
Exceptions Are Strictly More Powerful Than
Call/CC

Mark Lillibridge

July 1995

CMU–CS–95–178

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also appears as Fox Memorandum CMU-CS-FOX-95-03.

Abstract

We demonstrate that in the context of statically typed pure functional lambda calculi, exceptions
are strictly more powerful than call/cc. More precisely, we prove that the simply typed lambda
calculus extended with exceptions is strictly more powerful than Girard’s Fω [6, 15] (a superset
of the simply typed lambda calculus) extended with call/cc and abort. This result is established
by showing that the first language is Turing equivalent while the second language permits only a
subset of the recursive functions to be written. We show that the simply typed lambda calculus
extended with exceptions is Turing equivalent by reducing the untyped lambda calculus to it by
means of a novel method for simulating recursive types using exception-returning functions. The
result concerning Fω extended with call/cc is from a previous paper of the author and Robert
Harper’s.

This research was sponsored by the Defense Advanced Research Projects Agency, CSTO, under the title “The Fox
Project: Advanced Development of Systems Software”, ARPA Order No. 8313, issued by ESD/AVS under Contract
No. F19628-91-C-0168. The author was supported by a National Science Foundation Graduate Fellowship.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

Keywords: studies of programming constructs, control primitives, exceptions, recursion, λ-
calculus, type theory, functional programming

1 Introduction

The relationship between the programming features of exceptions and call/cc (call with current
continuation) in statically typed pure functional programming languages has been an open question
for some time. Carl Gunter, et. al, write in a recent paper [7]:

It is folklore (the authors know of no published proof) that neither exceptions nor
continuations can be expressed as a macro in terms of the other (at least if no references
are present), even though they are closely related.

In this paper we demonstrate that exceptions cannot be expressed as a macro using only call/cc
in a statically typed pure functional lambda calculi, thus partially answering half of Gunter, et.
al ,’s open question. Left open is the question of whether or not exceptions can be defined using a
macro in terms of call/cc and either fix, recursive types, or some similar feature.

We do this by showing that when call/cc is added to even as powerful a statically typed pure
functional lambda calculi as Girard’s Fω [6, 15], the set of functions expressible in the result-
ing language is still a subset of the recursive functions. However, when exceptions are added to
even so limited a language as the simply typed lambda calculus (λ→), the resulting language per-
mits all computable functions to be expressed. (In particular, unlike in the first case, potentially
non-terminating functions can be written.) This demonstrates that exceptions are strictly more
powerful than call/cc for statically typed pure functional lambda calculi — not even a full global
transformation on a program can reduce exceptions to call/cc.

The first of these results is a previous result of the author with Robert Harper. The second is
new to this paper and involves a novel method for simulating recursive types using exception-raising
functions.

2 The Power of Call/CC

In a recent paper [9], the author and Robert Harper considered an extension of Fω with call/cc
and abort, obtaining a number of results. We summarize briefly here the relevant results: Four
evaluation strategies were considered, differing in whether they use call-by-name or call-by-value
parameter passing and in whether or not they evaluate beneath type abstractions.

Not evaluating beneath type abstractions treats type instantiation as a significant computation
step, possibility including effects. Strategies of this type are used in Quest [3] and LEAP [14],
and are directly compatible with extensions that make significant uses of types at run time [11]
(for example, “dynamic” types [1, 3]). Since polymorphic expressions are kept distinct from their
instances, the anomalies that arise in implicitly polymorphic languages in the presence of refer-
ences [16] and control operators [10] do not occur.

Strategies that evaluate beneath type abstractions are inspired by the operational semantics
of ML [12]. Evaluation proceeds beneath type abstractions, leading to a once-for-all-instances
evaluation of polymorphic terms. Type instantiation application is retained as a computation step,
but its force is significantly attenuated by the fact that type expressions may contain free type
variables, precluding primitives that inductively analyze their type arguments. The superficial
efficiency improvement gained by evaluating beneath type abstractions comes at considerable cost
since it is incompatible with extensions such as mutable data structures and control operators [16,
10].

All the strategies were shown to be sound except for the strategy most like ML (the call-by-
value, evaluating beneath type abstractions strategy) which was shown to be unsound for full Fω.

1

Restricting so that polymorphism can only be used on values, not general expressions,1 restores
soundness for this strategy. Typed CPS (continuation-passing style) transforms were then given for
each strategy from the appropriate sound subset into Fω and proven correct. Since Fω is known
to be strongly normalizing (see [6]) and the transforms are recursive functions, this implies that
all programs in the original language terminate. Hence, adding call/cc to Fω permits at most only
recursive functions to be written.

It should be noted that because the simply typed lambda calculus (λ→), the polymorphic
lambda calculus (F2), and the core of ML, Core-ML [13, 5], are proper subsets of Fω that this
result applies to adding call/cc to them as well.

3 The Power of Exceptions

3.1 Motivation

It is standard practice when giving the semantics of untyped programming languages such as
Scheme [4], to explain exceptions by use of a transform similar in spirit to a CPS transform
whereby expressions returning a value of “type” τ are transformed to expressions that return a
value of “type” τ + σ where α + β represents a sum type, the values of which are either a tag left
and a value of type α or a tag right and a value of type β, and where σ is the “type” of the values
carried by the exception. If the original expression evaluates to a value v then the transformed
expression evaluates to the value left(v) where v is v transformed.2 If, on the other hand, the
original expression when evaluated raises an uncaught exception carrying the value v then the
transformed expression evaluates to right(v).

Such a transform is easily written in the statically typed case where σ is a base type. See
Figure 1, for example. Here, b is a base-type meta-variable, τ a type meta-variable, x a term-
variable meta-variable, and M and N are term meta-variables. FV (M) denotes the free variables
of M and is used to prevent unwanted capture. Under the appropriate assumptions, it can be
proved that if M : τ then M : [τ].

However, problems arise when σ is a non-base type. If σ is an arrow type, infinite recursion
results at the type level, preventing the transform from working because infinite types are not
permitted in λ→. (E.g., if σ = int → int then <σ> = <int>→[int] = int→(<int>+<σ>) =
int→(int+(int→(<int> +<σ>))) =)

By adding recursive types to the destination calculus, the transform can be made to work as
in Figure 2. The rules for variables, lambdas, and applications are the same as before. We use
a formulation of recursive types (µα. τ) where there is an isomorphism (µα.f(α)) ∼= f(µα.f(α))
mediated by two built in primitives:

roll : f(µα.f(α)) → µα.f(α)
unroll : (µα.f(α)) → f(µα.f(α))

such that unroll(roll(x)) = x when x:f(µα.f(α)) and roll(unroll(y)) = y when y:µα.f(α) where
f is any function mapping types to types. For this transform, we only need one recursive type,

1More precisely, terms of the form Λα. M are allowed only when M is a call-by-value value. (Because this strategy
evaluates under lambda abstractions, Λα. M is considered a value here only when M is itself a value.)

2More accurately, the transform evaluates to a value equal to left(v). A similar caveat applies to the uncaught
exception case.

2

 = b
<τ1 → τ2> = <τ1> → [τ2]

[τ] = <τ> + <σ>

x = left(x)
λx:τ. M = left(λx:<τ>. M)
M N = caseM of (x �∈ FV (M))

left(x) => caseN of
left(y) => x y;
right(y) => right(y)

endcase;
right(x) => right(x)

endcase

raiseM = caseM of
left(x) => right(x);
right(x) => right(x)

endcase
M handlex => N = caseM of

left(x) => left(x);
right(x) => N

endcase

Figure 1: Exception transform for σ a base type

α = b
<τ1 → τ2>α = <τ1>α → [τ2]α

[τ]α = <τ>α + α
γ = µα. <σ>α

<τ> = <τ>γ

[τ] = [τ]γ

raiseM = caseM of
left(x) => right(rollx);
right(x) => right(x)

endcase
M handlex => N = caseM of

left(x) => left(x);
right(x) => letx = unrollx inN end

endcase

Figure 2: Exception transform using recursive types

3

µα. <σ>α, so roll:<σ>γ → γ and unroll:γ → <σ>γ (f = λα. <σ>α). Aside from using this
recursive type to avoid the problem of infinite types, the transform is unchanged.

It is well known that adding recursive types to the simply typed lambda calculus allows the full
untyped lambda calculus to be simulated. The following encoding of the untyped lambda calculus
in λ→ extended with recursive types suffices:

� = µα. α → α

x = x
λx. m = roll(λx: � . m)
m n = (unrollm) n

Here, roll:(� → �) → �, unroll:� → (� → �), and under appropriate assumptions, m : � for all
untyped lambda calculus terms m.

A question naturally arises: since the transform suggests that exceptions carrying arrow types
have an inherently recursive character, can we simulate the untyped lambda calculus using just
arrow-type carrying exceptions? The following two sections answer this question in the affirmative.

3.2 Simulating recursive types with exceptions

The key idea is to use exception-raising functions to simulate the values of a recursive type. Suppose
we wish to simulate values of the recursive type µα. f(α). We will use functions of type � = unit →
unit and exceptions carrying values of type f(�) where unit is the type containing exactly one
value, denoted (). The key definitions of roll and unroll are as follows:

roll = λx:f(�). λy:unit. (raisex; ())
unroll = λx: � . (x(); †) handle y => y

where † is any expression of type f(�). Having a term of this type is needed to make unroll
type check. The term is never actually evaluated though unless unroll is called with a value
not generated by roll, which is arguably an error. Many exception implementations (SML, for
example [12]) allow their equivalent of a raise statement to have an arbitrary type since it will
never “return”. This feature can be used to construct a † of type f(�) if no value of type f(�) is
otherwise available.

Roll packs up its argument of type f(�) and stores it in a newly created function which it then
returns. This function is built so that when called it will raise an exception carrying the argument
to roll. The extra code to return () after raising the exception is solely for typing purposes as it
is never executed. Since the types of the exceptions that a function may raise are not part of its
type, the resulting function just has type unit → unit = � as desired.

Unroll can later retrieve the value that was passed into roll by simply calling the new function
with () and catching the resulting exception which will be carrying the desired value. Hence, we
have the crucial equations that unroll(roll(x)) = x when x:f(�) and roll(unroll(y)) = y when
y:�, y produced by roll. The later restriction on y is not a problem for the simulation because if
we take a closed well-typed expression in λ→ plus recursive types and evaluate the encoding of the
expression in λ→ plus exceptions, we are guaranteed that unroll will never be called on a term not
generated by roll. This is because there are no values of recursive type in the original language
that are not created via roll.

4

3.3 Simulating the untyped lambda calculus

By combining the well known encoding from the untyped lambda calculus to the simply typed
lambda calculus plus recursive types with our method of simulating recursive types using exceptions,
we obtain an encoding from the untyped lambda calculus to the simply typed lambda calculus with
exceptions. In fact, it suffices for us to just have one kind of exception which carries values of type
(unit→unit)→(unit→unit). Figure 3 contains (working) SML code demonstrating how to do
this. The code is entirely monomorphic and uses only those features present in the simply typed
lambda calculus extended with exceptions of the aforementioned type.

Since the untyped lambda calculus is Turing equivalent [2] and the encoding transform is recur-
sive (syntax directed, in fact), this implies that the simply typed lambda calculus extended with
exceptions of the above type is Turing equivalent. Hence, all computable functions can be written
in it.

4 Conclusion

We have shown by a novel method that exceptions can be used to simulate recursive types. From
this and the well known fact that the untyped lambda calculus can be encoded in the simply typed
lambda calculus (λ→) plus recursive types, it follows that the untyped lambda calculus can be en-
coded in λ→ extended with exceptions. Because the untyped lambda calculus is Turing equivalent,
this implies that all computable functions can be written in λ→ extended with exceptions. The
ability to have exceptions of distinguishable flavors, possibly carrying values of different types, is
not required.

From previous work of the author’s with Robert Harper, it is known that adding call/cc to Fω

(a superset of λ→) preserves the fact that all programs terminate. It follows from this that only a
subset of the recursive functions can be written in Fω extended with call/cc. Since the set of all
computable functions is proper superset of the recursive functions, the language λ→ extended with
exceptions is strictly more powerful than the language Fω extended with call/cc. Hence not even a
full global transformation on a program can rewrite away exceptions in Fω extended with call/cc.

We are grateful to Robert Harper and Mark Leone for their comments on an earlier draft of
this work.

References

[1] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing in
a statically-typed language. In Proceedings of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, Austin. ACM, January 1989.

[2] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies
in Logic and the Foundations of Mathematics. North-Holland, revised edition, 1984.

[3] Luca Cardelli. Typeful programming. Technical Report 45, DEC Systems Research Center,
1989.

[4] William Clinger and Jonathan Rees. Revised4 report on the algorithmic language Scheme.
LISP Pointers, IV(3):1–55, July-Sep. 1991.

5

(*
* Prepare to simulate values of the recursive type
* \mu a. a -> a using a ML exception of type
* (unit->unit)->(unit->unit):
*)

type star = unit -> unit;
type fstar = star -> star;
exception E of fstar;

fun roll(x:fstar):star =
fn y:unit => (raise E(x); ());

fun unroll(x:star):fstar =
(x(); (fn y:star => y)) handle E(z) => z;

(*
* Define an encoding of the untyped lambda calculus in
* ML using the previous simulation:
*
* The rules for encoding using the below functions are as
* follows:
*
* encode(x) = x
* encode(\x.M) = lam(fn x => encode(M))
* encode(M N) = app(encode(M),encode(N))
*)

fun app(x:star,y:star):star = (unroll x) y;
fun lam(x:star->star):star = roll(x);

(*
* As an example, we use the encoding of omega = w w
* where w = \x.x x to write a hanging function:
*
* (Omega reduces to itself in one beta-reduction step,
* resulting in an infinite reduction sequence.)
*)

fun hang() = let val w = lam (fn x => app(x,x))
in app(w,w) end;

Figure 3: SML code to encode the untyped lambda calculus

6

[5] Luis Damas and Robin Milner. Principal type schemes for functional programs. In Ninth ACM
Symposium on Principles of Programming Languages, pages 207–212, 1982.

[6] Jean-Yves Girard. Interprétation Fonctionnelle et Élimination des Coupures dans
l’Arithmétique d’Ordre Supérieure. PhD thesis, Université Paris VII, 1972.

[7] Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and con-
trol in ML-like languages. In 1995 Conference on Functional Programming and Computer
Architecture, pages 12–23, La Jolla, CA, June 1995.

[8] Robert Harper and Mark Lillibridge. Polymorphic type assignment and CPS conversion. In
Olivier Danvy and Carolyn Talcott, editors, Proceedings of the ACM SIGPLAN Workshop on
Continuations CW92, pages 13–22, Stanford, CA 94305, June 1992. Department of Computer
Science, Stanford University. Published as technical report STAN–CS–92–1426.

[9] Robert Harper and Mark Lillibridge. Explicit polymorphism and CPS conversion. In Twen-
tieth ACM Symposium on Principles of Programming Languages, pages 206–219, Charleston,
SC, January 1993. ACM. (Expanded journal version to appear in Journal of Functional Pro-
gramming).

[10] Robert Harper and Mark Lillibridge. Polymorphic type assignment and CPS conversion. LISP
and Symbolic Computation, 6(4):361–380, November 1993. (Journal version of [8].).

[11] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analysis.
In Twenty-Second ACM Symposium on Principles of Programming Languages, pages 130–141,
San Francisco, CA, January 1995.

[12] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press,
1990.

[13] John Mitchell and Robert Harper. The essence of ML. In Fifteenth ACM Symposium on
Principles of Programming Languages, San Diego, California, January 1988.

[14] Frank Pfenning and Peter Lee. LEAP: A language with eval and polymorphism. In TAPSOFT
’89, Proceedings of the International Joint Conference on Theory and Practice in Software
Development, Barcelona, Spain, pages 345–359. Springer-Verlag LNCS 352, March 1989.

[15] Benjamin Pierce, Scott Dietzen, and Spiro Michaylov. Programming in higher-order typed
lambda-calculi. Technical Report CMU-CS-89-111, Carnegie Mellon University, Pittsburgh,
Pennsylvania, March 1989.

[16] Mads Tofte. Type inference for polymorphic references. Information and Computation, 89:1–
34, November 1990.

7

