a transform, it is difficult
to prove that none exists, in part because it is unclear what, in general,
constitutes a correct CPS transform of an expression. We are assured,
however, that any such transform must be substantially different from the
standard call-by-value transform and its close relatives.

Theorem 6 There is no call-by-value CPS transform |e| for DM satisfying
the following two conditions:

1. Equivalence: |e| is operationally equivalent to |e|cbv under either the
call-by-value or call-by-name operational semantics.5

2. Typing: If DM � Γ � e : σ, then DM+ � ||Γ||cbv � |e| : |σ|cbv .
Proof: Let e′0 = [c/callcc, t/throw]e0, where e0 is as in the coun-
terexample above, so that e0 = [callcc/c, throw/t]e′0. Under the as-
sumptions of the theorem, |e′0| is operationally equivalent to |e′0|cbv ,
and

DM+ � c:||σcallcc||cbv , t:||σthrow||cbv � |e′0| : |bool|cbv .

Now since
DM+ � • � ||callcc||cbv : ||σcallcc||cbv

and
DM+ � • � ||throw||cbv : ||σthrow||cbv ,

it follows that

DM+ � [||callcc||cbv/c, ||throw||cbv/t||] |e′0| : |bool|cbv .

Now
[||callcc||cbv/c, ||throw||cbv/t||] |e′0|cbv

is operationally equivalent to

[||callcc||cbv/c, ||throw||cbv/t||] |e′0|.
But the former term is just |e0|cbv as defined in Section 2. By the cor-
rectness of this transform with respect to the call-by-value operational
semantics, we have that |e0|cbv (λx.x) evaluates to 0, and hence

[||callcc||cbv/c, ||throw||cbv/t||]|e′0| (λx.x)

must also evaluate to 0. But the latter term has type bool, in contra-
diction to the subject reduction property of DM+.

5Two terms e1 and e2 are operationally equivalent iff they are indistinguishable in all
program contexts [18].



14 HARPER AND LILLIBRIDGE

The conditions of the theorem leave open the possibility of there be-
ing a call-by-value transform for DM that is operationally inequivalent to
the standard one, or of there being a type transform for which a Meyer-
Wand-like type preservation theorem can be proved but for which either
||callcc||cbv or ||throw||cbv fails to have the required type. The typing con-
dition seems natural and well-motivated; we know of no other uniform
assignment of types for which the call-by-value CPS transform validates
a Meyer-Wand-like type preservation theorem. On the other hand, the
requirement of operational equivalence is rather strong. In particular, it
imposes stringent conditions on the transformation of terms with free vari-
ables which we exploited in the proof of the theorem. It seems plausible
that a variant transform that fails to satisfy the operational equivalence
criterion may exist, but we have no evidence to support this conjecture.

4.4. Related Transforms

It seems worthwhile, however, to point out that there is a variant type
transform that “almost” works. This transform is defined by taking ||∀t.σ|| =
∀t.|σ|, and |σ| = (||σ|| → α) → α. The intuition behind this choice is to
regard polymorphic instantiation as a “serious” computation (in roughly
the sense of Reynolds [19]). This interpretation is at variance with the
usual semantics of ML polymorphism since it admits primitives that have
non-trivial computational effects when polymorphically instantiated. Nev-
ertheless, we can use this type transform to extend the Meyer-Wand the-
orem to a variant call-by-value CPS transform for DM− and to a variant
call-by-name CPS transform for DM, provided that we restrict attention
to programs of monomorphic type. It does not provide a variant call-by-
value CPS transform for full DM because of the way in which polymorphic
generalization is handled.

To make these observations precise, we sketch the definitions of variant
CPS transforms based on this type interpretation. The main idea is to
define the CPS transform by induction on typing derivations so that the
effect of polymorphic generalization and instantiation can be properly han-
dled. We give here only the two most important clauses, those governing
the rules gen and inst:

|Γ � e : ∀t.σ| = λk.k |e|, where
|Γ � e : σ| = |e|

|Γ � e : [τ/t]σ| = λk.|e| (λx.x k), where
|Γ � e : ∀t.σ| = |e|

This definition may be extended to the other inference rules in such a way
as to implement either a call-by-name or call-by-value interpretation of
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application. However, the transform fails (in general) to agree with the
usual (call-by-value or call-by-name) ML semantics on terms of polymor-
phic type. Specifically, the transformation of a gen rule applies the current
continuation to the suspended computation of e. If this continuation is not
strict, then an expression that would abort in ML terminates normally
after transformation into CPS. For example, suppose that hd and nil are
constants with polymorphic types ∀t.t list→t and ∀t.t list, respectively. We
may derive the judgement • � hd nil : ∀t.t list using the given typings for
hd and nil, and the rules for application and polymorphic generalization.
Using the variant rules given above, the transform of hd nil determined by
this typing derivation has the form λk.k |hd nil|. But this expression eval-
uates normally on a non-strict continuation k, whereas under the usal ML
semantics the expression should abort regardless of whether it is used in a
subsequent computation.

By restricting attention to programs of monomorphic type, we may ob-
tain correct variant CPS transforms for DM− (under call-by-value) and
DM (under call-by-name). This is essentially because in DM− under call-
by-value there are no non-trivial polymorphic computations, and because
in DM under call-by-name the semantics is defined by substitution. But the
above argument shows that the variant call-by-value transform is incorrect
for DM under call-by-value. Specifically, it fails to correctly implement the
usual ML semantics for expressions such as let x be hd nil in 0 (which, under
the above transformation, yields result 0). This suggests that it would be
advantageous to separate the two roles of let in ML. Specifically, our re-
sults imply the soundness of the variant of ML obtained by evaluating let’s
sequentially but admitting no polymorphism, and by adding a new defini-
tion form, def x is e1 in e2, which admits polymorphism but is evaluated “by
name”.

5. Conclusion

The Meyer-Wand typing theorem for the call-by-value CPS transform for
the simply-typed λ-calculus establishes a simple and natural relationship
between the type of a term and the type of its call-by-value CPS transform.
Meyer and Wand exploited this relationship in their proof of the equivalence
of the direct and continuation semantics of λ→ [13]. A minor extension of
this result may be used to establish the soundness of typing for λ→ + cont,
the extension of λ→ with continuation-passing primitives [4], under call-by-
value.

In this paper we have presented a systematic study of the extension of
the Meyer-Wand theorem to the Damas-Milner system of polymorphic type
assignment. Our main positive results are the extension of the Meyer-Wand
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theorem to the call-by-value interpretation of a restricted form of polymor-
phism, and to the call-by-name interpretation of the unrestricted language.
These results have as a consequence the soundness (in the sense of Damas
and Milner [2]) of these programming languages. We have also argued that
there is no “natural” call-by-value CPS transform for the unrestricted lan-
guage, but this leaves open the possibility of finding a transformation that
is radically different in character from the usual one.

Our investigation makes clear that there is a fundamental tension be-
tween implicit polymorphism and the call-by-value interpretation of let.
This is consistent with earlier results establishing the inconsistency be-
tween unrestricted polymorphism and polymorphic reference types [22, 12]
and first-class continuations [9, 10]. The source of the inconsistency may
be traced to conflicting motivations for the static and dynamic semantics
of the language. The polymorphic typing rule for let is motivated by a
substitution principle — a let-bound variable is deemed to have exactly
those types that may be ascribed to the expression to which it is bound. In
particular, if a let-bound variable may be used at multiple types, provided
that each of these may be ascribed to the bound expression separately.

But this principle, appealing though it may be in isolation, is inconsistent
with the “evaluate-once” semantics of let expressions in the call-by-value
dynamic semantics. In a pure functional language it is possible to combine
both principles without complication, achieving polymorphism without sac-
rificing code re-use. Once control or store effects are admitted, however,
it becomes untenable to maintain both principles without restriction. We
have outlined a CPS transform for the full Damas-Milner language that ex-
tends to continuation-passing primitives, but which is not quite equivalent
to the usual call-by-value semantics. This suggests that a language in which
polymorphic generalization and instantiation are semantically significant
would be a well-behaved alternative to ML-style implicit polymorphism.
This perspective has been explored in some detail in subsequent work of
the authors [11].
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