
Explicit Polymorphism and CPS Conversion

Robert Harper∗ Mark Lillibridge†

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We study the typing properties of CPS conversion for an ex-
tension ofFω with control operators. Two classes of evalu-
ation strategies are considered, each with call-by-name and
call-by-value variants. Under the “standard” strategies, con-
structor abstractions are values, and constructor applications
can lead to non-trivial control effects. In contrast, the “ML-
like” strategies evaluate beneath constructor abstractions, re-
flecting the usual interpretation of programs in languages
based on implicit polymorphism. Three continuation passing
style sub-languages are considered, one on which the stan-
dard strategies coincide, one on which the ML-like strategies
coincide, and one on which all the strategies coincide. Com-
positional, type-preserving CPS transformation algorithms
are given for the standard strategies, resulting in terms on
which all evaluation strategies coincide. This has as a corol-
lary the soundness and termination of well-typed programs
under the standard evaluation strategies. A similar result is
obtained for the ML-like call-by-name strategy. In contrast,
such results are obtained for the call-by value ML-like strat-
egy only for a restricted sub-language in which constructor
abstractions are limited to values.

∗This work was sponsored by the Defense Advanced Research Projects
Agency, CSTO, under the title “The Fox Project: Advanced Devel-
opment of Systems Software”, ARPA Order No. 8313, issued by
ESD/AVS under Contract No. F19628–91–C–0168. Electronic mail ad-
dress:rwh@cs.cmu.edu.

†Supported by a National Science Foundation Graduate Fellowship.
Electronic mail address:mdl@cs.cmu.edu.

0

1 Introduction

Among the many advances in the theory and practice of
programming language design, the concepts of polymor-
phism [14, 28, 39] and continuation-passing [38, 41, 43] are
of particular interest. The use of polymorphism in a practical
programming language was first explored in ML [15, 28, 29].
This style of polymorphism, calledimplicit polymorphism,
is based on the idea that programs are type-free, with types
interpreted as predicates expressing properties of programs
under evaluation. Numerous extensions of these ideas have
been explored in the literature ([7, 25, 31, 45], to name just
a few).

Although implicit polymorphism is appealingly simple
and natural, it does not scale well to more sophisticated lan-
guage features such as modularity and abstract types [20].
Recent languages, notably Quest [4] and LEAP [35], are
based instead on the notion ofexplicit polymorphism intro-
duced by Girard and Reynolds [39]. In these languages,
types are an intrinsic part of the programming notation;
in particular, polymorphic abstraction and application are
expression-forming operations. Some of the convenience
of implicit polymorphism may be restored by allowing the
omission of certain forms of type information, provided that
it can be unambiguously recovered by atype reconstruction
algorithm [4, 26, 34].

A type discipline is primarily a means of enforcing lev-
els of abstraction [40], and as such is primarily concerned
with the static structure and properties of programs. Mat-
ters of control are elegantly addressed using the method of
continuations. The semantics of control operations may be
concisely expressed using continuations [9, 36, 38, 42, 43].
Important control constructs such as co-routines [21] and
user-level threads [5, 37] can be defined using primitives
for “reifying” continuations. Conversion into “continuation-
passing style” (CPS) is a useful compilation technique for
higher-order functional languages [3, 2, 23, 41]. Continu-
ations are central to eliciting the computational content of
proofs in classical logic [16, 17, 32] and provide a computa-
tional interpretation of classical linear logic [12].

The addition of continuation primitives to polymorphic
languages has not, however, been an unalloyed success. In
particular, a very natural typing discipline for first-class con-
tinuations in Standard ML has proved to be unsound [18, 19].
Since the semantics of first-class continuations may be ex-
pressed by conversion into continuation-passing style, it is
natural to investigate their typing properties by considering
the relation between the type of a term and the type of its
CPS transform. Work in this area was initiated by Meyer
and Wand for a call-by-value interpretation of the simply-
typedλ-calculus [27], and extended to continuation-passing
primitives by Griffin [16] and Duba,et. al. [8]. In earlier
work, the authors extended these analyses to implicit poly-
morphism, and established some limitative results [19].

In this paper, we conduct a systematic investigation of
the typing properties of CPS conversion forFω+control,
the higher-order polymorphicλ-calculus of Girard and
Reynolds [14, 39] extended with the control primitivescallcc
andabort . Extensions and variations ofFω lie at the core of
Quest [4] and LEAP [35], and it is the underlying program-
ming language of the Calculus of Constructions [6, 33]. We
extendFω with control primitives in order to illustrate the
role of “impure” programming language features in the anal-
ysis of typing properties of realistic programming languages.
(Similar issues and trade-offs arise with mutable data struc-
tures (see Tofte [44]) and exceptions [46]. See Leroy [24]
for related discussion.)

We consider two classes of evaluation strategies for
Fω+control, each with a call-by-value and a call-by-name
variant. Under the “standard” strategies, type abstractions
are values and type applications are significant evaluation
steps. These strategies are compatible with extensions to the
language involving primitive operations that are sensitive to
type information —e.g., storage allocation operations that
determine the size of the allocation based on the type of the
argument. The “ML-like” strategies are inspired by implicit
polymorphism. Under these strategies, evaluation proceeds
beneath type abstractions. This limits the ability of primi-
tive operations to use types because types are no longer al-
ways ground types. (In particular, they may contain free type
variables.) The full language enjoys the subject reduction
property for complete programs evaluated under the standard
strategies and the ML-like call-by-name strategy, but only a
restricted language enjoys this property when interpreted un-
der the ML-like call-by-value strategy.

The focus of our study is on the typing properties of
CPS conversion ofFω+control, following the seminal work
of Plotkin [36] (extended by Felleisen,et. al. [10, 9]) and
Meyer and Wand [27] (extended by Griffin [16] and Duba,
et. al. [8, 18]). First, we isolate several “continuation-passing
style” sub-languages ofFω. The “standard” CPS language is
the largest sub-language ofFω on which the by-value and
by-name variants of the standard strategies coincide, and
the “ML-like” CPS language is the largest sub-language on

which the ML-like strategies coincide. The ML-like CPS
form is a proper subset of the standard CPS form, and hence
the two variants of the standard strategy and the two vari-
ants of the ML-like strategy coincide with each other on
terms in ML-like CPS form. However, the standard call-
by-value (call-by-name) and ML-like call-by-value (call-by-
name) strategies donot coincide on terms in ML-like CPS
form. We define a “strict” CPS form on which all four strate-
gies coincide.

With this in mind, we define a CPS conversion algorithm
for each of the standard strategies that preserves typing in
a generalization of the Meyer-Wand sense, and which yields
terms in strict CPS form. It turns out that we can use the stan-
dard call-by-name algorithm to handle the ML-like call-by-
name strategy case as well. Such a result can be achieved for
the ML-like call-by-value strategy only if we restrict atten-
tion to a restrictionF−

ω +control in which type abstractions
are limited to values. On this fragment, the ML-like and
standard strategies coincide, and hence the standard CPS al-
gorithms may be used for the ML-like interpretations. How-
ever, the standard CPS conversion algorithms do not ade-
quately reflect the “spirit” of the ML-like strategies, and we
therefore consider variant transforms that do embody this
“spirit” but which yield terms in a “relaxed” CPS form in-
troduced solely for this purpose.

2 The Language Fω+control

The languageFω+control is the extension of the “pure”Fω

language by two primitive control operators,callccA(−) and
abortA(−). By pure we mean that the language has no
effect producing terms where an effect is something other
than a simple value computation. Effects include side ef-
fects (i.e., assignment), non-termination, and non-local con-
trol changes. For the purposes of this paper, when we say
something is pure, we mean it does not contain any control
operators.

Definition 2.1 (Syntax)

Kinds K ::= Ω | K1 ⇒ K2

Constructors A ::= α | u | A1 → A2 | ∀u:K.A |
λu:K.A | A1 A2

Terms M ::= x | λx:A.M | M1 M2 |
Λu:K.M | M{A} |
callccA(M) | abortA(M)

Constr. Contexts ∆ ::= ∅ | ∆, u:K
Term Contexts Γ ::= ∅ | Γ, x:A

The meta-variableu ranges overconstructor variables,
and the meta-variablex ranges overterm variables. The con-
structorα is a distinguished base type, representing the type
of “answers”. We makeabort andcallcc primitives taking
one type and term argument each as a technical device to

simplify the direct semantics. The more usual definitions of
abort and callcc as special constants can be recovered by
using the following definitions:

abort = Λu:Ω.λx:α. abortu(x)
callcc = Λu:Ω.λx:((∀v:Ω.u→v)→u). callccu(x)

Note that due to the greater expressiveness of theFω type
system, it is not necessary to introduce athrow operator or a
special type of continuations as it is in ML [8].
The typing rules forFω+control appear in the appendix.

3 Operational Semantics for
Fω+control

In this section, we introduce the two main evaluation strate-
gies forFω+control, each with a call-by-value and a call-by-
name variant.

The “standard” strategies treat constructor abstractions as
values and constructor applications as significant compu-
tation steps. Standard strategies in this sense are used in
Quest [4] and LEAP [35], and are directly compatible with
extensions that make significant uses of types at run time
(for example, “dynamic” types [1, 4]). Since polymorphic
expressions are kept distinct from their instances, the anoma-
lies that arise in implicitly polymorphic languages in the
presence of references [45] and control operators [18] do not
occur.

The “ML-like” strategies are inspired by the operational
semantics of ML [29]. Evaluation proceeds beneath con-
structor abstractions, leading to a once-for-all-instances eval-
uation of polymorphic terms. Constructor application is re-
tained as a computation step, but its force is significantly at-
tenuated by the fact that type expressions may have free type
variables in them, precluding primitives that inductively an-
alyze their type arguments. The superficial efficiency im-
provement gained by evaluating beneath type abstractions
comes at considerable cost since it is incompatible with ex-
tensions such as mutable data structures and control opera-
tors [45, 18, 19].

3.1 Notation

The definitions of these strategies make use of Plotkin’s no-
tion of a syntactic value [36] and Felleisen’s notion of an
evaluation context [11], chosen suitably for each situation.
To specify a strategy using this method, we first give a gram-
mar which defines three syntactic categories:V , a set ofval-
ues, R, a set ofredices, andE, a set ofevaluation contexts.
As an example, the grammar used to specify a call-by-value
strategy for the simply-typed fragment ofFω is as follows:

V alues V ::= x | λx:A.M
Redices R ::= (λx:A.M)V
Evaluation Contexts E ::= [] | E M | V E

The expression[] is called a “hole”; an evaluation context
has exactly one occurrence of a hole. IfE is an evaluation
context, we writeE[M] for the result of “filling the hole” in
E with M , possibly incurring capture of free variables inM .

A program is a closed termP of type α. Unless we
say otherwise, programs and terms are drawn from the full
Fω+control language and typed usingFω+control. Pure
programs and terms can be considered to be drawn from and
typed usingFω.

We will arrange things so that a programP can only be
represented in at most one way asE[R] whereE is an eval-
uation context andR is a redex. IfP can be so represented,
thenE is said to be theprogram context of P , while R is
said to be thecurrent redex of P . If P can not be so repre-
sented, it is considered to be in normal form for the strategy.
In order to complete the specification of a strategy, we must
specify how to reduce (by one step) each possible kind of re-
dex given its surrounding context. For the example strategy,
the reduction rules are as follows:

E[(λx:A.M)V] ↪→ E[[V/x]M]

It should be noted that in all the strategies we consider, val-
ues are in normal form for that strategy. We say that a pro-
gramP evaluates to a valueV iff P ↪→∗ V , i.e., iff V is the
terminus of a maximal one-step evaluation sequence starting
atP .

3.2 Standard Strategies

We consider two “standard” evaluation strategies,call-by-
value andcall-by-name. In both cases constructor abstrac-
tions are values, and constructors applications are significant
computation steps. The two variants differ from one another
in the treatment of ordinary applications.

3.2.1 Call-By-Value (CBV) Strategy

The standard call-by-value strategy is defined as follows:

V ::= x | λx:A.M | Λu:K.M
R ::= (λx:A.M)V | (Λu:K.M){A} |

abortA(M) | callccA(M)
E ::= [] | E M | V E | E{A}

E[(λx:A.M)V] ↪→cbv E[[V/x]M]
E[(Λu:K.M){A}] ↪→cbv E[[A/u]M]

E[abortA(M)] ↪→cbv M
E[callccA(M)] ↪→cbv

E[M (Λu:Ω.λx:A. abortu(E[x]))] (u /∈ FTV (A))

Theorem 3.1 (Decomposition) If M is a closed, well-typed
term of type A, then either M is a CBV value, or else there
exists a unique CBV evaluation context E, a unique CBV
redex R, and a type expression B such that

1. M = E[R];

2. Fω+control � ∅; ∅ � R : B;

3. Fω+control � ∅;x:B � E[x] : A.

Theorem 3.2 (Subject Reduction) If P is a program, and
P ↪→cbv Q, then Q is a program.

Proof: If P ↪→cbv Q, then by the decomposition theorem
P = E[R] for some CBV evaluation contextE and CBV
redexR such thatFω+control � ∅;x:B � E[x] : α and
Fω+control � ∅; ∅ � R : B for some typeB. Using this, it
is straightforward to verify that each of the evaluation rules
preserves typing. �

It follows from these two theorems that a terminating CBV
evaluation sequence starting from a program terminates with
a CBV value of typeα — CBV evaluation does not “get
stuck”. The restriction of CBV evaluation to pure programs
is a particularβ-reduction strategy. It follows from the strong
normalization property ofFω [14, 13] that CBV evaluation of
pure programs terminates. Termination of CBV evaluation
for full Fω+control will be established in Section 5. The
following property of CBV evaluation will be important to
that argument.

Lemma 3.3 Any infinite CBV evaluation sequence starting
from a program contains infinitely many β-reduction steps.

Proof: If E[CA(M)] ↪→cbv E′[C′
A′(M ′)] whereC, C′ ∈

{abort , callcc} andE[CA(M)] is a program thenM ′ is a
proper subterm ofM . �

3.2.2 Call-By-Name (CBN) Strategy

The standard call-by-name strategy is defined as follows:

V ::= λx:A.M | Λu:K.M
R ::= (λx:A.M1)M2 | (Λu:K.M){A} |

abortA(M) | callccA(M)
E ::= [] | E M | E{A}

E[(λx:A.M1)M2] ↪→cbn E[[M2/x]M1]
E[(Λu:K.M){A}] ↪→cbn E[[A/u]M]

E[abortA(M)] ↪→cbn M
E[callccA(M)] ↪→cbn

E[M (Λu:Ω.λx:A. abortu(E[x]))] (u /∈ FTV (A))

The decomposition and subject reduction theorems (stated
above for the CBV strategy) can be proved in a similar way
for the call-by-name strategy case. The analysis of termi-
nation is identical. Once again, an infinite CBN evaluation
sequence must contain infinitely manyβ steps.

3.3 ML-like Strategies

An evaluation strategy is said to beML-like if it evaluates
under constructor abstractions. We shall consider two ML-
like strategies, a call-by-value variant, designatedML-CBV,
and a call-by-name variant, designatedML-CBN.

3.3.1 ML-CBV Strategy

The ML-like call-by-value strategy is defined as follows:

V ::= x | λx:A.M | Λu:K.V
R ::= (λx:A.M)V | (Λu:K.V){A} |

abortA(M) | callccA(M)
E ::= [] | E M | V E | Λu:K.E | E{A}

E[(λx:A.M)V] ↪→ml−cbv E[[V/x]M]
E[(Λu:K.V){A}] ↪→ml−cbv E[[A/u]V]

E[abortA(M)] ↪→ml−cbv M
E[callccA(M)] ↪→ml−cbv

E[M (Λu:Ω.λx:A. abortu(E[x]))] (u /∈ FTV (A))

Notice that a constructor abstraction is a ML-CBV value
only if its body is a ML-CBV value and that ML-CBV eval-
uation contexts may extend within the scopes of constructor
abstractions. The decomposition property for the ML-CBV
strategy is somewhat more complex than that for the stan-
dard CBV strategy due to the possibility of evaluation under
constructor abstractions.

Theorem 3.4 (Decomposition) If M is a well-typed, closed
term of type A, then either M is a ML-CBV value, or there
exists a unique ML-CBV evaluation context E, a unique ML-
CBV redex R, a constructor context ∆, and a type expression
B such that

1. M = E[R];

2. Fω+control � ∆; ∅ � R : B;

3. Fω+control � ∅; ∅ � E[N] : A for any term N such
that Fω+control � ∆; ∅ � N : B.

Notice that the typing condition onE is strictly weaker than
the conditionFω+control � ∆; x:B � E[x] : A.

Theorem 3.5 (Subject Reduction for Fω) If P is a pure
program and P ↪→ml−cbv Q, then Q is a pure program.

Proof: Follows from the fact that the restriction of the ML-
CBV strategy to terms ofFω is a particularβ-reduction strat-
egy and from subject reduction forFω. �

Similarly, sinceFω is strongly normalizing, ML-CBV eval-
uation on pure terms must terminate; by the decomposition
theorem, the terminus must be a ML-CBV value of typeα.

The subject reduction property cannot be extended to
full Fω+control, for essentially the same reasons that type
soundness fails for the extension of ML withcallcc [8,

18]. To see where the problem arises in the present set-
ting, let P be a program of the formE[callccA(M)],
where E is a ML-CBV evaluation context of the form
E′[Λt:Ω.[]], and consider the evaluation stepP ↪→ml−cbv

E[M (Λu.λx:A. abortu(E[x]))]. To prove that typing is
preserved, it suffices to show that∆, t:Ω, u:Ω; ∅ � E[x] : A
(for some constructor context∆). But this is strictly stronger
than the condition onE given by the decomposition theo-
rem, as remarked above. This observation may be turned
into a counterexample to subject reduction by a simple adap-
tation of the argument given elsewhere by the authors [19],
taking advantage of the call-by-value strategy to simulate the
“sequential” semantics of the MLlet construct.

A simple way to avoid the counterexample is to rule out
programs with non-trivial evaluation steps lying within the
scope of a constructor abstraction. LetF−

ω +control denote
the restriction ofFω+control in which terms of the form
Λu:K.M whereM is not a ML-CBV value are excluded.
This suffices to recover subject reduction in the presence of
the control operators.

Theorem 3.6 (Subject Reduction for F−
ω +control) If P is

a F−
ω +control program, and P ↪→ml−cbv Q, then Q is a

F−
ω +control program.

Careful inspection reveals that the CBV and ML-CBV
strategies coincide onF−

ω +control programs. Consequently,
termination of ML-CBV evaluation onF−

ω +control pro-
grams follows from termination of CBV evaluation on pro-
grams. Moreover, any CPS transform for CBV will suffice
as a CPS transform for ML-CBVF−

ω +control programs.
The fact that the two strategies coincide onF−

ω +control
is unfortunate: we have simply eliminated the parts of the
language on which CBV and ML-CBV differ so as to ensure
soundness. However, it does not seem possible to give a CPS
transform for the pure language under ML-CBV [19]. This
would seem to indicate that CPS transforms alone are not
sufficient to characterize the difference between CBV and
ML-CBV.

3.3.2 ML-CBN Strategy

The ML-like call-by-name strategy is defined as follows:

V ::= λx:A.M | Λu:K.V
R ::= (λx:A.M1)M2 | (Λu:K.V){A} |

abortA(M) | callccA(M)
E ::= [] | E M | Λu:K.E | E{A}

E[(λx:A.M1)M2] ↪→ml−cbn E[[M2/x]M1]
E[(Λu:K.V){A}] ↪→ml−cbn E[[A/u]V]

E[abortA(M)] ↪→ml−cbn M
E[callccA(M)] ↪→ml−cbn

E[M (Λu:Ω.λx:A. abortu(E[x]))] (u /∈ FTV (A))

As with ML-CBV, evaluation may proceed under constructor
abstractions resulting in a similarly complex decomposition

theorem. Although we can easily show subject reduction and
termination for the pure language, this prevents us in much
the same way as in the ML-CBV case from obtaining subject
reduction in the presence of control operators. We could, as
before, simply consider the restricted languageF−

ω +control
but there is a better alternative in the call-by-name case.

Careful examination of ML-CBN evaluation contexts re-
veals that whenever we evaluate under a constructor abstrac-
tion in a well-typed, closed term of monomorphic type, that
abstraction is ready to be instantiated. I.e., there is a se-
quence of beta-reduction steps, each of which instantiates
one constructor abstraction, which will result in that abstrac-
tion being instantiated. Thus, if we alter our evaluation strat-
egy so that we instantiate constructor abstractions whenever
possible before evaluating inside them, we will never evalu-
ate inside a constructor abstraction when dealing with a well-
typed, closed term of monomorphic type. The new strategy,
which we will call ML-CBN′ is defined as follows:

V ::= λx:A.M | Λu:K.V
R ::= (λx:A.M1)M2 | (Λu:K.M){A} |

abortA(M) | callccA(M)
E ::= []{A1} . . . {An} | (E M){A1} . . . {An} | Λu:K.E

E[(λx:A.M1)M2] ↪→ml−cbn′ E[[M2/x]M1]
E[(Λu:K.M){A}] ↪→ml−cbn′ E[[A/u]M]

E[abortA(M)] ↪→ml−cbn′ M
E[callccA(M)] ↪→ml−cbn′

E[M (Λu:Ω.λx:A. abortu(E[x]))] (u /∈ FTV (A))

Note that the only difference between ML-CBN and ML-
CBN′ is that they do constructor abstraction instantiations
at different times. Although this effects subject reduction,
it does not really alter the meaning of programs. We will
make this explicit in the next section where we show that the
erasures of these two strategies are the same. Unlike for ML-
CBN, subject reduction holds for ML-CBN′. (A decomposi-
tion theorem similar to that of the CBV case can be obtained
by restricting attention to monomorphic terms.)

Surprisingly, ML-CBN′ and CBN coincide on monomor-
phically typed terms in the sense that both strategies make
precisely the same reductions. (The case of polymorphic
terms is not very important since programs must be restricted
to be of monomorphic type in order to add in the control
operators.1) Accordingly, we will not investigate the ML-
CBN(′) strategy further, considering it to be the same as the
CBN one. (In particular, any CPS transform for CBN will
suffice as a CPS transform for ML-CBN programs.)

3.3.3 Relation of ML-like Strategies to ML

The ML-like strategies may be related to their untyped coun-
terparts by way of the following notion of theerasure M◦ of

1If we restricted ourselves to the pure language, we could allow pro-
grams to have polymorphic type. However, giving a CPS transform for this
case is problematic for much the same reasons as in the ML-CBV case.

a termM :

x◦ = x
(λx:A.M)◦ = λx.M◦ (M N)◦ = M◦ N◦

(Λu:K.M)◦ = M◦ (M{A})◦ = M◦

(abortA(M))◦ = abort(M◦)
(callccA(M))◦ = callcc(M◦)

Erasure is extended to evaluation contexts by defining[]◦ =
[].

Theorem 3.7 (Simulation) Let M be a well-typed closed
term.

1. if M ↪→ml−cbv N , then M◦ ↪→0,1
ucbv N◦.

2. if M ↪→ml−cbn N (M ↪→ml−cbn′ N), then M◦ ↪→0,1
ucbn

N◦.

3. if M◦ ↪→ucbv N1, then ∃N2 such that M ↪→∗
ml−cbv N2

and N◦
2 = N1.

4. if M◦ ↪→ucbn N1, then ∃N2 such that M ↪→∗
ml−cbn

N2 (M ↪→∗
ml−cbn′ N2) and N◦

2 = N1.

Theorem 3.8 (Equivalence) Let P1 and P2 be programs
such that P ◦

1 = P ◦
2 . Then if P1 ↪→∗

ml−cbn Q1, and
P2 ↪→∗

ml−cbn′ Q2 then ∃R1, R2 such that Q1 ↪→∗
ml−cbn R1,

Q2 ↪→∗
ml−cbn′ R2, and R◦

1 = R◦
2.

4 Transform Target Languages

In the untyped case, the target language of a CPS transform
is a restricted subset of the original language without any
control operators. Terms in this restricted subset are said
to be in untyped CPS form. This subset has the property
that the (untyped) call-by-value and call-by-name evaluation
strategies coincide. That is, exactly the sameβ-reductions
occur regardless of which strategy is used. This subset also
has the property that it is closed under call-by-value and call-
by-name reductions.

4.1 Standard CPS Form

An analogue of untyped CPS form, which we will callstan-
dard CPS form, exists for the standard strategies. The gram-
mar for this restricted subset ofFω is as follows:

Standard CPS values W ::= x | λx:A.N | Λu:K.N
Standard CPS terms N ::= W | N W | N{A}

Note that terms in standard CPS form may not containcallcc
or abort .

Lemma 4.1 If N (W2) is a standard CPS term (standard
CPS value) then [W1/x]N ([W2/x]W1) is also a standard
CPS term (standard CPS value).

Theorem 4.2 (Standard CPS form properties)

1. Standard CPS form is closed under CBV and CBN re-
ductions.

2. If N1 is a standard CPS term then N1 ↪→cbv N2 iff
N1 ↪→cbn N2.

3. CBV or CBN evaluation of well-typed, closed standard
CPS terms terminates in a standard CPS value.

4.2 ML-CPS Form

ML-CBV and ML-CBN do not coincide on standard CPS
terms. To see this, consider the following standard CPS term:

(λx:(∀u:K.A). x) (Λu:K.(λy:A.y)c)

ML-CBV will do the innermost redex first while ML-CBN
will do the outermost one first. An analogue of untyped CPS
form for the ML-like strategies, which we callML-CPS form
is defined as follows:

ML-CPS values X ::= x | λx:A.O | Λu:K.X
ML-CPS terms O ::= X | O X | Λu:K.O | O{A}

As in the standard CPS form case, it can be shown that
ML-CBV and ML-CBN coincide on ML-CPS terms and that
ML-CPS is closed under ML-CBV and ML-CBN reductions.
Note that ifO is an ML-CPS term, thenO◦ is an untyped
CPS term, and ifX is an ML-CPS value, thenX◦ is an un-
typed CPS value.

It is easy to see that every ML-CPS term is a standard CPS
term, and that every ML-CPS value is a standard CPS value.
A little checking shows that ML-CPS form is closed under
CBV and CBN reductions so we have that CBV and CBN
coincide on ML-CPS terms as well.

Theorem 4.3 (ML-CPS form properties)

1. ML-CPS form is closed under CBV, CBN, ML-CBV, and
ML-CBN reductions.

2. If O1 is a ML-CPS term then O1 ↪→ml−cbv O2 iff
O1 ↪→ml−cbn O2.

3. If O1 is a ML-CPS term then O1 ↪→cbv O2 iff O1 ↪→cbn

O2.

4. CBV, CBN, ML-CBV, or ML-CBN evaluation of well-
typed, closed ML-CPS terms terminates in a ML-CPS
value.

4.3 Strict CPS Form

Neither of the pairs CBV/ML-CBV nor CBN/ML-CBN co-
incide on terms in ML-CPS form. To see this, consider the
ML-CPS termΛu:K.(λx:A.x)c. This term is irreducible un-
der CBV and CBN (since constructor abstractions are val-
ues), but is reducible under both ML-CBV and ML-CBN

(since evaluation proceeds under constructor abstraction).
By further restricting ML-CPS (in particular, by banning all
non-value constructor abstractions), we may obtain a subset
of ML-CPS calledstrict CPS form, on which all four strate-
gies coincide:

Strict CPS values Y ::= x | λx:A.Q | Λu:K.Y
Strict CPS terms Q ::= Y | Q Y | Q{A}

Theorem 4.4 (Strict CPS form properties)

1. Strict CPS form is closed under CBV, CBN, ML-CBV,
and ML-CBN reductions.

2. If N1 is a strict CPS term then if N1 ↪→ N2 under one of
CBV, CBN, ML-CBV, or ML-CBN, then it does so under
all of them.

3. CBV, CBN, ML-CBV, or ML-CBN evaluation of well-
typed, closed strict CPS terms terminates in a strict CPS
value.

4.4 Relaxed ML-CPS Form

As we shall see in the next section, the CPS conversion al-
gorithms for the standard strategies yield terms in strict CPS
form, and consequently any of the four evaluation methods
may be used on the converted terms. As was explained in
section 3, these algorithms can be used as CPS conversion
algorithms for the ML-like strategies on certain restricted
subsets ofFω+control.

However, it is enlightening to consider alternate algo-
rithms specifically tailored to the ML-like strategies. As we
shall see below, these transforms yield terms of the form
k (x {A}), wherek andx are variables, which is not in ML-
CPS form. Inrelaxed ML-CPS form such applications are
allowed, reflecting the philosophy that constructor applica-
tions are insignificant at run time. As with ML-CPS, erased
relaxed ML-CPS terms (values) are untyped CPS terms (val-
ues). Relaxed ML-CPS form is defined as follows:

Relaxed ML-CPS values Z ::= x | λx:A.S | Λu:K.Z | Z{A}
Relaxed ML-CPS terms S ::= Z | S Z | Λu:K.S | S{A}

The set of terms in relaxed ML-CPS form is closed under
ML-CBV and ML-CBN reduction. However, ML-CBV and
ML-CBN do not coincide on this subset because of terms
such as(λx:A.x)((Λu:K.Z)A) in which there is a construc-
tor application in the argument position that would be re-
duced under ML-CBV, but not under ML-CBN. Their era-
sures do coincide, however, in the same sense that ML-CBN
and ML-CBN′ coincided.

Theorem 4.5 (Equivalence) Let P1 and P2 be relaxed ML-
CPS programs such that P ◦

1 = P ◦
2 . Then if P1 ↪→∗

ml−cbv

Q1, and P2 ↪→∗
ml−cbn Q2 then ∃R1, R2 such that

Q1 ↪→∗
ml−cbv R1, Q2 ↪→∗

ml−cbn R2, and R◦
1 = R◦

2.

If we assume that constructorβ-reductions do no work
and have no side effects then ML-CBV and ML-CBN pro-
duce the same results on programs in this subset. This is
a reasonable assumption for ML-like strategies because the
normal implementation for such strategies is to erase then
apply the untyped strategy.

5 Conversion to
Continuation-Passing Style

In this section, we consider the conversion of terms of
Fω+control into continuation-passing style for each of the
evaluation strategies. We present CPS transforms for the
two standard strategies for the fullFω+control language. As
discussed in section 3, the CBV CPS transform can also be
used as a ML-CBV CPS transform on the restricted subset
F−

ω +control and the CBN CPS transform can be used as
a ML-CBN′ transform on monomorphic terms. Producing
ML-like transforms for larger subsets ofFω+control than
these is problematic.

Although the standard transforms can be used to transform
terms under the ML-like strategies, they are somewhat unsat-
isfactory in that they do not fully capture the essence of the
ML-like strategies, namely that constructor applications are
not significant computation steps. We consider two more sat-
isfactory alternative ML-like CPS transforms which do em-
body this fact at the cost of being limited to terms of the
F−

ω +control language.

5.1 Transformation of Constructors

There are four constructor transformations, corresponding to
the four evaluation strategies introduced in section 3. The
transformations differ only in the treatment of the function
types (call-by-name and call-by-value variants) and in the
treatment of quantified types (standard and ML-like vari-
ants).

Definition 5.1 (Constructor Transforms)

|A| = (A∗→α)→α

α∗ = α
u∗ = u

Function types, call-by-value:
(A1→A2)∗ = A∗

1→|A2|
Function types, call-by-name:
(A1→A2)∗ = |A1|→|A2|

Quantified types, standard interpretation:
(∀u:K.A)∗ = ∀u:K.|A|
Quantified types, ML-like interpretation:
(∀u:K.A)∗ = ∀u:K.A∗

(λu:K.A)∗ = λu:K.A∗

(A1 A2)∗ = A∗
1A

∗
2

The constructor transforms are extended to contextsΓ by
definingΓ∗(x) = A∗ and |Γ|(x) = |A| wheneverΓ(x) =
A. The following properties apply to all four variants of the
constructor transformation.

Theorem 5.2 (Constructor Well-formedness Preservation)

1. If Fω � ∆ � A : K, then Fω � ∆ � A∗ : K.

2. If Fω � ∆ � A : Ω, then Fω � ∆ � |A| : Ω.

Theorem 5.3 (Constructor Equality Preservation)

1. If Fω � ∆ � A1 = A2 : K, then Fω � ∆ � A∗
1 = A∗

2 :
K.

2. If Fω � ∆ � A1 = A2 : Ω, then Fω � ∆ � |A1| =
|A2| : Ω.

Theorem 5.4 (Compositionality)
([A1/u]A2)∗ = [A∗

1/u]A∗
2.

5.2 Notation

In addition to the transforms for constructors given above,
each CPS transform has a transform for values,(−)∗, and a
transform for terms,| − |. Keep in mind that the set of val-
ues varies from strategy to strategy. As a notational conve-
nience, we drop the identifying subscripts on transform op-
erators when refering to the current transform being defined.
As a proof tool, we will need to introduce an optimized ver-
sion of the transform we are defining. We will denote the op-
timized value transform using(−)� and the optimized term
transform relative to continuationY by |−|Y to prevent con-
fusion with the non-optimized transform.

The CPS transforms are defined by induction on typing
derivations inFω+control, yielding terms in a suitable CPS
form. The typing rules ofFω+control are “almost” syntax-
directed — any two typing derivations for a given term and
context differ only in the use of the type equality rule. Con-
sequently, since our transforms ignore the type equality rule,
they are coherent in the sense that ifFω+control � ∆; Γ �
M : A, andFω+control � ∆; Γ � M : A′, then the trans-
forms determined by each of these typing derivations are
equivalent up to constructor equality. Since the evaluation
rules forFω+control are independent of constructors, we are
justified in ignoring this distinction, and simply write|M | for
the CPS transform obtained by a canonical choice of typing
derivation forM .

New variables introduced by the transform are assumed
to be chosen so as to avoid capture. In cases where more
than one clause of the transform applies (this only occurs in
the optimized versions), the first one listed is to be chosen.
Where clear, we have omitted subderivations and the details
of how recusion is done on the type derivation of the term.

5.3 Standard CPS Transforms

5.3.1 Call-by-Value

The definition of the CBV CPS transform is given in Table 1.

Theorem 5.5 (CBV CPS Typing) If Fω+control � ∆; Γ �
M : A, then |M | exists and is a strict CPS value such that
Fω � ∆; Γ∗ � |M | : |A|. If M is a CBV value, then M∗

exists and is a strict CPS value such that Fω � ∆; Γ∗ � M∗ :
A∗.

In the following theorem we write|P |V for the call-
by-value CPS transform ofP applied to the continuation
V with so-called “administrative redices” (in the sense of
Plotkin [36]) eliminated.2

Theorem 5.6 (CBV Simulation) If P is a program and
P ↪→cbv Q, then |P |λx:α.x ↪→∗

β |Q|λx:α.x. Moreover, each
β-step induces at least one β-step on the converted form.

Theorem 5.7 For any program P ,

1. There exists a unique CBV value V such that P ↪→∗
cbv

V .

2. If P ↪→∗
cbv V then |P | (λx:α.x) ↪→∗

β V ′ where V ′ is
such that V ∗ ↪→∗

β V ′.

2The proofs of this and subsequent simulation theorems are interesting
(particularly in the presence of control operators), but rather involved. A
more complete account will be given in the full paper.

|∆; Γ � V : A| = λk:A∗→α. k V ∗

|∆; Γ � M1 M2 : A| = λk:A∗→α. |M1| (λx1:(A→A2)
∗.|M2| (λx2:A

∗
2.x1 x2 k))

where ∆; Γ � M1 : A2→A and ∆; Γ � M2 : A2

|∆; Γ � M {A1} : [A1/u]A2| = λk:([A1/u]A2)
∗→α. |M | (λx:(∀u:K1.A2)

∗.x{A∗
1} k)

|∆; Γ � abortA(M) : A| = λk:α∗→α. |M | (λm:α∗.m)

|∆; Γ � callccA(M) : A| = λk:A∗→α. |M | (λm:((∀u:Ω.A→u)→A)∗.
m (Λu:Ω.λl:(A→u)∗→α.l(λx:A∗.λk′:u∗→α.k x)) k)

|∆; Γ � M : A′| = |M |, where ∆; Γ � M : A and ∆ � A = A′ : Ω

(∆; Γ � x : A)∗ = x
(∆; Γ � λx:A.M : A→A′)∗ = λx:A∗.|M |

(∆; Γ � Λu:K.M : ∀u:K.A)∗ = Λu:K.|M |

(∆; Γ � V : A′)∗ = V ∗, where ∆; Γ � V : A and ∆ � A = A′ : Ω

Table 1: CBV CPS Transform forFω+control

|∆; Γ � x : A| = x

|∆; Γ � M1 M2 : A| = λk:A∗→α.|M1| (λx1:(A1→A2)
∗.x1 |M2| k)

where ∆; Γ � M1 : A2→A and ∆; Γ � M2 : A2

|∆; Γ � callccA(M) : A| = λk:A∗→α. |M | (λm:((∀u:Ω.A→u)→A)∗.m Y k), where
Y = λl:(∀u:Ω.A→u)∗→α.l (Λu:Ω.λl:(A→u)∗→α.l (λx:|A|.λk′:u∗→α.x k))

(∆; Γ � λx:A.M : A→A′)∗ = λx:|A|.|M |

Table 2: CBN CPS Transform forFω+control (Selected Clauses)

5.3.2 Call-by-Name

The standard call-by-name semantics also admits a conver-
sion into CPS sharing essentially the same properties as are
enjoyed by the standard call-by-value transform. We have
only to switch to the call-by-name variant of the construc-
tor transform and modify the CBV transform by replacing
the variable, application, andcallcc clauses by the clauses in
Table 2. Note that in call-by-name variables are no longer
considered values.

Theorem 5.8 (CBN CPS Typing) If Fω+control � ∆; Γ �
M : A, then |M | exists and is a strict CPS value such that
Fω � ∆; |Γ| � |M | : |A|. If M is a CBN value, then M∗

exists and is a strict CPS value such that Fω � ∆; |Γ| �
M∗ : A∗.

Theorem 5.9 Let P be a program.

1. There exists a unique CBN value V such that P ↪→∗
cbn

V .

2. If P ↪→∗
cbn V then | P | (λx:α.x) ↪→∗

β V ′ where V ′ is
such that V ∗ ↪→∗

β V ′.

5.4 Alternative ML-like CPS Transforms

The constructor transforms for the standard strategies are
based on the definition(∀u:K.A)∗ = ∀u:K.|A|, expressing
the idea that constructor applications are “serious” compu-
tations (in the sense of Reynolds [38]), and hence require
a continuation. However, for terms ofF−

ω +control there
are no such non-trivial computations (the continuation is al-
ways immediately invoked with a value), and hence we may
contemplate eliminating the continuation argument entirely.
This would make constructor application a trivial computa-
tion step, resulting in a far more ML-like transform. This
suggests the alternative definition(∀u:K.A)∗ = ∀u:K.A∗ in
the constructor transformation, and a corresponding change
to the constructor abstraction and construction application
transforms for terms.

5.4.1 Call-by-Value

The definition of the alternative ML-CBV CPS transform is
the same as for the standard CBV CPS transform, with the
following differences. First, we employ the ML-like defi-
nition of the (−)∗ transform on constructors; in particular,
(∀u:K.A)∗ = ∀u:K.A∗. Second, we take the clauses given
in Table 3 for constructor abstraction and application and for
callcc, leaving the remainder as for the standard CBV strat-
egy.

Theorem 5.10 (ML-CBV CPS Typing) If F−
ω +control �

∆; Γ � M : A, then |M | exists and is a relaxed CPS value
such that F−

ω � ∆; Γ∗ � |M | : |A|.

A careful inspection of this transform reveals that it is es-
sentially a typed version of the usual untyped call-by-value
CPS transform. Its correctness follows from this plus the
known correctness of the untyped CBV CPS transform.

Theorem 5.11 (ML-CBV Simulation) If F−
ω +control �

∆; Γ � M : A, then |M |◦ ↪→∗
η |M◦|ucbv .

5.4.2 Call-by-Name (ML-CBN′)

An alternative ML-CBN′ CPS transform can be obtained in
a similar manner. As before, the transform is based on the
standard strategy CPS transform (CBN) with some differ-
ences. The differences include using the ML-like version of
the constructor transform and the two alternative constructor
application and abstraction transform rules from the previ-
ous section. The only other difference is that we take the
following term as the definition of|∆; Γ � callccA(M) : A|:

λk:A∗→α. |M | (λm:((∀u:Ω.A→u)→A)∗.mY k),

where

Y = λl:(∀u:Ω.A→u)∗→α.l (Λu:Ω.λx:|A|.λk′:u∗→α.x k)

Theorem 5.12 (ML-CBN′ CPS Typing) If F−
ω +control �

∆; Γ � M : A, then |M | exists and is a relaxed CPS value
such that F−

ω � ∆; |Γ| � |M | : |A|.
Theorem 5.13 (ML-CBN′ Simulation) If F−

ω +control �
∆; Γ � M : A, then |M |◦ ↪→∗

η |M◦|ucbn.

6 Conclusion

We have presented a systematic study of the typing prop-
erties of CPS conversion forFω+control under four dif-
ferent semantic interpretations. The standard strategies —
both call-by-value and call-by-name variants — validate sub-
ject reduction, are terminating, and admit faithful, type-
preserving transformations into continuation-passing style.
We conclude that the standard strategies are semantically un-
problematic, at least when viewed from the point of view of
compilation and typing. These strategies have the significant
advantage of being extensible to a more sophisticated set
of primitive operations, in particular, those that make non-
trivial use of type information at run time.

On the other hand, the ML-like call-by-value strategy
is problematic —Fω+control, when evaluated under this
strategy, fails to be sound, and hence cannot admit a type-
preserving, faithful transformation into CPS. Such a trans-
formation is possible for the fragmentF−

ω +control in which
constructor abstractions are limited to values, which is con-
sistent with a similar restriction in the untyped case [19].

The ML-like call-by-name strategy (ML-CBN′) is un-
problematic but uninteresting because it is (almost) identi-
cal to the standard call-by-name strategy. It only differs on

|∆; Γ � M {A} : [A/u]B| = λk:([A/u]B)∗→α. |M | (λm:(∀u:K.B)∗.k (m {A∗}))

|∆; Γ � callccA(M) : A| = λk:A∗→α. |M | (λm:((∀u:Ω.A→u)→A)∗.
m (Λu:Ω.λx:A∗.λk′:u∗→α.k x) k)

(∆; Γ � Λu:K.V : ∀u:K.A)∗ = Λu:K.V ∗

Table 3: ML-CBV CPS Transform forFω+control (Selected Clauses)

polymorphic terms. The difference is not very interesting
because it conveys no extra power or expressiveness over the
standard call-by-name strategy.

We are grateful to Olivier Danvy, Andrzej Filinski, and
Timothy Griffin for their comments and suggestions.

References
[1] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Gordon

Plotkin. Dynamic typing in a statically-typed language. In
Proceedings of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, Austin. ACM, Jan-
uary 1989.

[2] Andrew W. Appel.Compiling with Continuations. Cambridge
University Press, 1992.

[3] Andrew W. Appel and Trevor Jim. Continuation-passing,
closure-passing style. InSixteenth ACM Symposium on Prin-
ciples of Programming Languages, pages 293–302, Austin,
TX, January 1989.

[4] Luca Cardelli. Typeful programming. Technical Report 45,
DEC SRC, 1989.

[5] Eric C. Cooper and J. Gregory Morrisett. Adding threads
to Standard ML. Technical Report CMU-CS-90-186, School
of Computer Science, Carnegie Mellon University, December
1990.

[6] Thierry Coquand and Ǵerard Huet. The Calculus of Construc-
tions. Information and Computation, 76(2/3):95–120, Febru-
ary/March 1988.

[7] Luis Manuel Martins Damas.Type Assignment in Program-
ming Languages. PhD thesis, Edinburgh University, 1985.

[8] Bruce Duba, Robert Harper, and David MacQueen. Typing
first-class continuations in ML. InEighteenth ACM Sym-
posium on Principles of Programming Languages, January
1991.

[9] Matthias Felleisen. The Calculi of λv-CS Conversion: A
Syntactic Theory of Control and State in Imperative Higher-
Order Programming Languages. PhD thesis, Indiana Univer-
sity, Bloomington, IN, 1987.

[10] Matthias Felleisen and Daniel Friedman. Control operators,
the SECD machine, and theλ-calculus. InFormal Descrip-
tion of Programming Concepts III. North-Holland, 1986.

[11] Matthias Felleisen, Daniel Friedman, Eugene Kohlbecker,
and Bruce Duba. Reasoning with continuations. InFirst Sym-
posium on Logic in Computer Science. IEEE, June 1986.

[12] Andrzej Filinski. Linear continuations. InNineteenth
ACM Symposium on Principles of Programming Languages,
pages 27–38, Albuquerque, NM, January 1992. ACM SIG-
PLAN/SIGACT.

[13] Jean Gallier. On girard’s “candidats de reductibilité”. In
P. Odifreddi, editor,Logic and Computation, volume 31 of
The APIC Series, pages 123–203. Academic Press, 1990.

[14] Jean-Yves Girard.Interprètation Fonctionelle et Élimination
des Coupures dans l’Arithmètique d’Ordre Supérieure. PhD
thesis, Universit́e Paris VII, 1972.

[15] Michael Gordon, Robin Milner, and Christopher Wadsworth.
Edinburgh LCF: A Mechanized Logic of Computation, vol-
ume 78 ofLecture Notes in Computer Science. Springer-
Verlag, 1979.

[16] Timothy Griffin. A formulae-as-types notion of control. In
Seventeenth ACM Symposium on Principles of Programming
Languages, San Francisco, CA, January 1990. ACM, ACM.

[17] Timothy G. Griffin. Logical interpretations and computational
simulations. Tech. memo., AT&T Bell Laboratories, 1992. in
preparation.

[18] Robert Harper, Bruce Duba, and David MacQueen. Typing
first-class continuations in ML. Revised and expanded version
of [8]. To appear,Journal of Functional Programming.

[19] Robert Harper and Mark Lillibridge. Polymorphic type as-
signment and cps conversion. In Olivier Danvy and Carolyn
Talcott, editors,Proceedings of the ACM SIGPLAN Workshop
on Continuations CW92, pages 13–22, Stanford, CA 94305,
June 1992. Department of Computer Science, Stanford Uni-
versity. Published as technical report STAN–CS–92–1426.

[20] Robert Harper and John C. Mitchell. On the type structure
of Standard ML. ACM Transactions on Programming Lan-
guages and Systems, ?(?):?–?, ? 1992? (To appear. See
also [30].).

[21] Christopher T. Haynes, Daniel P. Friedman, and Mitchell
Wand. Obtaining coroutines from continuations.Journal of
Computer Languages, 11:143–153, 1986.

[22] Gérard Huet, editor.Logical Foundations of Functional Pro-
gramming. University of Texas at Austin Year of Program-
ming Series. Addison-Wesley, 1990.

[23] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J.Philbin, and
N. Adams. Orbit: An optimizing compiler for Scheme. In
Proc. SIGPLAN Symposium on Compiler Construction, pages
219–233. ACM SIGPLAN, 1986.

[24] Xavier leroy. Polymorphism by name. InTwentieth ACM
Symposium on Principles of Programming Languages, Jan-
uary 1993.

[25] Xavier Leroy and Pierre Weis. Polymorphic type inference
and assignment. InEighteenth ACM Symposium on Princi-
ples of Programming Languages, pages 291–302, Orlando,
FL, January 1991. ACM SIGACT/SIGPLAN.

[26] Zhaolui Luo, Robert Pollack, and Paul Taylor. How to use
lego: A preliminary user’s manual. Technical Report LFCS-
TN-27, Laboratory for the Foundations of Computer Science,
Edinburgh University, October 1989.

[27] Albert R. Meyer and Mitchell Wand. Continuation semantics
in typed lambda calculi (summary). In Rohit Parikh, editor,
Logics of Programs, volume 224 ofLecture Notes in Com-
puter Science, pages 219–224. Springer-Verlag, 1985.

[28] Robin Milner. A theory of type polymorphism in program-
ming languages.Journal of Computer and System Sciences,
17:348–375, 1978.

[29] Robin Milner, Mads Tofte, and Robert Harper.The Definition
of Standard ML. MIT Press, 1990.

[30] John Mitchell and Robert Harper. The essence of ML. InFif-
teenth ACM Symposium on Principles of Programming Lan-
guages, San Diego, California, January 1988.

[31] John C. Mitchell. Polymorphic type inference and contain-
ment.Information and Computation, 76(2/3):211–249, 1988.
(Reprinted in [22], pp. 153–194.).

[32] Chetan Murthy.Extracting Constructive Content from Classi-
cal Proofs. PhD thesis, Cornell University, Ithaca, NY, August
1990.

[33] Christine Paulin-Mohring. ExtractingFω ’s programs from
proofs in the calculus of constructions. InSixteenth ACM
Symposium on Principles of Programming Languages, 1989.

[34] Frank Pfenning. On the undecidability of partial polymor-
phic type reconstruction.Fundamenta Informaticae, 199?
To appear. Preliminary version available as Technical Report
CMU–CS–92–105, School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania, January 1992.

[35] Frank Pfenning and Peter Lee. LEAP: A language with
eval and polymorphism. InTAPSOFT ’89, Proceedings of
the International Joint Conference on Theory and Practice
in Software Development, Barcelona, Spain, pages 345–359.
Springer-Verlag LNCS 352, March 1989.

[36] Gordon Plotkin. Call-by-name, call-by-value, and the lambda
calculus.Theoretical Computer Science, 1:125–159, 1975.

[37] John Reppy. First-class synchronous operations in standard
ML. Technical Report TR 89-1068, Computer Science De-
partment, Cornell University, Ithaca, NY, December 1989.

[38] John C. Reynolds. Definitional interpreters for higher-order
programming languages. InConference Record of the 25th
National ACM Conference, pages 717–740, Boston, August
1972. ACM.

[39] John C. Reynolds. Towards a theory of type structure. In
Colloq. sur la Programmation, volume 19 ofLecture Notes in
Computer Science, pages 408–423. Springer-Verlag, 1974.

[40] John C. Reynolds. Types, abstraction, and parametric poly-
morphism. In R. E. A. Mason, editor,Information Processing
’83, pages 513–523. Elsevier Science Publishers B. V., 1983.

[41] Guy L. Steele, Jr. RABBIT: A compiler for SCHEME. Tech-
nical Report Memo 474, MIT AI Laboratory, 1978.

[42] Joseph Stoy.Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. MIT Press, 1977.

[43] Christopher Strachey and Christopher Wadsworth. A mathe-
matical semantics for handling full jumps. Technical Report
Technical Monograph PRG–11, Oxford University Comput-
ing Laboratory, 1974.

[44] Mads Tofte. Operational Semantics and Polymorphic Type
Inference. PhD thesis, Edinburgh University, 1988. Avail-
able as Edinburgh University Laboratory for Foundations of
Computer Science Technical Report ECS–LFCS–88–54.

[45] Mads Tofte. Type inference for polymorphic references.In-
formation and Computation, 89:1–34, November 1990.

[46] Andrew K. Wright and Matthias Felleisen. A syntactic ap-
proach to type soundness. Technical Report TR91–160, De-
partment of Computer Science, Rice University, July 1991.
To appear,Information and Computation.

A Rules for Fω+control

Definition A.1 (Constructor Context Formation Rules)

� ∅ (C-EMPTY)

� ∆ u �∈ dom(∆)

� ∆, u:K
(C-EXTEND)

Definition A.2 (Term Context Formation Rules)

� ∆

∆ � ∅ (T-EMPTY)

∆ � Γ ∆ � A : Ω x �∈ dom(Γ)

∆ � Γ, x:A
(T-EXTEND)

Definition A.3 (Constructor Formation Rules)

� ∆

∆ � α : Ω
(C-ANS)

� ∆

∆ � u : ∆(u)
(C-VAR)

∆ � A1 : Ω ∆ � A2 : Ω

∆ � A1 → A2 : Ω
(C-ARR)

∆, u:K � A : Ω

∆ � ∀u:K.A : Ω
(C-ALL)

∆, u:K1 � A : K2

∆ � λu:K1.A : K1 ⇒ K2

(C-ABS)

∆ � A1 : K2 ⇒ K ∆ � A2 : K2

∆ � A1 A2 : K
(C-APP)

Definition A.4 (Constructor Equality Rules)

∆ � A : K

∆ � A = A : K
(REFL)

∆ � A1 = A2 : K

∆ � A2 = A1 : K
(SYMM)

∆ � A1 = A2 : K ∆ � A2 = A3 : K

∆ � A1 = A3 : K
(TRANS)

∆ � A1 = A′
1 : Ω ∆ � A2 = A′

2 : Ω

∆ � A1 → A2 = A′
1 → A′

2 : Ω
(C-ARR-EQ)

∆, u:K � A = A′ : Ω

∆ � ∀u:K.A = ∀u:K.A′ : Ω
(C-ALL -EQ)

∆, u:K1 � A = A′ : K2

∆ � λu:K1.A = λu:K1.A
′ : K1 ⇒ K2

(C-ABS-EQ)

∆ � A1 = A′
1 : K2 ⇒ K ∆ � A2 = A′

2 : K2

∆ � A1 A2 = A′
1 A′

2 : K
(C-APP-EQ)

∆, u:K1 � A2 : K2 ∆ � A1 : K1

∆ � (λu:K1.A2) A1 = [A1/u]A2 : K2

(C-BETA)

∆ � A : K1 ⇒ K2 u �∈ dom(∆)

∆ � λu:K1.A u = A : K1 ⇒ K2

(C-ETA)

Definition A.5 (Term Formation Rules)

∆ � Γ

∆; Γ � x : Γ(x)
(T-VAR)

∆; Γ, x:A1 � M : A2

∆; Γ � λx:A.M : A1 → A2

(T-ABS)

∆; Γ � M1 : A2 → A ∆; Γ � M2 : A2

∆; Γ � M1 M2 : A
(T-APP)

∆, u:K; Γ � M : A ∆ � Γ

∆; Γ � Λu:K.M : ∀u:K.A
(T-CABS)

∆; Γ � M : ∀u:K.A′ ∆ � A : K

∆; Γ � M{A} : [A/u]A′ (T-CAPP)

∆ � A : Ω ∆; Γ � M : α

∆; Γ � abortA(M) : A
(T-ABORT)

∆; Γ � M : (∀u:Ω.A→u)→A u /∈ FTV (A)

∆; Γ � callccA(M) : A
(T-CALLCC)

∆; Γ � M : A ∆ � A = A′ : Ω

∆; Γ � M : A′ (T-EQ)

Lemma A.6 (Properties of Fω+control typing)

1. if Fω+control � ∆ � Γ then Fω+control � � ∆

2. if Fω+control � ∆ � A : K then Fω+control � � ∆

3. if Fω+control � ∆ � A1 = A2 : K then Fω+control � ∆ �
A1 : K and Fω+control � ∆ � A2 : K

4. if Fω+control � ∆; Γ � M : A then Fω+control � ∆ � Γ
and Fω+control � ∆ � A : Ω

