
J. Functional Programming 1 (1): 1–000, January 1993 c© 1993 Cambridge University Press 1

Operational Interpretations of an Extension of
Fω with Control Operators†

Robert Harper‡ and Mark Lillibridge§
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We study the operational semantics of an extension of Girard’s System Fω with two
control operators: an abort operation that abandons the current control context, and a
callcc operation that captures the current control context. Two classes of operational se-
mantics are considered, each with a call-by-value and a call-by-name variant, differing in
their treatment of polymorphic abstraction and instantiation. Under the standard seman-
tics polymorphic abstractions are values and polymorphic instantiation is a significant
computation step; under the ML-like semantics evaluation proceeds beneath polymorphic
abstractions and polymorphic instantiation is computationally insignificant.

Compositional, type-preserving continuation-passing style (cps) transformation algo-
rithms are given for the standard semantics, resulting in terms on which all four evaluation
strategies coincide. This has as a corollary the soundness and termination of well-typed
programs under the standard evaluation strategies. In contrast, such results are obtained
for the call-by- value ML-like strategy only for a restricted sub-language in which con-
structor abstractions are limited to values. The ML-like call-by-name semantics is indistin-
guishable from the standard call-by-name semantics when attention is limited to complete
programs.
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1 Introduction

The use of type theory as a central organizing principle has led to significant ad-
vances in the design and implementation of programming languages. The influence
of type theory is well exemplified by the various dialects of ML (Gordon et al.,
1979; Projet Formel, 1987; Leroy and Mauny, 1992; Harper and Mitchell, 1993;
MacQueen, 1986; Milner et al., 1990; Milner and Tofte, 1991), Hope (Burstall et al.,
1980), and Quest (Cardelli, 1989). These languages may be viewed as enrichments of
the Girard-Reynolds polymorphic typed λ-calculus (Girard, 1972; Reynolds, 1974)
with more expressive typing constructs (such as subsumption (Cardelli et al., 1991)
and intersection types (Pierce, 1993)) and with primitive operations for expressing
control and store effects (Felleisen and Hieb, 1992; Harper et al., 1993; Tofte, 1990).
Taken together these extensions provide a highly expressive programming notation
that captures a wide range of programming techniques.

Advances in language design are often accompanied by corresponding advances
in compiler technology. Of particular relevance to this paper is the continuation-
passing style (cps) translation introduced by Reynolds (1972) and Fischer (Fischer,
1993). The main idea of the cps translation is to make the control context of the
evaluator available as a run-time value, thereby making the order of evaluation
explicit and allowing for the extension of the language with non-local transfers of
control. The translation has proved to be an important tool for compiler writers, as
emphasized by Steele (1978), Kranz, et al. (1986), and Appel (1992), among others.
(See Reynolds’s survey (Reynolds, 1993) for a thorough account of the history of
the use of continuations in programming language semantics and implementation.)

In this paper we study the properties of the cps translation for the extension
of Girard’s Fω (Girard, 1972; Girard et al., 1989) with two control operators, one
which discards the current evaluation context and one which captures the current
evaluation context (analogous to the call/cc primitive of Scheme (Clinger and
Rees, 1991)). These constructs provide a basis for defining higher-level patterns of
control such as co-routines (Haynes et al., 1986) and threads (Cooper and Mor-
risett, 1990; Reppy, 1991). Several operational semantics for this extension of Fω

are considered. These may be divided into two broad categories, the standard se-
mantics and the ML-like semantics, each of which admits a call-by-value (cbv) and
call-by-name (cbn) variant. These four interpretations cover the main semantics
for polymorphic functional languages that have been considered in the literature,
including those for ML (Milner et al., 1990), Haskell (Hudak and Wadler, 1990),
and Quest (Cardelli, 1989). The “standard” semantics differ from their “ML-like”
counterparts in the treatment of polymorphic abstractions. Under the standard in-
terpretation polymorphic abstractions are values, and polymorphic instantiation is
a non-trivial computation step. The ML-like semantics, on the other hand, evaluate
beneath polymorphic abstractions and regard polymorphic instantiation as essen-
tially trivial, mimicking the behavior of the untyped operational semantics of ML
programs.

We study the typing and semantic properties of the cps translation for each of the
operational interpretations of Fω enriched with control operators. The main goal is
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to extend the results of Plotkin (Plotkin, 1975) (for the untyped case) and Meyer
and Wand (Meyer and Wand, 1985) (for the simply typed case) to this extension
of Fω. To capture the “indifference” of the cps form to the cbv/cbn distinction
we begin by isolating three cps sub-languages of pure Fω. The standard cps sub-
language consists of a set of terms of Fω on which the cbv and cbn variants of the
standard semantics coincide and which is closed under evaluation by both of those
variants. Similarly, the ML-like cps sub-language consists of a set of terms on which
the cbv and cbn variants of the ML-like semantics coincide and which is closed under
evaluation by the ML-like variants. Finally, we isolate a “strict” cps sub-language
on which both variants of both semantics coincide and which is closed under all
four variants. We then consider the cps translation from Fω enriched with control
operators into a suitable cps sub-language corresponding to each variant of each
operational semantics. The typing properties of the cps translations are established
and used to derive termination and soundness results for Fω with control operators.
The correctness of the translations is established by extending the methods of
Plotkin (Plotkin, 1975) and Griffin (Griffin, 1990).

This paper is an extension of an earlier study conducted by the authors (Harper
and Lillibridge, 1993b) for the special case of ML under an untyped operational
semantics. In particular the fundamental non-existence result for cps translations
established there is extended here to the case of the cbv ML-like interpretation of Fω

enriched with control operators. On the other hand we establish the fundamental
properties of the standard semantics, and show that no surprises such as those
encountered for the ML-like interpretations arise. In view of these results it would
appear that a standard, rather than an ML-like, interpretation of enrichments of
Fω is most appropriate.

2 The Language FC
ω

The syntax of FC
ω is defined as follows:

Kinds K ::= Ω | K1⇒K2

Constructors A,B ::= u | Ans | A1→A2 | ∀u:K.A | λu:K.A | A1 A2

Terms M ::= x | λx:A.M | M1 M2 | Λu:K.M | M{A} |
CA(M) | XA(M)

Kind Assignments ∆ ::= ∅ | ∆, u:K
Type Assignments Γ ::= ∅ | Γ, x:A

The meta-variable u ranges over constructor variables and the meta-variable x

ranges over term variables. The constructor Ans is an unspecified base type, rep-
resenting the type of “answers”, the final results of evaluation for complete pro-
grams. The primitives X and C are the control operators abort and call-with-current-
continuation (callcc).

The type system of FC
ω consists of a set of rules for deriving judgements of the
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following forms:

� ∆ well-formed kind assignment
∆ � Γ well-formed type assignment
∆ � A : K well-formed constructor
∆ � A1 = A2 : K equal constructors

∆; Γ � M : A well-formed term

The rules for deriving these judgements are largely standard; see the Appendix
for a complete definition. The treatment of control operators is novel and merits
further discussion. The typing rules governing the control primitives are as follows:

∆ � A : Ω ∆; Γ � M : Ans

∆; Γ � XA(M) : A
(t-abort)

∆; Γ � M : (∀u:Ω.A→u)→A u /∈ dom(∆)

∆; Γ � CA(M) : A
(t-callcc)

Informally, X abandons the current evaluation context, and yields as final result
the value of the given expression. Since the final answer computed by a program
is to have type Ans, we require that the argument to abort have type Ans. As to
C the informal interpretation is that the “current continuation” is passed to the
argument of C. The argument must therefore be of functional type, with domain
the type of continuations that accept values of type A, where A is the type of
the whole expression. For the sake of simplicity we take this type of A-accepting
continuations to be ∀u:Ω.A→u, reflecting the fact that a continuation, once invoked,
does not return to its call site. (See Harper, et al. (1993) for further discussion of
this and related points. See also Griffin (1990) for a similar type system for control
operations. Relative to Griffin’s language our type Ans plays the role of logical
falsehood, ⊥, and ∀u:Ω.A → u plays the role of classical negation, ¬A.)

The following technical lemma summarizes some useful properties of the type
system:

Lemma 2.1
1. If FC

ω � ∆ � Γ then FC
ω � � ∆

2. If FC
ω � ∆ � A : K then FC

ω � � ∆
3. If FC

ω � ∆ � A1 = A2 : K then FC
ω � ∆ � A1 : K and FC

ω � ∆ � A2 : K

4. If FC
ω � ∆; Γ � M : A then FC

ω � ∆ � Γ and FC
ω � ∆ � A : Ω

A context C is an expression of FC
ω with a single hole, written []:

Contexts C ::= [] | λx:A.C | C M | M C | Λu:K.C | C{A} | CA(C) |
XA(C)

The hole in C may be filled by an expression M , written C[M ], by replacing the hole
with M , incurring capture of free variables in M that are bound at the occurrence
of the hole. For example, if C = Λu:Ω.λx:u.[], and M = f{u}x, then C[M ] =
Λu:Ω.λx:t.f{u}x. The variables that are bound within the hole of a context are
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said to be exposed (to capture) by that context. We write ETV (C) for the exposed
constructor variables and EV (C) for the exposed ordinary variables of a context.

Type checking in FC
ω is compositional in the sense that if an expression is well-

typed, then so are all constituent expressions.

Lemma 2.2 (Decomposition)
Suppose that FC

ω � ∆; Γ � C[M ] : A such that EV (C)∩dom(Γ) = ∅ and ETV (C)∩
dom(∆) = ∅.† Then there exists ∆′, Γ′, and B such that:

• dom(∆′) = ETV (C);
• dom(Γ′) = EV (C);
• FC

ω � ∆,∆′; Γ,Γ′ � M : B

Proof
Routine induction on the structure of contexts.

Furthermore, only the type of a constituent of a well-formed expression is relevant
to typing. Consequently any constituent may be replaced by a term of the same
type without effecting typability of the whole expression.

Lemma 2.3 (Replacement)
Suppose that FC

ω � ∆; Γ � C[M ] : A, with FC
ω � ∆,∆′; Γ,Γ′ � M : B in accordance

with the decomposition lemma. If FC
ω � ∆,∆′′,∆′; Γ,Γ′′,Γ′ � M ′ : B then FC

ω �
∆,∆′′; Γ,Γ′′ � C[M ′] : A.

Proof
Routine induction on typing derivations.

3 Operational Semantics for FC
ω

We consider two main operational semantics for FC
ω that differ in the treatment of

polymorphic abstraction and application.

3.1 Notation

Following Plotkin (1975) and Felleisen (1992), we specify an operational seman-
tics by defining the set of values, the set of evaluation contexts, and the one step
evaluation relation for that semantics. One-step evaluation is a binary relation on
programs that is defined by a set of rules of the form E[R] ↪→ M , where E is an
evaluation context, R is an expression, the redex, and M is determined as a function
of E and R. In this case E[R] is said to evaluate to M in one step. We define ↪→0,1

to be the reflexive closure and ↪→∗ to be the reflexive, transitive closure of the ↪→
relation.

An FC
ω program is a closed term of type Ans. We will arrange things so that a

program P is either a value or can be represented in exactly one way as E[R] where
E is an evaluation context and R is a redex.

† The conditions on the exposed variables can always be satisfied by alpha-renaming
C[M ] appropriately.
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3.2 Standard Call-by-Value Semantics

The standard call-by-value (std-cbv) semantics is defined as follows:

V ::= x | λx:A.M | Λu:K.M

E ::= [] | E M | V E | E{A}

E[(λx:A.M)V ] ↪→std-cbv E[[V/x]M ]
E[(Λu:K.M){A}] ↪→std-cbv E[[A/u]M ]

E[XA(M)] ↪→std-cbv M

E[CA(M)] ↪→std-cbv E[M (Λu:Ω.λx:A.Xu(E[x]))] (u /∈ FTV (A))

The first two evaluation rules specify β-(reduction) steps. When it is necessary to
distinguish between them, we will use βλ to refer to β-reductions of λ-applications
and βΛ to refer to β-reductions of Λ-applications. The third and fourth rules define
the evaluation of the control operators. Note that the evaluation context E is “rei-
fied” as the polymorphic function Λu:Ω.λx:A.Xu(E[x]). When applied to a target
type B and an argument u of type A, this function aborts the evaluation context
at the point of application and continues evaluation with the expression E[u]. Since
the evaluation context of invocation is abandoned, the result type, B, is arbitrary.

Lemma 3.1 (Canonical Forms)
1. If V is a closed value of functional type, then V = λx:A.M for some type A

and term M .
2. If V is a closed value of quantified type, then V = Λu:K.M for some kind K

and term M .

Theorem 3.2 (Progress)
If M is a closed, well-typed expression of type A, then either M is a value, or else
there exist a unique evaluation context E and unique redex R such that M = E[R].

Proof
The proof proceeds by induction on the structure of typing derivations, using
Lemma 2.2 and Lemma 3.1.

Theorem 3.3 (Preservation)
If P is a program and P ↪→std-cbv Q, then Q is a program.

Proof
If P ↪→std-cbv Q, then P = E[R] for some evaluation context E and redex R. By
inspecting the definition of std-cbv evaluation contexts, we see that EV (E) = ∅
and ETV (E) = ∅. Hence, by Lemma 2.2 there exists a closed type B such that
FC

ω � ∅; ∅ � R : B. We proceed by cases on the form of R. If R = XA(M), then
Q = M and FC

ω � ∅; ∅ � M : Ans, as required. The remaining cases are handled
similarly.

The following corollary is analogous to Milner’s type soundness theorem for ML (Mil-
ner, 1978):

Corollary 3.4 (Type Soundness)
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If P is a program, then either P is a value, or there is a program Q such that
P ↪→std-cbv Q.

Theorem 3.5 (Termination for Fω)
For every Fω program P there exists a pure value V such that P ↪→∗

std-cbv V .

Proof
When restricted to Fω programs, the std-cbv evaluation relation is a particular β-
reduction strategy, and hence by the strong normalization property of Fω (Girard,
1972) is terminating. The result must be a value by Lemma 3.1.

Termination of FC
ω programs under the std-cbv semantics will be established in

Section 5. The following property of std-cbv evaluation will be important to that
argument:

Lemma 3.6
Any infinite std-cbv evaluation sequence contains infinitely many β-reduction steps.

Proof
It is sufficient to show that it is impossible to construct an infinite evaluation
sequence consisting solely of X and C steps. This can be done by showing that if
E[OA(M)] ↪→std-cbv E′[O′

A′(M ′)] where O and O′ ∈ {X , C} then M ′ is a proper
subterm of M .

3.3 Standard Call-by-Name Semantics

The standard call-by-name (std-cbn) semantics is defined as follows:

V ::= λx:A.M | Λu:K.M

E ::= [] | E M | E{A}
Note that variables are not values under the call-by-name interpretation.

E[(λx:A.M1)M2] ↪→std-cbn E[[M2/x]M1]
E[(Λu:K.M){A}] ↪→std-cbn E[[A/u]M ]

E[XA(M)] ↪→std-cbn M

E[CA(M)] ↪→std-cbn E[M (Λu:Ω.λx:A.Xu(E[x]))] (u /∈ FTV (A))

The canonical forms lemma and the progress and preservation theorems given
above for the standard call-by-value semantics carry over to the standard call-by-
name case.

Theorem 3.7 (Type Soundness)
If P is a program, then either P is a value, or there is a program Q such that
P ↪→std-cbn Q.

Theorem 3.8 (Termination for Fω)
If P is an Fω program, then there exists a value V such that P ↪→∗

std-cbn V .

Just as for the std-cbv case, an infinite std-cbn evaluation sequence must contain
infinitely many β steps.
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3.4 ML-like Call-by-Value Semantics

The ML-like call-by-value (ml-cbv) semantics is defined as follows:

V ::= x | λx:A.M | Λu:K.V

E ::= [] | E M | V E | Λu:K.E | E{A}

E[(λx:A.M)V ] ↪→ml-cbv E[[V/x]M ]
E[(Λu:K.V ){A}] ↪→ml-cbv E[[A/u]V ]

E[XA(M)] ↪→ml-cbv M

E[CA(M)] ↪→ml-cbv E[M (Λu:Ω.λx:A.Xu(E[x]))] (u /∈ FTV (A))
Note that the hole in an evaluation context can occur within the scope of a con-
structor abstraction. Consequently, a constructor abstraction is a value only if its
body is a value.

Lemma 3.9 (Canonical Forms)
1. If V is a closed value of functional type, then V = λx:A.M for some type A

and term M .
2. If V is a closed value of quantified type, then V = Λu:K.V ′ for some kind K

and value V ′.

Theorem 3.10 (Progress)
If M is a well-typed, closed term of type A, then either M is a value, or there exist
a unique evaluation context E and a unique redex R such that M = E[R].

Proof
By induction on typing derivations, using Lemma 2.2 and Lemma 3.9.

Theorem 3.11 (Preservation for Fω)
If P is an Fω program and P ↪→ml-cbv Q, then Q is an Fω program.

Proof
Similar to the proof for the std-cbv case.

Theorem 3.12 (Termination for Fω)
If P is an Fω program, then there exists a value V such that P ↪→∗

ml-cbv V .

The preservation theorem cannot be extended to full FC
ω. It is instructive to see

where the obvious proof attempt breaks down. Let P = E′[Λt:Ω. CA(M)], and let
E = E′[Λt:Ω.[]]. Then P = E[CA(M)] is reducible, and we must show that the
reduct, E[M (Λu:Ω.λx:A.Xu(E[x]))], is a program. By the decomposition lemma
it suffices to show that FC

ω � ∆′, t:Ω; ∅ � M (Λu:Ω.λx:A.Xu(E[x])) : A, where ∆′ is
derived from E′. For this it suffices to show that FC

ω � ∆′, t:Ω, u:Ω;x:A � E[x] : Ans.
But notice that E[x] = E′[Λt:Ω.x], which may not be well-formed: the type A

ascribed to x may involve an occurrence of t that is captured by the inner Λ-
abstraction. This may be turned into a counter-example to the preservation theorem
by a simple adaptation of the argument given by the authors elsewhere (Harper and
Lillibridge, 1993b).

If constructor abstractions are restricted so that Λu:K.M is well formed only if
M is a value, the counterexample to preservation is avoided, and preservation can
be proved. Let us call this restricted language FC−

ω .
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Theorem 3.13 (Preservation for FC−
ω )

If P is a FC−
ω program, and P ↪→ml-cbv Q, then Q is a FC−

ω program.

Proof
The ml-cbv and std-cbv semantics coincide on FC−

ω terms.

3.5 ML-like Call-by-Name Semantics

The ML-like call-by-name (ml-cbn) semantics is defined as follows:

V ::= λx:A.M | Λu:K.V

E ::= [] | E M | Λu:K.E | E{A}

E[(λx:A.M1)M2] ↪→ml-cbn E[[M2/x]M1]
E[(Λu:K.V ){A}] ↪→ml-cbn E[[A/u]V ]

E[XA(M)] ↪→ml-cbn M

E[CA(M)] ↪→ml-cbn E[M (Λu:Ω.λx:A.Xu(E[x]))] (u /∈ FTV (A))

Theorem 3.14 (Type Soundness for Fω)
If P is a program, then either P is a value, or there is a program Q such that
P ↪→ml-cbn Q.

The extension of preservation to FC
ω runs afoul of difficulties similar to those

encountered in the ml-cbv case, but is nevertheless sound. The key observation is
that in a call-by-name setting a polymorphic abstraction is evaluated only when
it is applied to a type constructor argument. By insisting that the polymorphic
instantiation occur prior to evaluation under the polymorphic abstraction, we avoid
the problems with capture that arise in the ml-cbv case. Such a semantics is defined
as follows:

V ::= λx:A.M | Λu:K.V

E ::= []{A1} . . . {An} | (E M){A1} . . . {An} | Λu:K.E

E[(λx:A.M1)M2] ↪→ml-cbn′ E[[M2/x]M1]
E[(Λu:K.M){A}] ↪→ml-cbn′ E[[A/u]M ]

E[XA(M)] ↪→ml-cbn′ M

E[CA(M)] ↪→ml-cbn′ E[M (Λu:Ω.λx:A.Xu(E[x]))] (u /∈ FTV (A))
It is easy to see that this semantics and the standard call-by-name semantics coin-
cide on complete programs (closed terms of basic type). Consequently we shall not
give further consideration to the ml-cbn semantics.

3.6 Relation of ML-like Semantics to ML

The dynamic semantics of ML is ordinarily defined on untyped terms. To relate
our ML-like semantics to the usual untyped semantics, we introduce a system of
untyped terms along with a call-by-name and call-by-value semantics for them,
then relate the ML-like semantics to the untyped semantics via erasure of type
information.
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The syntax of untyped terms is defined as follows:

m ::= x | λx.m | m1 m2 | C(m) | X (m)

The call-by-value evaluation semantics for untyped terms (u-cbv) is defined as fol-
lows:

v ::= x | λx.m

e ::= [] | em | v e

e[(λx.m) v] ↪→u-cbv e[[v/x]m]
e[C(m)] ↪→u-cbv e[mλx.X (e[x])]
e[X (m)] ↪→u-cbv m

The call-by-name semantics for untyped terms (u-cbn) is defined similarly:

v ::= λx.m

e ::= [] | em

e[(λx.m)m′] ↪→u-cbn e[[m′/x]m]
e[C(m)] ↪→u-cbn e[mλx.X (e[x])]
e[X (m)] ↪→u-cbn m

The ML-like semantics may be related to their untyped counterparts through the
erasure of type information:

x◦ = x

(λx:A.M)◦ = λx.M◦ (M N)◦ = M◦ N◦

(Λu:K.M)◦ = M◦ (M{A})◦ = M◦

(XA(M))◦ = X (M◦) (CA(M))◦ = C(M◦)

Erasure is extended to contexts by defining []◦ = [].

Lemma 3.15
1. ([M2/x]M1)◦ = [M◦

2 /x]M◦
1 , and ([A/u]M)◦ = M◦.

2. C[M ]◦ = C◦[M◦].
3. If V is a ml-cbv (ml-cbn) value, then V ◦ is a u-cbv (u-cbn) value.
4. If E is an ml-cbv (ml-cbn) evaluation context, then E◦ is an u-cbv (u-cbn)

evaluation context.

Lemma 3.16
Let M1 be a well-typed closed term.

1. If M1 ↪→ml-cbv M2 or M1 ↪→ml-cbn M2 by a βΛ step, then M◦
1 = M◦

2 .
2. If M1 ↪→ml-cbv M2 (M1 ↪→ml-cbn M2) by other than a βΛ step, then

M◦
1 ↪→u-cbv M◦

2 (M◦
1 ↪→u-cbn M◦

2 ).
3. There exists a term M2 such that M1 ↪→∗

ml-cbv M2 (M1 ↪→∗
ml-cbn M2) by a

sequence of zero or more βΛ steps such that M2 is βΛ irreducible.

Proof
1. Erasure eliminates βΛ redices.
2. Erasure preserves βλ, C, and X steps.
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3. Each βΛ step reduces the number of constructor abstractions.

With these facts in mind we may now relate the ML-like semantics to their untyped
counterparts:

Theorem 3.17 (Simulation)
Let M1 be a well-typed closed term.

1. If M1 ↪→ml-cbv M2, then M◦
1 ↪→0,1

u-cbv M◦
2 , and similarly for ml-cbn and

u-cbn.
2. If M◦

1 ↪→u-cbv m2, then ∃M2 such that M1 ↪→∗
ml-cbv M2 and M◦

2 = m2, and
similarly for ml-cbn and u-cbn.

Proof
We consider two illustrative cases. Suppose that M1 = E[(λx:A.M)V ] ↪→ml-cbv
E[[V/x]M ] = M2. Then

M◦
1 = E◦[(λx.M◦)V ◦]

↪→u-cbv E◦[[V ◦/x]M◦]
= E◦[([V/x]M)◦]
= (E[[V/x]M ])◦

= M◦
2

Suppose that M◦
1 ↪→u-cbv m2. By Lemma 3.16 there exists M3 such that M3

is not reducible by a βΛ step and M1 ↪→∗
ml-cbv M3 by a sequence of βΛ steps.

Consequently, M◦
1 = M◦

3 , and hence M◦
3 ↪→u-cbv m2. This means M3 must be

ml-cbv reducible by other than a βΛ step since the erasure of an ml-cbv value is
irreducible under u-cbv. Hence M3 ↪→ml-cbv M2 for some M2 and M◦

3 ↪→u-cbv M◦
2

by Lemma 3.16. Since the u-cbv evaluation relation is a partial function, we have
that M◦

2 = m2.

The ml-cbn and ml-cbn′ semantics coincide under erasure on programs.

Theorem 3.18 (Equivalence)
If P1 and P2 are programs such that P ◦

1 = P ◦
2 then

1. If P1 ↪→ml-cbn Q1 then ∃Q2 such that P2 ↪→∗
ml-cbn′ Q2 and Q◦

1 = Q◦
2.

2. If P2 ↪→ml-cbn′ Q2 then ∃Q1 such that P1 ↪→∗
ml-cbn Q1 and Q◦

1 = Q◦
2.

Proof
First, prove a version of Theorem 3.17 with ml-cbn′ in place of ml-cbn. The result
then follows from the simulation theorems.

4 Continuation-Passing Style

The cps sub-language of Fω for a given semantics is a set of pure Fω terms on
which the call-by-name and call-by-value interpretations of that semantics coincide
and which is closed under evaluation under those interpretations. Such terms are
said to be indifferent to the by-name/by-value distinction (Plotkin, 1975). In this
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section we define the standard and ML-like cps sub-languages of Fω. In addition we
isolate a third cps-sublanguage, called strict cps form, on which all four operational
interpretations of Fω coincide.

4.1 Standard Cps Form

An analogue of untyped cps form, which we will call standard cps form (std-cps),
may be defined for the standard semantics. The grammar for this subset of Fω is
as follows:

W ::= x | λx:A.N | Λu:K.N

N ::= W | N W | N{A}
The variable W ranges over standard cps values and the variable N ranges over
standard cps terms.

Lemma 4.1
1. The std-cps sub-language is closed under std-cbv and std-cbn evaluation.
2. Evaluation of std-cps programs terminates with a std-cps value under both

variants of the standard semantics.

Theorem 4.2 (Indifference)
The standard call-by-name and call-by-value semantics coincide on std-cps terms.

Proof
For terms in standard cps form the std-cbv and std-cbn semantics coincide with
the following operational semantics:

V ::= W

E ::= [] | E V | E{A}
E[(λx:A.N)V ] ↪→ E[[V/x]N ]

E[(Λu:K.N){A}] ↪→ E[[A/u]N ]

4.2 ML-cps Form

The ml-cbv and ml-cbn semantics do not coincide on standard cps terms. To see
this, consider the following standard cps term:

(λx:(∀u:K.A). x) (Λu:K.(λy:A.y)c)

Under ml-cbv the innermost redex will be reduced first, whereas under ml-cbn the
outermost will be reduced first. An analogue of untyped cps form for the ML-like
semantics, which we call ml-cps form, is defined as follows:

W ::= x | λx:A.N | Λu:K.W

N ::= W | N W | Λu:K.N | N{A}
It is easy to see that every ml-cps term is a standard cps term, and that every

ml-cps value is a standard cps value. Note that if N is an ml-cps term, then N◦

is an untyped cps term, and if W is an ml-cps value, then W ◦ is an untyped cps
value, which was not the case for the standard cps form.
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Lemma 4.3
1. The ml-cps sub-language is closed under both ml-cbv and ml-cbn evaluation.
2. Evaluation of ml-cps programs terminates with an ml-cps value under both

ml-cbv and ml-cbn evaluation.

Theorem 4.4 (Indifference)
1. The ml-cbv and ml-cbn semantics coincide on ml-cps terms.
2. The std-cbv and std-cbn semantics coincide on ml-cps terms.

Proof
When restricted to terms in ml-cps form, the ml-cbv and ml-cbn semantics coincide
with the following operational semantics:

V ::= W

E ::= [] | E V | Λu:K.E | E{A}
E[(λx:A.N)V ] ↪→ E[[V/x]N ]

E[(Λu:K.V ){A}] ↪→ E[[A/u]V ]

4.3 Strict Cps Form

The standard and ML-like semantics do not coincide on terms in ml-cps form.
Consider the ml-cps term Λu:K.((λx:A.x)c). This term is a value under std-cbv and
std-cbn, but is not a value under either the ml-cbv or ml-cbn semantics. By further
restricting ml-cps to avoid constructor abstractions over non-values, we obtain a
subset of ml-cps called strict cps form (s-cps), on which all four interpretations
coincide:

W ::= x | λx:A.N | Λu:K.W

N ::= W | N W | N{A}

Lemma 4.5
1. The strict cps sub-language is closed under both variants of the standard and

ML-like semantics.
2. Evaluation of strict cps programs under either variant of either semantics

terminates with a strict cps value.

Theorem 4.6 (Indifference)
Both variants of the standard and ML-like strategies all coincide on terms in strict
cps form.

Proof
When restricted to terms in strict cps form, all four operational semantics coincide
with the following semantics:

V ::= W

E ::= [] | E V | E{A}
E[(λx:A.N)V ] ↪→ E[[V/x]N ]

E[(Λu:K.V ){A}] ↪→ E[[A/u]V ]
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5 Conversion to Continuation-Passing Style

In this section we define the continuation-passing translation of FC
ω into pure Fω.

The main idea of the translation is to explicitly represent the evaluation context as
an expression of Fω. The translation for a given semantics yields terms in the cps
form for that semantics. Moreover, the control operators are eliminated in favor of
direct manipulation of continuations.

Both forms of the standard semantics admit translations into strict cps form
(and hence into standard cps form) that enjoy suitable generalizations of the Meyer-
Wand typing properties (Meyer and Wand, 1985). In view of the unsoundness of the
ML-like call-by-value semantics for FC

ω we are unable to give a similar translation for
this case, but rather only for the restricted language FC−

ω introduced in Section 3.

5.1 Transformation of Constructors

In order to state the typing properties of the cps translation we must give a cor-
responding translation of types and constructors. These translations differ only in
the treatment of function types (call-by-name and call-by-value variants) and of
quantified types (standard and ML-like variants).

Definition 5.1

|A| = (A∗→Ans)→Ans

u∗ = u

Ans∗ = Ans
(λu:K.A)∗ = λu:K.A∗

(A1 A2)∗ = A∗
1A

∗
2

Function types, call-by-value:
(A1→A2)∗ = A∗

1→|A2|
Function types, call-by-name:

(A1→A2)∗ = |A1|→|A2|

Quantified types, standard:
(∀u:K.A)∗ = ∀u:K.|A|
Quantified types, ML-like:

(∀u:K.A)∗ = ∀u:K.A∗

The constructor transforms are extended to type assignments Γ by defining
Γ∗(x) = A∗ and |Γ|(x) = |A| whenever Γ(x) = A.

Lemma 5.2 (Compositional Translation)
The following equations hold for both variants of both semantics:

1. ([A1/u]A2)∗ = [A∗
1/u]A∗

2.
2. |[A1/u]A2| = [A∗

1/u] |A2|.
The constructor transformations preserve kinds and equality:

Theorem 5.3 (Kind Preservation)
For both variants of both semantics:

1. If Fω � ∆ � A : K, then Fω � ∆ � A∗ : K.
2. If Fω � ∆ � A1 = A2 : K, then Fω � ∆ � A∗

1 = A∗
2 : K.

3. If Fω � ∆ � A : Ω, then Fω � ∆ � |A| : Ω.
4. If Fω � ∆ � A1 = A2 : Ω, then Fω � ∆ � |A1| = |A2| : Ω.
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5.2 Transformation of Terms

A cps translation is given by a translation for values, (−)∗, and a translation for
general terms, |−|. These translations are defined by induction on the structure of
typing derivations, rather than “raw” terms. This is largely a technical convenience
since both the source and target languages are explicitly-typed, and we are only
interested in the properties of well-typed terms. In defining a translation on typing
derivations we must take account of coherence: since a given term may have several
typing derivations, it is important that all translations are equivalent. Although
this can be far from obvious in many cases (Breazu-Tannen, et al. 1991; Curien and
Ghelli, 1990), in the present setting coherence is readily established. The only non-
syntax-directed rule in the system is the rule of type equality, and uses of this rule
affect only the type labels attached to variables. But since the operational semantics
is insensitive to these labels, all translations are easily seen to be equivalent.

In order to simplify the presentation of the cps translations we adopt the following
conventions. New variables introduced by the transform are assumed to be chosen so
as to avoid capture. In cases where more than one clause of the transform applies
(this only occurs in the optimized versions), the first one listed is to be chosen.
When defining the transforms we suppress mention of the sub-derivations whenever
possible in the interest of brevity.

5.2.1 Standard Call-by-Value

The cps transform for the standard call-by-value semantics is given in figure 1.

Theorem 5.4 (Typing)
1. If FC

ω � ∆; Γ � M : A, then |M | is a strict cps value such that Fω � ∆; Γ∗ �

|M | : |A|.
2. If FC

ω � ∆; Γ � V : A, then V ∗ is a strict cps value such that Fω � ∆; Γ∗ �

V ∗ : A∗.

The correctness of the std-cbv cps transform for FC
ω may be established by

adapting methods introduced by Plotkin (1975) and Griffin (1990). The main
idea is to consider an “optimized” cps translation in which most administrative
redices (Plotkin, 1975) are eliminated during translation. The optimized transla-
tion is relativized to an explicitly-given continuation which is a representation of
the current evaluation context.

The optimized std-cbv cps transform is given in figure 2. It satisfies essentially
the same typing properties as the unoptimized version.

Theorem 5.5 (Typing)
1. If FC

ω � ∆; Γ � M : A and Y is a strict cps value such that Fω � ∆; Γ � Y :
A∗→Ans, then |M |Y is a strict cps term such that Fω � ∆; Γ∗ � |M |Y : Ans.

2. If FC
ω � ∆; Γ � V : A, then V † is a strict cps value such that Fω � ∆; Γ∗ � V † :

A∗.
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|∆; Γ � V : A| = λk:A∗→Ans. k V ∗

|∆; Γ � M1 M2 : A| = λk:A∗→Ans. |M1| (λx1:(A2→A)∗.
|M2| (λx2:A

∗
2.x1 x2 k)),

where ∆; Γ � M1 : A2→A and ∆; Γ � M2 : A2

|∆; Γ � M {A1} : [A1/u]A2| = λk:([A1/u]A2)
∗→Ans.

|M | (λx:(∀u:K1.A2)
∗.x{A∗

1} k)

|∆; Γ � XA(M) : A| = λk:Ans∗→Ans. |M | (λm:A∗.m)
|∆; Γ � CA(M) : A| = λk:A∗→Ans. |M |Y, where

Y = λm:((∀u:Ω.A→u)→A)∗. m Y ′ k, and
Y ′ = Λu:Ω.λl:(A→u)∗→Ans.

l (λx:A∗.λk′:u∗→Ans.k x)

|∆; Γ � M : A′| = |M |,
where ∆; Γ � M : A and ∆ � A = A′ : Ω

(∆; Γ � x : A)∗ = x
(∆; Γ � λx:A.M : A→A′)∗ = λx:A∗. |M |

(∆; Γ � Λu:K.M : ∀u:K.A)∗ = Λu:K. |M |

(∆; Γ � V : A′)∗ = V ∗, where ∆; Γ � V : A and ∆ � A = A′ : Ω

Fig. 1. The standard call-by-value transform

The optimized transform is related to the unoptimized transform through the
notion of βv reduction defined as follows:

C[(λx:A.M)V ] →βv
C[[V/x]M ]

C[(Λu:K.M){A}] →βv
C[[A/u]M ]

Notice that βv reduction may occur in any context, rather than just an evaluation
context.

Theorem 5.6 (Optimization)
|M |Y →∗

βv
|M |Y and V ∗ →∗

βv
V †.

The optimized transform is extended to evaluation contexts by considering the
hole to be a non-value and defining |∆; Γ � [] : B|Y = Y . If FC

ω � ∆; Γ � E : A

(regarding the “hole” in E as having some type B) and Fω � ∆; Γ � Y : A∗→Ans,
then |E|Y is a strict cbv value such that Fω � ∆; Γ � |E|Y : B∗→Ans.

It is possible to regard any evaluation context as the composition of a series of
frames:

F ::= []M | V [] | []{A}
Thus we may think of the evaluation context (V []){A} as the composition of frames
([]{A}) ◦ (V []).

Lemma 5.7
Suppose that X is an expression that is not a std-cbv value. Then:
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|∆; Γ � V : A|Y = Y V †

|∆; Γ � V1 V2 : A|Y = V †
1 V †

2 Y
|∆; Γ � V1 M2 : A|Y = |M2|Y ′ , where ∆; Γ � M2 : A2, and

Y ′ = λm2:A
∗
2. V

†
1 m2 Y

|∆; Γ � M1 M2 : A|Y = |M1|Y ′ , where ∆; Γ � M2 : A2, and
Y ′ = λm1:(A2→A)∗. |M2|Y ′′ , and
Y ′′ = λm2:A

∗
2. m1 m2 Y

|∆; Γ � V {A1} : [A1/u]A2|Y = V † {A∗
1}Y

|∆; Γ � M {A1} : [A1/u]A2|Y = |M |Y ′ , where
Y ′ = λm:(∀u:K. A2)

∗. m {A∗
1}Y

|∆; Γ � XA(M) : A|Y = |M |λx:Ans. x

|∆; Γ � CA(M) : A|Y = |M |Y ′ , where
Y ′ = λm:((∀u:Ω. A→u)→A)∗.

(λn:(∀u:Ω. A→u)∗. m n Y ) Y ′′, and
Y ′′ = Λu:Ω. λl:(A→u)∗→Ans.

l (λx:A∗. λk′:u∗→Ans. Y x)

|∆; Γ � M : A′|Y = |M |Y ,
where ∆; Γ � M : A and ∆ � A = A′ : Ω

(∆; Γ � x : A)† = x

(∆; Γ � λx:A1. M : A1→A2)
† = λx:A∗

1. λk:A∗
2→Ans. |M |k

(∆; Γ � Λu:K. M : ∀u:K. A)† = Λu:K. λk:A∗→Ans. |M |k

(∆; Γ � V : A′)† = V †, where ∆; Γ � V : A and ∆ � A = A′ : Ω

Fig. 2. The optimized standard call-by-value transform

1. |[]|Y = Y .
2. E[X] is not a std-cbv value.
3. |F [X]|Y = |X||F |Y .

Theorem 5.8 (Decomposition)
1. If M is not a std-cbv value, then |E[M ]|Y = |M ||E|Y .
2. If V is a std-cbv value, then |V ||E|Y →∗

βv
|E[V ]|Y .

Proof
By induction on E as a sequence of frames. Two illustrative cases are as follows:

|E[M ]|Y = |F ◦ E′[M ]|Y
= |F [E′[M ]]|Y
= |E′[M ]||F |Y
= |M ||E′||F |Y
= |M ||F◦E′|Y
= |M ||E|Y
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|V ||E|Y = |V ||V1 []|Y
= |V1 []|Y V †

= |[]|λm2:A∗
2 .V †

1 m2 Y V †

= (λm2:A∗
2.V

†
1 m2 Y )V †

→βv
V †

1 V † Y

= |V1 V |Y
= |(V1[])[V ]|Y
= |E[V ]|Y

It follows that |M ||E|Y →∗
βv

|E[M ]|Y for all terms M .

Theorem 5.9 (Simulation)
If P is a program and P ↪→∗

std-cbv Q, then |P |λx:Ans.x →∗
βv

|Q|λx:Ans.x. Moreover,
each β-step on P induces at least one βv-step on the converted form.

Proof
The main steps are to show that if P ↪→std-cbv Q by a β-step, then |P |Y →+

βv
|Q|Y ,

and if P ↪→std-cbv Q by either an X or C step, then |P |λx:Ans.x →∗
βv

|Q|λx:Ans.x.

Theorem 5.10 (Termination)
For any program P ,

1. There exists a unique std-cbv value V such that P ↪→∗
std-cbv V .

2. If P ↪→∗
std-cbv V then |P | (λx:Ans.x) →∗

βv
V ′ where V ′ is such that V ∗ →∗

βv

V ′.

Proof
Part (1) is a consequence of simulation and the strong normalization property of
Fω. As previously remarked, any infinite std-cbv reduction sequence must contain
infinitely many β-steps. Part (2) follows from the simulation and optimization the-
orems, together with the observation that |V |λx:Ans.x = V †.

5.2.2 Standard Call-by-Name

The standard call-by-name semantics also admits a conversion into cps sharing es-
sentially the same properties as are enjoyed by the standard call-by-value cps trans-
formation. We have only to switch to the call-by-name variant of the constructor
transform and modify the term transform by replacing the variable, application,
and C clauses by the following clauses. Recall that under the call-by-name interpre-
tation variables are not considered to be values.

Definition 5.11
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|∆; Γ � x : A| = x

|∆; Γ � M1 M2 : A| = λk:A∗→Ans. |M1| (λx1:(A1→A2)∗. x1 |M2| k)
where ∆; Γ � M1 : A2→A and ∆; Γ � M2 : A2

|∆; Γ � CA(M) : A| = λk:A∗→Ans.
|M | (λm:((∀u:Ω. A→u)→A)∗.mY k), where

Y = λl:(∀u:Ω. A→u)∗→Ans. l Y ′, and
Y ′ = Λu:Ω. λl:(A→u)∗→Ans.

l (λx:|A|. λk′:u∗→Ans. x k)

(∆; Γ � λx:A.M : A→A′)∗ = λx:|A|. |M |
Theorem 5.12 (Typing)

1. If FC
ω � ∆; Γ � M : A, then there exists a strict cps value |M | such that

Fω � ∆; |Γ| � |M | : |A|.
2. If FC

ω � ∆; Γ � V : A, then there exists a strict cps value V ∗ such that
Fω � ∆; |Γ| � V ∗ : A∗.

Proof
Analogous to the standard call-by-value case.

Theorem 5.13 (Simulation and Termination)
Let P be a program.

1. If P ↪→∗
std-cbn V then | P | (λx:Ans.x) →∗

βv
V ′ where V ′ is such that V ∗ →∗

βv

V ′.
2. There exists a unique std-cbn value V such that P ↪→∗

std-cbn V .

Proof
Similar to the call-by-value case. The necessary optimized transform is given in
figure 3.

5.2.3 ML-Like Call-by-Value

The constructor transforms for the standard semantics are based on the idea that
constructor applications are “serious” computations (in the sense of Reynolds (1972)).
For the restricted language FC−

ω the body of a polymorphic abstraction must be a
value that is immediately passed to its continuation, and hence constructor appli-
cation is fundamentally a trivial computation step. We are thus led to consider an
alternative cps translation that more accurately reflects the computational behavior
of FC−

ω terms.
The definition of the alternative ml-cbv cps transform is the same as for the std-

cbv cps transform, with the following differences. We employ the ML-like definition
of the (−)∗ transform on constructors given in Definition 5.1, and take the following
clauses for constructor abstraction and application and for C:
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|∆; Γ � V : A|Y = Y V †

|∆; Γ � x : A|Y = x Y

|∆; Γ � V1 M2 : A|Y = V †
1 (λk:A∗

2→Ans. |M2|k) Y
where ∆; Γ � M2 : A2

|∆; Γ � M1 M2 : A|Y = |M1|Y ′ , where ∆; Γ � M2 : A2, and
Y ′ = λm:(A2→A)∗. m (λk:A∗

2→Ans. |M2|k) Y

|∆; Γ � V {A1} : [A1/u]A2|Y = V † {A∗
1}Y

|∆; Γ � M {A1} : [A1/u]A2|Y = |M |Y ′ , where
Y ′ = λm:(∀u:K. A2)

∗. m {A∗
1}Y

|∆; Γ � XA(M) : A|Y = |M |λx:Ans. x

|∆; Γ � CA(M) : A|Y = |M |Y ′ , where
Y ′ = λm:((∀u:Ω. A→u)→A)∗. m Y ′′ Y, and
Y ′′ = λl:(∀u:Ω. A→u)∗→Ans. l Y ′′′, and
Y ′′′ = Λu:Ω. λl:(A→u)∗→Ans.

l (λx:|A|. λk′:u∗→Ans. x Y )

|∆; Γ � M : A′|Y = |M |Y ,
where ∆; Γ � M : A and ∆ � A = A′ : Ω

(∆; Γ � λx:A1. M : A1→A2)
† = λx:|A1|. λk:A∗

2→Ans. |M |k
(∆; Γ � Λu:K. M : ∀u:K. A)† = Λu:K. λk:A∗→Ans. |M |k

(∆; Γ � V : A′)† = V †, where ∆; Γ � V : A and ∆ � A = A′ : Ω

Fig. 3. The optimized standard call-by-name transform

Definition 5.14

|∆; Γ � M {A1} : [A1/u]A2| = λk:([A1/u]A2)∗→Ans.
|M | (λm:(∀u:K.A2)∗. k (m {A∗

1}))

|∆; Γ � CA(M) : A| = λk:A∗→Ans. |M | (λm:((∀u:Ω. A→u)→A)∗.
m (Λu:Ω. λx:A∗. λk′:u∗→Ans. k x) k)

(∆; Γ � Λu:K.V : ∀u:K.A)∗ = Λu:K.V ∗

This transformation does not yield terms in strict, or even ML-like, cps form.
In particular, terms of the form k (x {A}) arise in the transformation, violating
the condition that arguments to functions are restricted to values. By regarding
constructor applications as trivial computations (tantamount to values), we may
regard the translation as yielding terms in quasi-cps form, which is defined as
follows.

W ::= x | λx:A.N | Λu:K.W | W{A}
N ::= W | N W | Λu:K.N | N{A}

The set of terms in quasi-cps form is closed under ml-cbv and ml-cbn evaluation.
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However, ml-cbv and ml-cbn do not coincide on this subset; the term (λx:A.x)
((Λu:K.W ){A}) may be further evaluated under ml-cbv, but not under ml-cbn
evaluation. However, the two semantics coincide under erasure:

Theorem 5.15
Let P1 and P2 be quasi-cps programs such that P ◦

1 = P ◦
2 . If P1 ↪→∗

ml-cbv Q1 and
P2 ↪→∗

ml-cbn Q2, then there exists Q′
1 and Q′

2 such that (Q′
1)

◦ = (Q′
2)

◦, Q1 ↪→∗
ml-cbv

Q′
1, and Q2 ↪→∗

ml-cbn Q′
2.

Proof
The erasure of quasi-cps form gives untyped cps form. The result follows from
the relationship between the ML-like semantics and the untyped semantics (see
Theorem 3.17) and the fact that the untyped semantics coincide on untyped cps
form.

Theorem 5.16 (Typing)
1. If FC−

ω � ∆; Γ � M : A, then there exists a quasi-cps value |M | such that
F−

ω � ∆; Γ∗ � |M | : |A|.
2. If FC−

ω � ∆; Γ � V : A, then there exists a quasi-cps value V ∗ such that
F−

ω � ∆; Γ∗ � V ∗ : A∗.

This transform is essentially a typed version of the untyped call-by-value cps
transform.

Theorem 5.17
If FC−

ω � ∆; Γ � M : A, then |M |◦ →∗
η |M◦|ucbv.

Proof
By induction on typing derivations. One illustrative case is as follows:

|M {A}|◦ = λk.|M |◦(λm.(k{A∗}m)◦)
= λk.|M |◦(λm.k m)
→η λk.|M |◦ k

→η |M |◦
= |M◦|ucbv

6 Summary

We have described four different operational interpretations for FC
ω. Under the stan-

dard semantics, polymorphic abstractions are values and polymorphic instantiation
is a significant computation step. Under the ML-like semantics, which are intended
to model first erasing type information then evaluating using an untyped semantics,
evaluation proceeds beneath polymorphic abstractions and polymorphic instantia-
tion is essentially insignificant. We have analyzed these two semantics, considering
a call-by-value and call-by-name variant for each, by means of the technique of cps
transformation.
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The standard semantics — both call-by-value and call-by-name variants — vali-
date subject reduction, are terminating, and admit faithful, type-preserving trans-
formations into continuation-passing style. We conclude that the standard seman-
tics are semantically unproblematic, at least from the point of view of compilation
and typing. These semantics have the significant advantage of being extensible to
a more sophisticated set of primitive operations, in particular, those that make
non-trivial use of type information at run time.

On the other hand, the ML-like call-by-value semantics is problematic — FC
ω,

when evaluated under this semantics, fails to be sound. Restriction to the frag-
ment FC−

ω in which constructor abstractions are limited to values restores sound-
ness at the cost of losing ml-cbv’s uniqueness. (Std-cbv and ml-cbv coincide on this
fragment.) We have presented an alternate cps transform for this fragment which
treats constructor application as a trivial computation unlike the normal std-cbv
cps transform.
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A Rules for FC
ω

Definition A.1 (Constructor Context Formation Rules)

� ∅ (c-empty)

� ∆ u �∈ dom(∆)

� ∆, u:K
(c-extend)

Definition A.2 (Term Context Formation Rules)

� ∆

∆ � ∅ (t-empty)

∆ � Γ ∆ � A : Ω x �∈ dom(Γ)

∆ � Γ, x:A
(t-extend)

Definition A.3 (Constructor Formation Rules)

� ∆

∆ � u : ∆(u)
(c-var)

∆ � A1 : Ω ∆ � A2 : Ω

∆ � A1 → A2 : Ω
(c-arr)

∆, u:K � A : Ω

∆ � ∀u:K.A : Ω
(c-all)
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∆, u:K1 � A : K2

∆ � λu:K1.A : K1 ⇒ K2

(c-abs)

∆ � A1 : K2 ⇒ K ∆ � A2 : K2

∆ � A1 A2 : K
(c-app)

Definition A.4 (Constructor Equality Rules)

∆ � A : K

∆ � A = A : K
(refl)

∆ � A1 = A2 : K

∆ � A2 = A1 : K
(symm)

∆ � A1 = A2 : K ∆ � A2 = A3 : K

∆ � A1 = A3 : K
(trans)

∆ � A1 = A′
1 : Ω ∆ � A2 = A′

2 : Ω

∆ � A1 → A2 = A′
1 → A′

2 : Ω
(c-arr-eq)

∆, u:K � A = A′ : Ω

∆ � ∀u:K.A = ∀u:K.A′ : Ω
(c-all-eq)

∆, u:K1 � A = A′ : K2

∆ � λu:K1.A = λu:K1.A
′ : K1 ⇒ K2

(c-abs-eq)

∆ � A1 = A′
1 : K2 ⇒ K ∆ � A2 = A′

2 : K2

∆ � A1 A2 = A′
1 A′

2 : K
(c-app-eq)

∆, u:K1 � A2 : K2 ∆ � A1 : K1

∆ � (λu:K1.A2) A1 = [A1/u]A2 : K2

(c-beta)

∆ � A : K1 ⇒ K2 u �∈ dom(∆)

∆ � λu:K1.A u = A : K1 ⇒ K2

(c-eta)

Definition A.5 (Term Formation Rules)

∆ � Γ

∆; Γ � x : Γ(x)
(t-var)

∆; Γ, x:A1 � M : A2

∆; Γ � λx:A.M : A1 → A2

(t-abs)

∆; Γ � M1 : A2 → A ∆; Γ � M2 : A2

∆; Γ � M1 M2 : A
(t-app)

∆, u:K; Γ � M : A ∆ � Γ

∆; Γ � Λu:K.M : ∀u:K.A
(t-cabs)

∆; Γ � M : ∀u:K.A′ ∆ � A : K

∆; Γ � M{A} : [A/u]A′ (t-capp)
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∆ � A : Ω ∆; Γ � M : Ans

∆; Γ � XA(M) : A
(t-abort)

∆; Γ � M : (∀u:Ω.A→u)→A u /∈ dom(∆)

∆; Γ � CA(M) : A
(t-callcc)

∆; Γ � M : A ∆ � A = A′ : Ω

∆; Γ � M : A′ (t-eq)


