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Abstract. Content-aware request distribution is a technique which takes
into account the content of the request when distributing the requests
in a web server cluster. A handoff protocol and TCP handoff mecha-
nism were introduced to support content-aware request distribution in
a client-transparent manner. Content-aware request distribution mech-
anisms enable the intelligent routing inside the cluster to provide the
quality of service requirements for different types of content and to im-
prove overall cluster performance.

We propose a new modular TCP handoff design based on STREAMS-
based TCP/IP implementation in HP-UX 11.0. We design the hand-
off functions as dynamically loadable modules. No changes are made
to the existing TCP/IP code. The proposed plug-in module approach
has the following advantages: flexibility-TCP handoff functions may be
loaded and unloaded dynamically, without node function interruption;
modularity- proposed design and implementation may be ported to other
OSes with minimal effort.

1 Introduction

The web server cluster is the most popular configuration used to meet the grow-
ing traffic demands imposed by the World Wide Web. However, for clusters to be
able to achieve scalable performance as the cluster size increases, it is important
to employ the mechanisms and policies for a “balanced” request distribution.

The market now offers several hardware/software load-balancer solutions
that can distribute incoming stream of requests among a group of web servers.
Typically, the load-balancer sits as a front-end node on network and acts as a
gateway for incoming connections (we often will call this entity a distributor).
Incoming client requests are distributed more or less evenly to a pool of servers
(back-end nodes).

Traditional load balancing solutions for a web server cluster try to distribute
the requests among the nodes in the cluster based on some load information
without regard to the requested content and therefore forwarding the client
requests to a back-end node prior to establishing a connection with the client.

Content-aware request distribution takes into account the content (such as
URL name, URL type, or cookies) when making a decision to which server the
request is to be routed. Previous work on content-aware request distribution [4,
5, 1, 2] has shown that policies distributing the requests based on cache affinity
lead to significant performance improvements compared to the strategies taking
into account only load information.



HTTP protocol relies on TCP - a connection-oriented transport protocol.
The front-end node (the request distributor) must establish a connection with the
client to inspect the target content of a request prior to asssigning the connection
to a back-end web server. A mechanism is needed to service the client request
by the selected back-end node. Two methods were proposed to distribute and
service the requests on the basis of the requested content in a client-transparent
manner: the TCP handoff [4] and the TCP splicing. [3].
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Fig. 1. Traffic flow with a) TCP splicing; b) TCP handoff.

TCP splicing is an optimization of the front-end relaying approach, with the
traffic flow represented in Figure 1 a).

The TCP handoff mechanism was introduced in [4] to enable the forwarding
of back-end responses directly to the clients without passing through the front-
end, with traffic flow represented in Figure 1 b). The main idea behind the TCP
handoff is to migrate the created TCP state from the distributor to the back-end
node. The TCP implementation running on the front-end and back-ends needs
a small amount of additional support for handoff. In particular, the protocol
module needs to support an operation that allows the TCP handoff protocol
to create a TCP connection at the back-end without going through the TCP
three-way handshake with the client. Similar, an operation is required that re-
trieves the state of an established connection and destroys the connection state
without going through the normal message handshake required to close a TCP
connection. Once the connection is handed off to a back-end node, the front-end
must forward packets from the client to the appropriate back-end node.

This difference in the response flow route allows substantially higher scala-
bility of the TCP handoff mechanism than TCP splicing. In [1], authors com-
pared performance of both mechanisms showing the benefits of the TCP handoff
schema. Their comparison is based on the implementation of the TCP handoff
mechanism in FreeBSD UNIX.

In this work, we consider a web cluster in which the content-aware distribu-
tion is performed by each node in a web cluster. Each server in a cluster may
forward a request to another node based on the requested content (using TCP
handoff mechanism).

STREAMS-based TCP/IP implementations, which are available in leading
commercial operating systems, offers a framework to implement the TCP hand-
off mechanism as plug-in modules in the TCP/IP stack, and to achieve the
flexibility and portability without too much performance penalty. As part of the
effort to support a content-aware request distribution for web server clusters,
we propose a new modular TCP handoff design. The proposed TCP handoff
design is implemented as STREAMS modules. Such a design has the following



advantages:

— portability: the STREAMS-based TCP/IP modules are relatively indepen-
dent of the implementation internals. New TCP handoff modules are de-
signed to satisfy the following requirements:

¢ all the interactions between TCP handoff modules and the original TCP/IP
modules are message-based, no direct function calls are made.
e TCP handoff modules do not access and/or change any data structures
or field values maintained by the original TCP/IP modules.
This enables maximum portability, so that the TCP handoff modules may
be ported to other STREAMS-based TCP/IP implementation very quickly.

— flexibility: TCP handoff modules may be dynamically loaded and unloaded
as DLKM (Dynamically Loadable Kernel Module) modules without service
interruption.

— transparency: no application modification is necessary to take advantage of
the TCP handoff mechanism. This is a valuable feature for some applications
where no source code is available.

— efficiency: the proposed TCP handoff modules are only peeking into the
messages, with minimal functionality replicated from the original TCP/IP
modules.

2 Cluster Architectures and Request Distribution
Mechanisms

Different products have been introduced in the market for load balancing,.

Popular Round-Robin DNS solutions [8] distribute the accesses among the
nodes in the cluster in the following way: for a name resolution it returns the IP
address list (for example, list of nodes in a cluster which can serve this content),
placing a different address first in the list for each successive request. Round-
Robin DNS is available as part of DNS which is already in use, i.e. there is no
additional cost.

Other traditional load balancing solutions for a web server cluster try to
distribute the requests among the nodes in the cluster without regard to the
requested content and therefore forwarding client requests to a back-end node
prior to establishing a connection with the client as shown in Figure 2.
In this configuration, web server cluster appears as a single host to the clients.
To the back-end web servers, the front-end load-balancer appears as a gateway.
In essence, it intercepts the incoming web requests and determines which web
server should get each one. Making that decision is the job of the proprietary
algorithms implemented in these products. This code can take into account the
number of servers available, the resources (CPU speed and memory) of each, and
how many active TCP sessions are being serviced, etc. The balancing methods
across different load-balancing servers vary, but in general, the idea is to forward
the request to the least loaded server in a cluster.

Only the virtual address is advertised to the Internet community, so the load
balancer also acts as a safety net. The IP addresses of the individual servers
are never sent back to the web browser. The load-balancer rewrites the virtual
cluster IP address to a particular web server IP address using Network Address
Translation (NAT). Because of this IP address rewriting, both inbound requests
and outbound responses pass through the load-balancer.
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Fig. 2. Traditional load balancing solution (like Cisco’s Local Director) in a web
server cluster.

The 3-way handshaking and the connection set up with original client
is the responsibility of the chosen back-end web server. After the connection
is established, the client sends to this server the HTTP request with specific
URL to retrieve.

Content-aware request distribution intends to take into account the content
(such as URL name, URL type, or cookies) when making a decision to which
server the request has to be routed. The main technical difficulty of this approach
is that it requires the establishment of a connection between the client and the
request distributor. So the client will send the HTTP request to the distributor.
The distributor can then make a decision to which back-end web server this
request will be forwarded.
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Fig. 3. Content-aware request distribution solution (front-end based configura-
tion) in a web server cluster.



Thus, 3-way handshaking and the connection set up between the client
and request distributor happens first, as shown in Figure 3. After that, back-
end web server is chosen based on the content of the HTTP request from the
client. To be able to distribute the requests on the basis of requested content,
the distributor component should implement either a form of TCP handoff [4]
or the splicing mechanism [3]. Figure 3 shows request and response flow in case
of TCP handoff mechanism.

In this configuration, the typical bottleneck is due to the front-end node which
performs the functions of distributor. For realistic workloads, a front-end node,
performing the TCP handoff, does not scale far beyond four cluster nodes [1].
Most of the overhead in this scenario is incurred by the distributor component.

Thus, another recent solution proposed in [1] is shown in Figure 4. It is
based on alternative cluster design where the distributor is co-located with
the web server. We will call this architecture CARD (Content-Aware Request
Distribution).
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Fig. 4. Content-aware request distribution solution (cluster based, distributed
configuration) in a web server cluster.

For simplicity, we assume that the clients directly contact the distributor,
for instance via RR-DNS. In this case, the typical client request is processed
in the following way. 1) Client web browser uses TCP/IP protocol to connect
to the chosen distributor; 2) the distributor component accepts the connection
and parses the request, and decides on server assignment for this request; 3)
the distributor hands off the connection using TCP handoff protocol to the
chosen server; 4) the server application at the server node accepts the created
connection; 5) the server sends the response directly to the client.

The results in [1] show good scalability properties of the CARD architecture
when distributing requests with the LARD policy [4]. The main idea behind
LARD is to partition the documents logically among the cluster nodes, aiming
to optimize the usage of the overall cluster RAM. Thus, the requests to the same
document will be served by the same cluster node that will most likely have the
file in RAM.



Our TCP handoff modules are designed to support a content-aware request
distribution for the CARD implementation shown in Figure 4.

3 STREAMS and STREAMS-Based TCP/IP
Implementation

STREAMS is a modular framework for developing the communication services.
Each stream has a stream head, a driver and multiple optional modules between
the stream head and the driver (see Figure 5 a). Modules exchange the informa-
tion by messages. Messages can flow in two directions: downstream or upstream.
Each module has a pair of queues: write queue and read queue. When a mes-
sage passes through a queue, the service routine for this queue may be called to
process the message. The service routine may drop a message, pass a message,
change the message header, and generate a new message.
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Fig.5. a) STREAMS b) STREAMS-Based TCP/IP Implementation ¢) New
Plug-in Modules for TCP Handoff in STREAMS-Based TCP /IP Implementation
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The stream head is responsible for interacting with the user processes. It
accepts the process request, translates it into appropriate messages, and sends
messages downstream. It is also responsible for signaling to the process when
new data arrives or some unexpected event happens.

The STREAMS modules for STREAMS-based TCP/IP implementation are
shown in Figure 5 b). Transport Provider Interface (TPI) specification [7] defines
the message interface between TCP and the upper module. Data Link Provider
Interface (DLPI) specification [6] defines the message interface between driver
and the IP module. These specifications define the message format, valid se-
quences of messages, and semantics of messages exchanged between these neigh-
boring modules.

When the TCP module receives a SYN request for establishing the HTTP
connection, the TCP module sends a T_.CONN_IND message upstream. Under
the TPI specification, TCP should not proceed until it gets the response from the
application layer. However, in order to be compatible with BSD implementation-
based applications, the TCP module continues the connection establishment
procedure with the client. When the application decides to accept the connection,



it sends the T_CONN_RES downstream. It also creates another stream to accept
this new connection, and TCP module attaches the TCP connection state to this
new stream. The data exchange continues on the accepted stream until either
end closes the connection.

4 Modular TCP Handoff Design

The TCP handoff mechanism (shown in Figure 1 b) enables the response for-
warding from the back-end web server nodes directly to the clients without
passing through the distributing front-end.

In the CARD architecture, each node performs both front-end and back-end
functionality: the distributor is co-located with the web server. We use the fol-
lowing denotations: the distributor-node accepting the original client connection
request is referred to as FE (Front-End). In the case where the request has to
be processed by a different node, thenode receiving the TCP handoff request is
referred to as BE (Back-End).

Two new modules are introduced to implement the functionality of TCP
handoff as shown in Figure 5 ¢). According to the relative position in the existing
TCP/IP stack, we refer to the module right on top of the TCP module in the
stack as UTCP (UpperTCP), and the module right under the TCP module as
BTCP (BottomTCP).

These two modules provide a wrapper around the current TCP module. In
order to explain the proposed modular TCP handoff design and its implemen-
tation details, we consider typical client request processing. There are two basic
cases:
remote request processing, i.e. when the front-end node accepting the request
must handoff the request to a different back-end node assigned to process this
request;
local request processing, i.e. when the front-end node accepting the request is the
node which is assigned to process this request.

First, we consider the remote request processing. There are six logical steps
to perform the TCP handoff of the HTTP request in the CARD architecture:

1) finish 3-way TCP handshaking (connection establishment), and get the
requested URL; 2) make the routing decision: which back-end node is assigned
to process the request; 3) initiate the TCP handoff process with the assigned
BE node; 4) migrate the TCP state from FE to BE node; 5) forward the data
packets; 6) terminate the forwarding mode and release the related resources on
FE after the connection is closed.

Now, we describe in detail how these steps are implemented by the newly
added UTCP and BTCP modules and original TCP/IP modules in the operating
system.

— 8-way TCP handshake
Before the requested URL is sent to make a routing decision, the connection
has to be established between the client and the server. The proposed design
depends on the original TCP/IP modules in the current operating system
to finish the 3-way handshaking functionality. In this stage, BTC Prg allo-
cates a connection structure corresponding to each connection request upon
receiving a TCP SYN packet from the client. After that, BTC Prg sends
the SYN packet upstream. Upon receiving a downstream TCP SYN/ACK



packet from the T'C Prg module, BT C Pr g records the initial sequence num-
ber associated with the connection, and sends the packet downstream. After
BTCPrg receives an ACK packet from the client, it sends the packet up-
stream to TC Prg. During this process, the BTCPgpg emulates the TCP
state transitions and changes its state accordingly.

In addition to monitoring the 3-way TCP handshaking, BTC Prg keeps a
copy of the incoming packets for connection establishment (SYN packet,
ACK to SYN/ACK packet sent by the client) and URL (Figure 6), for TCP
state migration purpose, which is discussed later.
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Fig. 6. Remote Request Processing Flow During TCP Handoff Procedure

Also, because the TCP handoff should be transparent to server applications,
the connection should not be exposed to the user level application before the
routing decision is made. UT'C Pgg intercepts the T_CONN_IND message
sent by TC Prg. TC Prg continues the 3-way handshaking without waiting
for explicit messages from the modules on top of TCP.

— URL parsing

BT C Prg parses the first data packet from the client, retrieves the URL and
makes the distribution decision.

— TCP handoff initiation

A special communication channel is needed to initiate the TCP handoff be-
tween FE and BE. A Control Connection is used for this purpose between two
UTCPrg and UTCPgg as shown in Figure 6. This control connection is a
pre-established persistent connection set up during the cluster initialization.
Each node is connected to all other nodes in the cluster. The TCP handoff
request is sent over the control connection to initiate the handoff process.
Any communication between BT C Pgg and BT C Pgg modules goes through
the control connection by sending the message to the UT CP module first



(see Figure 6). After BT CPrg decides to handoff the connection, it sends
a handoff request to the BT'CPgg (Figure 6, step 1). The SYN and ACK
packets from the client and the TCP initial sequence number returned by
TC Prg are included in the message. BT'C Pgg uses the information in the
handoff request to migrate the associated TCP state ( steps 2-4 in Figure 6,
which are discussed next). If BT'C Pgg successfully migrates the state, an ac-
knowledgement is returned (Figure 6, step 5). BT'C Prg frees the half-open
TCP connection upon receiving the acknowledgement by sending a RST
packet upstream to TC Prg and enters forwarding mode. UTC Prg discards
corresponding T_CONN_IND message when the T_DISCON_IND is received
from the TC Prg.

— TCP state migration
In the STREAMS environment it is not easy to get the current state of a
connection at T'C Prg, to transfer it and to replicate this state at TC Pgg.
First it is difficult to obtain the state out of the black box of the TCP
module. Even if this could be done, it is difficult to replicate the state at
BE. TPI does not support schemes by which a new half-open TCP connection
with predefined state may be opened. In the proposed design, the half-open
TCP connection is created by replaying the packets to the TC Pgg by the
BTCPgg. In this case, the BTCPgg acts as a client(Figure 6). BTCPgg
uses the packets from BT C Prg, updates the destination IP address of SYN
packet to BE and sends it upstream (Figure 6, step 2). T'C Pg g responds with
SYN-ACK(Figure 6, step 3). BT C Pgg records the initial sequence number
of BE, discards SYN-ACK, updates the ACK packet header properly, and
sends it upstream (Figure 6, step 4).

— Data forwarding
After the handoff is processed successfully, BT C Prg enters a forwarding
mode. It forwards all the pending data in BT C Prg, which includes the first
data packet (containing the requested URL) (Figure 6, step 6). It continues
to forward any packets on this connection until the forward session is closed.
During the data forwarding step, BT C Pr g updates (corrects) the following
fields in the packet: 1) the destination IP address to BE’s IP address; 2) the
sequence number of the TCP packet; 3) the TCP checksum.
For data packets that are sent directly from BE to the client, the BT C Pgg
module updates (corrects): 1) the source IP address to FE’s IP address; 2)
the sequence number; 3) TCP checksum. After that, BT'C Pgg sends the
packet downstream.

— Handoff connection termination
The connection termination should free states at BE and FE. The data
structures at BE is closed by the STREAMS mechanism. BT'C Pgg monitors
the status of the handoffed connection and notifies the BT'C Prg upon the
close of the handoffed connection in TCPgg (Figure 6, step 7). BT CPrg
releases the resources related to the forwarding mechanism after receiving
such a notification.

Local request processing is performed in the following way. After the BT C Prg
finds out that the request should be served locally, the BT C Prg notifies UTC Ppg
to release the correct T_CONN_IND message to upper STREAMS modules, and
sends the data packet (containing the requested URL) to the original TCP mod-
ule (TCPrg). BTCPrg discards all the packets kept for this connection and
frees the data structures associated with this connection. After this, BT CPrg



and UTC Ppg send packets upstream as quickly as possible without any extra
processing overhead.

5 Conclusion

Research on scalable web server clusters has received much attention from both
industry and academia. A routing mechanism for distributing requests to individ-
ual servers in a cluster is at the heart of any server clustering technique. Content-
aware request distribution (LARD, HACC, and FLEX strategies) [4, 5, 1, 2] has
shown that policies distributing the requests based on cache affinity lead to
significant performance improvements compared to the strategies taking into
account only the load information.

Content-aware request distribution mechanisms enable intelligent routing in-
side the cluster to support additional quality of service requirements for different
types of content and to improve overall cluster performance.

With content-aware distribution, based on TCP handoff mechanism, incom-
ing requests must be handed off by distributor component to a back-end web
server in a client-transparent way after the distributor has inspected the con-
tent of the request. The modular TCP handoff design proposed in this paper
offers additional advantages: portability, flexibility, transparency, and efficiency
to support scalable web server cluster design and smart request routing inside
the cluster.
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