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Abstract—Data deduplication is an essential and critical com-
ponent of backup systems. Essential, because it reduces storage
space requirements, and critical, because the performance of the
entire backup operation depends on its throughput. Traditional
backup workloads consist of large data streams with high local-
ity, which existing deduplication techniques require to provide
reasonable throughput.

We present Extreme Binning, a scalable deduplication tech-
nique for non-traditional backup workloads that are made up
of individual files with no locality among consecutive files in a
given window of time. Due to lack of locality, existing techniques
perform poorly on these workloads. Extreme Binning exploits
file similarity instead of locality, and makes only one disk access
for chunk lookup per file, which gives reasonable throughput.
Multi-node backup systems built with Extreme Binning scale
gracefully with the amount of input data; more backup nodes
can be added to boost throughput. Each file is allocated using
a stateless routing algorithm to only one node, allowing for
maximum parallelization, and each backup node is autonomous
with no dependency across nodes, making data management tasks
robust with low overhead.

I. INTRODUCTION

The amount of digital information created in 2007 was 281
exabytes; by 2011, it is expected to be 10 times larger [1].
35% of this data originates in enterprises and consists of
unstructured content, such as office documents, web pages,
digital images, audio and video files, and electronic mail. En-
terprises retain such data for corporate governance, regulatory
compliance [2], [3], litigation support, and data management.

To mitigate storage costs associated with backing up such
huge volumes of data, data deduplication is used. Data dedu-
plication identifies and eliminates duplicate data. Storage space
requirements can be reduced by a factor of 10 to 20 or more
when backup data is deduplicated [4].

Chunk-based deduplication [5]–[7], a popular deduplica-
tion technique, first divides input data streams into fixed or
variable-length chunks. Typical chunk sizes are 4 to 8 kB.
A cryptographic hash or chunk ID of each chunk is used to
determine if that chunk has been backed up before. Chunks
with the same chunk ID are assumed identical. New chunks are
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stored and references are updated for duplicate chunks. Chunk-
based deduplication is very effective for backup workloads,
which tend to be files that evolve slowly, mainly through small
changes, additions, and deletions [8].

Inline deduplication is deduplication where the data is
deduplicated before it is written to disk as opposed to post-
process deduplication where backup data is first written to
a temporary staging area and then deduplicated offline. One
advantage of inline deduplication is that extra disk space is not
required to hold and protect data yet to be backed up. Data
Domain, Hewlett Packard, and Diligent Technologies are a few
of the companies offering inline, chunk-based deduplication
products.

Unless some form of locality or similarity is exploited,
inline, chunk-based deduplication, when done at a large scale
faces what has been termed the disk bottleneck problem: to
facilitate fast chunk ID lookup, a single index containing the
chunk IDs of all the backed up chunks must be maintained.
However, as the backed up data grows, the index overflows the
amount of RAM available and must be paged to disk. Without
locality, the index cannot be cached effectively, and it is not
uncommon for nearly every index access to require a random
disk access. This disk bottleneck severely limits deduplication
throughput.

Traditional disk-to-disk backup workloads consist of data
streams, such as large directory trees coalesced into a large
file, or data generated by backup agents to conform with legacy
tape library protocols. There are large stretches of repetitive
data among streams generated on a daily or weekly basis. For
example, files belonging to a user’s My Documents directory
appear in approximately the same order every day. This means
that when files A, B, C, and, thus their chunks, appear in that
order in today’s backup stream, tomorrow when file A’s chunks
appear, chunks for files B and C follow with high probability.

Existing approaches exploit this ‘chunk locality’ to improve
deduplication throughput. Zhu et al. [9] store and prefetch
groups of chunk IDs that are likely to be accessed together
with high probability. Lillibridge et al. [10] batch up chunks
into large segments, on the order of 10 MB. The chunk IDs
in each incoming segment are sampled and the segment is
deduplicated by comparing with the chunk IDs of only a few
carefully selected backed up segments. These are segments



that share many chunk IDs with the incoming segment with
high probability.

We now consider the case for backup systems designed to
service fine-grained low-locality backup workloads. Such a
workload consists of files, instead of large data streams, that
arrive in random order from disparate sources. We assume
no locality between files that arrive in a given window of
time. Several scenarios generate such a workload: File backup
and restore requests made by Network-attached Storage (NAS)
clients; Continuous Data Protection (CDP), where files are
backed up as soon as they have changed; and electronic
emails that are backed up as soon as they are received. In
fact, NAS-based backup systems that provide a NFS/CIFS
interface are already being sold by companies such as NetApp,
Data Domain, and EMC. In absence of locality, existing
approaches perform poorly: either their throughput [9] or their
deduplication efficiency [10] deteriorates.

Our solution, Extreme Binning, exploits file similarity in-
stead of chunk locality. It splits the chunk index into two
tiers. One tier is small enough to reside in RAM and the
second tier is kept on disk. Extreme Binning makes a single
disk access for chunk lookup per file instead of per chunk to
alleviate the disk bottleneck problem. In a distributed setting,
with multiple backup nodes – nodes that perform file based
backup – every incoming file is allocated, using a stateless
routing algorithm, to a single backup node only. Backup nodes
are autonomous – each node manages its own index and
data without sharing or knowing the contents of other backup
nodes. To our knowledge, no other approach can be scaled or
parallelized as elegantly and easily as Extreme Binning.

One disadvantage of Extreme Binning compared to ap-
proaches by Zhu et al. [9] and Rhea et al. [11] is that it
allows some duplicate chunks. In practice, however, as shown
by our experiments, this loss of deduplication is minimal for
representative workloads, and is more than compensated for
by the low RAM usage and scalability of our approach.

II. CHUNK-BASED DEDUPLICATION

Chunking divides a data stream into fixed [7] or variable
length chunks. Variable-length chunking has been used to
conserve bandwidth [6], to weed out near duplicates in large
repositories [5], for wide-area distributed file systems [12],
and, to store and transfer large directory trees efficiently and
with high reliability [13].
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Fig. 1. Sliding Window Technique

Figure 1 depicts the sliding window chunking algorithm.
To chunk a file, starting from the beginning, its contents as

seen through a fixed-sized (overlapping) sliding window are
examined. At every position of the window, a fingerprint or
signature of its contents, f , is computed using hashing tech-
niques such as Rabin fingerprints [14]. When the fingerprint,
f , meets a certain criteria, such as f modD = r where D,
the divisor, and r are predefined values; that position of the
window defines the boundary of the chunk. This process is
repeated until the complete file has been broken down into
chunks. Next, a cryptographic hash or chunk ID of the chunk
is computed using techniques such as MD5 [15], or SHA [16],
[17].

After a file is chunked, the index containing the chunk IDs
of backed up chunks is queried to determine duplicate chunks.
New chunks are written to disk and the index is updated with
their chunk IDs. A file recipe containing all the information
required to reconstruct the file is generated. The index also
contains some metadata about each chunk, such as its size
and retrieval information.

How much deduplication is obtained depends on the inher-
ent content overlaps in the data, the granularity of chunks and
the chunking method [18], [19]. In general, smaller chunks
yield better deduplication.

III. OUR APPROACH: EXTREME BINNING
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Fig. 2. A two-tier chunk index with the primary index in RAM and bins on
disk

Extreme Binning splits up the chunk index into two tiers.
The top tier called the primary chunk index or primary index
resides in RAM. The primary index contains one chunk ID
entry per file. This chunk ID is the representative chunk ID of
the file. The rest of the file’s chunk IDs are kept on disk in the
second tier which is a mini secondary index that we call bin.
Each representative chunk ID in the primary index contains
a pointer to its bin. This two-tier index has been depicted in
Figure 2. The two-tier design distinguishes Extreme Binning
from some of the other approaches [9], [11] which use a flat
chunk index – a monolithic structure containing the chunk IDs
of all the backed up chunks.

A. Choice of the Representative Chunk ID

The success of Extreme Binning depends on the choice
of the representative chunk ID for every file. This choice is
governed by Broder’s theorem [20]:



Theorem 1: Consider two sets S1 and S2, with H(S1)
and H(S2) being the corresponding sets of the hashes of
the elements of S1 and S2 respectively, where H is chosen
uniformly and at random from a min-wise independent family
of permutations. Let min(S) denote the smallest element of
the set of integers S. Then:

Pr
[
min(H(S1)) = min(H(S2))

]
=

|S1 ∩ S2|
|S1 ∪ S2|

Broder’s theorem states that the probability that the two sets
S1 and S2 have the same minimum hash element is the same
as their Jaccard similarity coefficient [21]. So, if S1 and S2

are highly similar then the minimum element of H(S1) and
H(S2) is the same with high probability. In other words, if
two files are highly similar they share many chunks and hence
their minimum chunk ID is the same with high probability.
Extreme Binning chooses the minimum chunk ID of a file to
be its representative chunk ID.

Our previous work [22] has shown that Broder’s theorem
can be used to identify similar files with high accuracy without
using brute force methods. In this previous work, chunk
IDs extracted from each file within the given corpus were
replicated over multiple partitions of the search index. Each
partition was expected to fit in RAM. Such a solution is not
feasible in the context of large scale backup systems that can
be expected to hold exabytes of data, and are the focus of this
work.

Extreme Binning extends our previous work in that it applies
those techniques to build a scalable, parallel deduplication
technique for such large scale backup systems. Our contri-
butions in this work are: the technique of splitting the chunk
index into two tiers between the RAM and the disk to achieve
excellent RAM economy, the partitioning of the second tier
into bins, and the method of selecting only one bin per file to
amortize the cost of disk accesses without deteriorating dedu-
plication. Together, these contributions extend our previous
work considerably.

B. File Deduplication and Backup using Extreme Binning

Representative Chunk ID SHA-1 Hash Pointer to bin
045677a29c.... 09591b28746.....

Primary Index

Chunk ID Chunk Size
a07b41fcbd11d... 1570
89cf1bf1c8bfc... 2651

... ...

Bin

38a0acc909.... a20ae8a2eeb.....

... ...

Fig. 3. Structure of the primary index and the bins

Figure 3 shows the structure of the primary index and
one bin. There are three fields in the primary index – the
representative chunk ID, the whole file hash and a pointer to
a bin. Each bin contains two fields: the chunk ID and the

chunk size. In addition, bins may also contain other metadata,
such as the address of the corresponding chunk on disk. File
backup proceeds as follows:

When a file arrives to be backed up, it is chunked, its
representative chunk ID is determined and its whole file hash
is computed. The whole file hash is a hash of the entire file’s
contents computed using techniques such as MD5 and SHA-1.

The primary index is queried to find out if the file’s
representative chunk ID already exists in it. If not, a new
secondary index or bin is created. All unique chunk IDs of the
file along with their chunk sizes are added to this bin. All the
chunks and the new bin are written to disk. The representative
chunk ID, the whole file hash and a pointer to this newly
created bin, now residing on disk, is added to the primary
index.

If the file’s representative chunk ID is found in the primary
index, its whole file hash is compared with the whole file hash
in the primary index for that representative chunk ID. If the
whole file hashes do not match, the bin pointer in the primary
index is used to load the corresponding bin from disk. Once
the bin is in RAM, it is queried for the rest of the file’s chunk
IDs. If a chunk ID is not found, it is added to the bin and its
corresponding chunk is written to disk. Once this process has
been completed for all the chunk IDs of the file, the updated
bin is written back to disk. The whole file hash in the primary
index is not updated.

A whole file hash match means that this file is a duplicate
file: all its chunks are duplicates. There is no need to load the
bin from disk. File deduplication is complete. By keeping the
whole file hash in the primary index, we avoid making a disk
access for chunk lookup for most duplicate files.

Finally, references are updated for duplicate chunks and a
file recipe is generated and written to disk. This completes the
process of backing up a file.

The cost of a disk access, made for chunk ID lookup, is
amortized over all the chunks of a file instead of there being
a disk access per chunk. The primary index, since it contains
entries for representative chunk IDs only, is considerably
smaller in size than a flat chunk index and can reside in RAM.
Hence, it exhibits superior query and update performance.

Our experiments show that Extreme Binning is extremely
effective in deduplicating files. To explain why Extreme Bin-
ning is effective, we need to understand the significance of the
binning technique. We know from Broder’s theorem that files
with the same representative chunk ID are highly similar to
each other. By using the representative chunk ID of files to bin
the rest of their chunk IDs, Extreme Binning groups together
files that are highly similar to each other. Each bin contains
chunk IDs of such a group of files. When a new file arrives
to be backed up, assuming its representative chunk ID exists
in the primary index, the bin selected for it contains chunk
IDs of chunks of files that are highly similar to it. Therefore,
duplicate chunks are identified with high accuracy.

Only one bin is selected per file, so that if any of the file’s
chunk IDs do not exist in the selected bin but exist in other
bins, they will be deemed as new chunks. Hence, duplicates are



allowed. However, Extreme Binning is able to deduplicate data
using fewer resources, e.g., less RAM and fewer disk accesses,
which translates to high throughput. Extreme Binning, thus,
represents a trade off between deduplication throughput and
deduplication efficiency. However, our results show that this
loss of deduplication is a very small one.

We now discuss how Extreme Binning can be used to
parallelize file backup to build a scalable distributed system.

IV. A DISTRIBUTED FILE BACKUP SYSTEM USING
EXTREME BINNING

To distribute and parallelize file backup using multiple
backup nodes, the two-tier chunk index must first be parti-
tioned and each partition allocated to a backup node. To do
this, every entry in the primary index is examined to determine
to which backup node it should go. For example, if there
are K backup nodes, then every representative chunk ID ci,
in the primary index, is allocated to backup node ci modK.
Techniques such as RUSH [23] or LH∗ [24] can also used for
this distribution. These techniques are designed to distribute
objects to maximize scalability and reliability.

When a primary index entry moves, the bin attached to it
also moves to the same backup node. For every chunk ID
in the bin there exists a corresponding data chunk. All the
data chunks attached to the bin also move to the same backup
node. Each bin is independent. The system has no knowledge
of any common chunk IDs in different bins. This means that
if a chunk ID appears in two bins, there will be two copies of
its corresponding data chunk. Hence, moving a primary index
entry to a new backup node, along with its bin and data chunks,
does not create any dependencies between the backup nodes.
Even if more backup nodes are added in the future to scale out
the backup system, the bins and their corresponding chunks
can be redistributed without generating any new dependencies.
This makes scale out operations clean and simple.

The architecture of a distributed file backup system built
using Extreme Binning has been shown in Figure 4. It consists
of several backup nodes. Each backup node consists of a
compute core and RAM along with a dedicated attached
disk. The RAM hosts a partition of the primary index. The
corresponding bins and the data chunks are stored on the
attached disk as shown in the figure.

When a file arrives to be backed up, it must first be chunked.
This task can be delegated to any one of the backup nodes,
the choice of which, can be based on the system load at that
time. Alternatively, a set of master nodes can also be installed
to do the chunking. The file is thus chunked by any one of
the backup nodes. Its representative chunk ID is extracted and
is used to route the chunked file to another backup node –
the backup node where it will be deduplicated and stored.
The routing is done using the technique described above for
partitioning the primary index. If this file is a large file, instead
of waiting for the entire file to be chunked, only the first
section of the file can be examined to select the representative
chunk ID. Note that a file can be chunked by one backup node
and deduplicated by another.

When a backup node receives a file to be deduplicated, it
uses the file’s representative chunk ID to query the primary
index residing in its RAM. The corresponding bin, either
existing or new, is loaded or created. The primary index and
the bin are updated. The updated or new bin, the new chunks,
and the file recipe are written to the disks attached to the
backup node.

Because every file is deduplicated and stored by only one
backup node, Extreme Binning allows for maximum paral-
lelization. Multiple files can be deduplicated at the same time.

Though Extreme Binning allows a small number of du-
plicates, this number does not depend on the number of
backup nodes. This loss will be incurred even in a single node
backup system. Parallelization does not affect the choice of
representative chunk IDs, the binning of chunk IDs, and it
does not change what bin is queried for a file. Hence, system
scale out does not affect deduplication.

The above distributed design has several advantages. First,
the process of routing a file to a backup node is stateless.
Knowledge of the contents of any backup node is not re-
quired to decide where to route a file. Second, there are no
dependencies between backup nodes. Every file – its chunks,
index entries, recipe and all – resides entirely on one backup
node, instead of being fragmented across multiple nodes.
This means that data management tasks such as file restores,
deletes, garbage collection, and data protection tasks such as
regular integrity checks do not have to chase dependencies
spanning multiple nodes. They are clean and simple – all
managed autonomously. A file not being fragmented across
backup nodes also means better reliability. A fragmented file,
whose chunks are stored across multiple backup nodes, is more
vulnerable to failures since it depends on the reliability of all
those nodes for its survival. Autonomy of every backup node,
is thus, a highly desirable feature.

V. EXPERIMENTAL SETUP

Our data sets are composed of files from a series of backups
of the desktop PCs of a group of 20 engineers taken over a
period of three months. These backups consist all the files for
full backups and only modified files for incremental backups.
Altogether, there are 17.67 million files containing 162 full and
416 incremental backups in this 4.4 TB data set. We call this
data set HDup since it contains a high number of duplicates on
account of all the full backups. Deduplication of HDup yields
a space reduction ratio of 15.6:1.

To simulate an incremental only backup workload, we chose
from this data set the files belonging to the first full backup
of every user along with the files belonging to all incremental
backups. The first full backup represents what happens when
users backup their PCs for the first time. The rest of the
workload represents backup requests for files that changed
thereafter. This data set is 965 GB in size and consists of
2.2 million files. We call this set LDup since it contains few
duplicates with a space reduction ratio of 3.33:1.

To evaluate Extreme Binning on a non-proprietary and
impartial data set, we have also tested it on widely available
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Fig. 4. Architecture of a Distributed File Backup System build using Extreme Binning

Linux distributions. This 26 GB data set consisted of 450
versions from version 1.2.1 to 2.5.75.

It has been shown that data deduplication is more effective
when there is low variance in chunk sizes. Consequently, we
used the Two Threshold Two Denominators (TTTD) [5] to
chunk files. TTTD has been shown to perform better than the
basic sliding window chunking algorithm in finding duplicate
data and reducing the storage overheads of chunk IDs and their
metadata [25]. The average size of the chunks was 4 KB. The
chunks were not compressed. Any other chunking algorithm
can also be used.

We chose SHA-1 for its collision resistant properties. If
SHA-1 is found to be unsuitable, another hashing technique
can be used.

Our approach simply enables one to perform scalable effi-
cient searches for duplicate chunks using chunk IDs. Once it
has been determined that another chunk with the same chunk
ID exists in the backup store, it is always possible to actually
fetch the chunk and do a byte by byte comparison instead of
a compare by hash [26], [27] (chunk ID) approach, though, at
the cost of reduced deduplication throughput as reported by
Rhea et al. [11].

Our hardware setup was: each backup node ran Red Hat
Enterprise Linux AS release 4 (Nahant Update 5). HP MPI
(Message-Passing Interface), which contains all the MPI-
2 functionality, was used for inter-process communication.
Berkeley DB v.4.7.25 [28] was used for the primary index
and the bins.

VI. RESULTS

Extreme Binning was tested for its deduplication efficiency,
load distribution, and RAM usage when used to deduplicate
the three data sets.

A. Deduplication Efficiency

Figure 5 shows how Extreme Binning did while finding
duplicates in HDup. The three curves show how much storage
space was consumed when there was no deduplication, if every
duplicate chunk was identified (perfect deduplication), and
when Extreme Binning was used. A small number of duplicate
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chunks are allowed by Extreme Binning. With perfect dedu-
plication, the storage space utilization was 299.35 GB (space
reduction ratio: 15.16:1), whereas with Extreme Binning it was
331.69 GB (space reduction ratio: 13.68:1). Though Extreme
Binning used an extra 32.3 GB, this overhead is very small
compared to the original data size of 4.4 TB.

Figure 6 shows Extreme Binning’s deduplication efficiency
for LDup. Perfectly deduplicated, LDup data set required
288.03 GB (space reduction ratio: 3.33:1) whereas Extreme
Binning consumed 315.09 GB (space reduction ratio: 3.04:1).
From these graphs, it is clear that Extreme Binning yields
excellent deduplication and that the overhead of extra storage
space is small.

Figure 7 shows similar results for the Linux data set. The
distributions were ordered according to the version number be-
fore being deduplicated. Every point on the x-axis corresponds
to one version; there are a total of 450 versions. Perfectly
deduplicated data size was 1.44 GB (space reduction ratio:
18.14:1) while with Extreme Binning it was 1.99 GB (space
reduction ratio: 13.13:1). In this case too, Extreme Binning
yields very good deduplication.
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B. Load Distribution

Figures 8 and 9 show how much data, both deduplicated
and otherwise, is managed by each backup store for HDup
and LDup respectively. It is clear that no single node gets
overloaded. In fact, the deduplicated data is distributed fairly
evenly. The same trend was observed when 2 through 8 nodes
were used. This means that the distribution of files to backup
nodes is not uneven. This property of Extreme Binning is vital
towards ensuring smooth scale out and preventing any node
from becoming a bottleneck to the overall system performance.

Figure 10 depicts the load distribution of Extreme Binning
for Linux when 4 nodes were used. Once again, the same trend
was observed when 2 through 8 nodes were used.

C. Comparison with Distributed Hash Tables

A flat chunk index could be partitioned like a DHT; by
using a consistent hashing scheme to map every chunk ID to
a partition. Every partition can then be hosted by a dedicated
compute node. To deduplicate a file, the same hashing scheme
can be used to dictate which partition should be queried to
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ascertain if the corresponding chunk is duplicate. Assume a
file containing n chunks is to be deduplicated and that the
flat chunk index has been partitioned into P partitions such
that n > P . In the worst case, all P partitions will have to
queried to deduplicate this file. Our experiments using the
DHT technique have shown that for HDup, with P = 4, for
52% of the files more than 1 partition was queried and for
27% all 4 partitions were queried. For Linux distributions too,
for 50% of the files more than 1 partition was queried and for
12% all 4 partitions were queried. Such a wide query fanout to
deduplicate a file reduces the degree of parallelization – fewer
files can be deduplicated at the same time. Further, such an
infrastructure cannot be used to design a decentralized backup
system where every backup node autonomously manages the
indices and the data. It is not clear which node in the DHT-
like scheme stores the deduplicated file given that the file’s
duplicate chunks may spread across more than one node.
Autonomy of backup nodes is not possible in such a design.
Further, partitioning the flat chunk index does not reduce RAM
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requirements. The total RAM usage remains the same whether
the index is partitioned or not. Because Extreme Binning
only keeps a subset of all the chunk IDs in RAM, its RAM
requirement is much lower than a flat chunk index. This means
that fewer backup nodes will be required by Extreme Binning
than a DHT like scheme to maintain throughput.

D. RAM Usage

Each primary index entry consisted of the representative
chunk ID (20 bytes), the whole file hash (20 bytes), and a
pointer to its corresponding bin. The size of the pointer will
depend on the implementation. For simplicity we add 20 bytes
for this pointer. Then, every record in the primary index is
60 bytes long. With only one backup node, the RAM usage
for Extreme Binning was 54.77 MB for HDup (4.4 TB). Even
with the overheads of the data structure, such as a hash table
used to implement the index, the RAM footprint is small. For
the same data set a flat chunk index would require 4.63 GB.
The ratio of RAM required by the flat chunk index to that
required by Extreme Binning is 86.56:1. For LDup this ratio is
83.70:1, which proves that Extreme Binning provides excellent
RAM economy.

Though the flat chunk index can easily fit in RAM for HDup
and LDup, we must consider what happens when the backed
up data is much larger. Consider the case of a petabyte of
data. If the average file size is 100 kB and the average chunk
size is 4 kB, there will be 10 billion files and 250 billion
chunks. If the deduplication factor is 15.6, as in the case of
HDup, 16 billion of those chunks will be unique, each having
an entry in the flat chunk index. Given that each entry takes up
60 bytes, the total RAM required to hold all of the flat chunk
index will be 895 GB, while for Extreme Binning this will
be only 35.82 GB. For LDup, because of fewer duplicates,
the flat chunk index would need over 4 TB of RAM, while
Extreme Binning would require 167 GB. Even if the flat index
is partitioned, like a DHT, the total RAM requirement will
not change, but, the number of nodes required to hold such a

large index would be very high. Extreme Binning would need
fewer nodes. These numbers prove that by splitting the chunk
index into two tiers, Extreme Binning achieves excellent RAM
economy while maintaining throughput – one disk access for
chunk lookup per file.

VII. RELATED WORK

Two primary approaches have been previously proposed for
handling deduplication at scale: sparse indexing [10] and that
of Bloom filters with caching [9].

Sparse indexing, designed for data streams, chunks the
stream into multiple megabyte segments, which are then
lightly sampled (e.g., once per 256 KB) and the samples are
used to find a few segments that share many chunks. Obtaining
quality deduplication here is crucially dependent on chunk
locality, where each chunk tends to appear together again
with the same chunks. Because our use cases have little or
no file locality sparse indexing would produce unacceptably
poor levels of deduplication for them.

Zhu et al.’s approach [9] always produces perfect dedupli-
cation but relies heavily on inherent data locality for its cache
to be effective to improve throughput. This approach uses
an in-memory Bloom filter [29] and caches index fragments,
where each fragment indexes a set of chunks found together
in the input. The lack of chunk locality renders the caching
ineffectual and each incoming new version of an existing
chunk requires reading an index fragment from disk.

Foundation [11] is a personal digital archival system that
archives nightly snapshots of user’s entire hard disk. By
archiving snapshots or disk images, Foundation preserves all
the dependencies within user data. Our approach is distinct
from Foundation in that Extreme Binning is designed to
service fine grained requests for individual files rather than
nightly snapshots.

However, what sets Extreme Binning decisively apart from
all these approaches is that it is parallelizable. It is not clear
how to parallelize any of these systems in order to obtain better
throughput and scalability.

DEDE [30] is a decentralized deduplication technique de-
signed for SAN clustered file systems that support a virtual-
ization environment via a shared storage substrate. Each host
maintains a write-log that contains the hashes of the blocks
it has written. Periodically, each host queries and updates a
shared index for the hashes in its own write-log to identify
and reclaim duplicate blocks. Deduplication is done out-of-
band so as to minimize its impact on file system performance.
Extreme Binning, on the other hand, is designed for in-line
deduplication and, in a distributed environment the backup
nodes do not need to share any index between them. Rather,
each backup node deduplicates files independently, using its
own primary index and bins only, while still being able to
achieve excellent deduplication.

Chunk-based storage systems detect duplicate data at gran-
ularities that range from entire file, as in EMC’s Centera [31],
down to individual fixed-size disk blocks, as in Venti [7]



and variable-size data chunks as in LBFS [6]. Variable-
width chunking has also been used in the commercial sector,
for example, by Data Domain and Riverbed Technology.
Deep Store [32] is a large-scale archival storage system that
uses three techniques to reduce storage demands: content-
addressable storage [31], delta compression [33], [34] and
chunking [6].

Delta compression with byte-by-byte comparison, instead of
hash based comparison using chunking, has been used for the
design of a similarity based deduplication system [35]. Here,
the incoming data stream is divided into large, 16 MB blocks,
and sampled. The samples are used to identify other, possibly
similar blocks, and a byte-by-byte comparison is conducted to
remove duplicates.

Distributed Hashing is a technique for implementing effi-
cient and scalable indices. Litwin et al. [24] proposed Scalable
Distributed Data Structures based on linear hash tables for
parallel and distributed computing. Distributed Hash Tables
(DHT) have also been widely used in the area of peer-to-peer
systems [36] and large-scale distributed storage systems [37],
[38] to distribute and locate content without having to per-
form exhaustive searches across every node in the system.
Chord [39], Pastry [40] and Tapestry [41] are some of the
DHT implementations used in a distributed environment.

VIII. FUTURE WORK

To achieve high throughput, backup systems need to write
new chunks sequentially to disk. Chunks related to each
other – because they belong to the same file or the same
directory – are not stored together. Due to this, restoration
and retrieval requires a non-trivial number of random disk
seeks. In the worst case, reads require one disk seek per chunk,
along with any additional seeks required to find the location
of the chunk by accessing the appropriate index. When the
retrieval request is for a large set of data, for example, a user’s
home directory, these disk seeks will slow down the retrieve
operation considerably. This is unacceptable, especially when
lost data needs to be restored quickly, as in the case of disaster
recovery, and time is of essence. However, if chunks that
are expected to be retrieved together can be grouped together
while being written to disk, then fewer random seeks will be
required. Our future work will consist of methods that reduce
data fragmentation and disk latencies during restores.

IX. CONCLUSIONS

We have introduced a new method, Extreme Binning,
for scalable and parallel deduplication, which is especially
suited for workloads consisting of individual files with low
locality. Existing approaches which require locality to ensure
reasonable throughput perform poorly with such a workload.
Extreme Binning exploits file similarity instead of locality to
make only one disk access for chunk lookup per file instead
of per chunk, thus alleviating the disk bottleneck problem.
It splits the chunk index into two tiers resulting in a low
RAM footprint that allows the system to maintain throughput
for a larger data set than a flat index scheme. Partitioning

the two tier chunk index and the data chunks is easy and
clean. In a distributed setting, with multiple backup nodes,
there is no sharing of data or index between nodes. Files are
allocated to a single node for deduplication and storage using
a stateless routing algorithm – meaning it is not necessary
to know the contents of the backup nodes while making this
decision. Maximum parallelization can be achieved due to the
one file-one backup node distribution. Backup nodes can be
added to boost throughput and the redistribution of indices and
chunks is a clean operation because there are no dependencies
between the bins or between chunks attached to different bins.
The autonomy of backup nodes makes data management tasks
such as garbage collection, integrity checks, and data restore
requests efficient. The loss of deduplication is small and is
easily compensated by the gains in RAM usage and scalability.
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