
Role of Aging, Frequency, and Size

in Web Cache Replacement Policies

Ludmila Cherkasova1 and Gianfranco Ciardo2

1 Hewlett-Packard Labs, 1501 Page Mill Road, Palo Alto, CA 94303, USA
cherkasova@hpl.hp.com

2 CS Dept., College of William and Mary, Williamsburg, VA 23187-8795, USA
ciardo@cs.wm.edu

Abstract. Document caching on is used to improve Web performance.
An eÆcient caching policy keeps popular documents in the cache and
replaces rarely used ones. The latest web cache replacement policies in-
corporate the document size, frequency, and age in the decision process.
The recently-proposed and very popular Greedy-Dual-Size (GDS) policy
is based on document size and has an elegant aging mechanism. Simi-
larly, the Greedy-Dual-Frequency (GDF) policy takes into account �le
frequency and exploits the aging mechanism to deal with cache pollution.
The eÆciency of a cache replacement policy can be evaluated along two
popular metrics: �le hit ratio and byte hit ratio. Using four di�erent web
server logs, we show that GDS-like replacement policies emphasizing size
yield the best �le hit ratio but typically show poor byte hit ratio, while
GDF-like replacement policies emphasizing frequency have better byte
hit ratio but result in worse �le hit ratio. In this paper, we propose a
generalization of Greedy-Dual-Frequency-Size policy which allows to bal-
ance the emphasis on size vs. frequency. We perform a sensitivity study
to derive the impact of size and frequency on �le and byte hit ratio,
identifying parameters that aim at optimizing both metrics.

1 Introduction

Many replacement policies for web caches have been proposed [1, 3{9]. Some of
them are quite simple and easy to implement, while others are heavily parametrized
or have aspects that do not allow for an eÆcient implementation (thus they can
exhibit good results that serve as theoretical bounds on the best practically
achievable performance). Two essential features distinguish web caching from
conventional caching in the computer systems: (i) the HTTP protocol supports
whole �le transfers, thus a web cache can satisfy a request only if the entire �le
is cached, and (ii) documents stored in a web cache are of di�erent sizes, while
CPU and disk caches deal with uniform-size pages.

One key to good web cache performance is an eÆcient cache replacement
policy to determine which �les should be removed from cache to store newly
requested documents. Further improvements can be achieved when such a policy
is combined with a decision about whether a document is worth caching at all.

A very good survey of currently-known replacement policies for web docu-
ments can be found in [4], which surveys ten di�erent policies, comments on their



eÆciency and implementation details, and proposes a new algorithm, Greedy-
Dual-Size (GDS), as a solution for the web proxy replacement strategy. The
GDS policy incorporates document size, cost, and an elegant aging mechanism
in the decision process, and shows superior performance compared to previous
caching policies. In [1], the GDS policy was extended, taking into consideration
the document frequency, resulting in the Greedy-Dual-Frequency (GDF) pol-
icy, which considers a document's frequency plus the aging mechanism, and the
Greedy-Dual-Frequency-Size (GDFS), which also considers a document's size.

The typical measure of web cache eÆciency is the (�le) hit ratio: the fraction
of times (over all accesses) the �le was found in the cache. Since �les are of
di�erent size, a complementary metric is also important, the byte hit ratio: the
fraction of \bytes" returned from the cache among all the bytes accessed. The
�le hit ratio strongly a�ects the response time of a \typical" �le, since request
corresponding to a �le miss require substantially more time to be satis�ed. The
byte miss also a�ects the response time as well, in particular that of \large"
�les, since the time to satisfy such a request has a component that is essentially
linear in the size of the �le; furthermore, a large byte miss ratio also indicates
the need for a larger bandwidth between cache and permanent �le repository.

The interesting outcome of paper [1] was that, while GDFS achieves the
best �le hit ratio, it yields a modest byte hit ratio. Conversely, GDF results
in the best byte hit ratio at the price of a worse �le hit ratio. The natural
question to ask is then how the emphasis on document size or frequency (and the
related aging mechanism) impact the performance of the replacement policy: do
\intermediate" replacement policies exist that take into account size, frequency,
and aging, and optimize both metrics? In this paper, we partially answer this
question in a positive way by proposing a generalization of GDFS, which allows
to emphasize (or de-emphasize) the size, frequency, or both parameters. Through
a sensitivity study, we derive the impact of size and frequency on the �le and
byte hit ratio.

We intentionally leave unspeci�ed the possible location of the cache: at the
client, at the server, or at the network. The workload traces for our simulations
come from four di�erent popular web sites. We try to exploit the speci�c web
workload features to derive general observations about the role of document size,
frequency and related aging mechanism in web cache replacement policies. We
use trace-driven simulation to evaluate these e�ects.

The results from our simulation study show that de-emphasizing the impact
of size in GDF leads to a family of replacement policies with excellent perfor-
mance in terms of both �le and and byte hit ratio, while emphasizing document
frequency has a similar (but weaker, and more workload-sensitive) impact.

2 Related work and Background

The original Greedy-Dual algorithm introduced by Young [10] deals with the
case when pages in a cache (memory) have the same size but have di�erent costs
to fetch them from secondary storage. The algorithm associates a \value" Hp

with each cached page p. When p is �rst brought into the cache, Hp is de�ned
as the non-negative cost to fetch it. When a replacement needs to be made, the



page p� with the lowest value H� = minpfHpg is removed from the cache, and
any other page p in the cache reduces its value Hp by H�. If a page p is accessed
again, its current value Hp is restored to the original cost of fetching it. Thus,
the value of a recently-accessed page retains a larger fraction of its original cost
compared to pages that have not been accessed for a long time; also, the pages
with the lowest values, hence most likely to be replaced, are either those \least
expensive" ones to bring into the cache or those that have not been accessed
for a long time. This algorithm can be eÆciently implemented using a priority
queue and keeping the o�set value for future settings of H via a Clock parameter
(aging mechanism), as Section 3 describes in detail.

Since web caching is concerned with storing documents of di�erent size, Cao
and Irani [4] extended the Greedy-Dual algorithm to deal with variable size doc-
uments by setting H to cost/size where cost is, as before, the cost of fetching
the document while size is the size of the document in bytes, resulting in the
Greedy-Dual-Size (GDS) algorithm. If the cost function for each document is set
uniformly to one, larger documents have a smaller initial H value than smaller
ones, and are likely to be replaced if they are not referenced again in the near
future. This maximizes the �le hit ratio, as, for this measure, it is always prefer-
able to free a given amount of space by replacing one large document (and miss
this one document if it is referenced again) than many small documents (and
miss many of those documents when they are requested again). From now on,
we use a constant cost function of one and concentrate on the role of document
size and frequency in optimizing the replacement policy.

GDS does have one shortcoming: it does not take into account how many
times a document has been accessed in the past. For example, let us consider
how GDS handles hit and miss for two di�erent documents p and q of the same
size s. When these documents are initially brought into the cache they receive
the same value Hp = Hq = 1=s, even if p might have been accessed n times
in the past, while q might have been accessed for a �rst time; in a worst-case
scenario p could then be replaced next, instead of q. In [1], the GDS algorithm
was re�ned to re
ect �le access patterns and incorporate �le frequency count in
the computation of the initial value:H = frequency=size. This policy is called the
Greedy-Dual-Frequency-Size (GDFS) algorithm. Another important derivation
related to introducing the frequency count in combination with GDS policy is the
direct extension of the original Greedy-Dual algorithm with a frequency count:
H = frequency . This policy is called Greedy-Dual-Frequency (GDF) algorithm.

Often, a high �le hit ratio is preferable because it allows a greater number of
clients requests to be satis�ed out of cache and minimizes the average request
latency. However, it is also desirable to minimize the disk accesses or outside
network traÆc, thus it is important that the caching policy results in a high
byte hit ratio as well. In fact, we will show that these two metrics are somewhat
in contrast and that it is diÆcult for one strategy to maximize both.

3 GDFS Cache Replacement Policy: Formal De�nition

We now formally describe the GDFS algorithm (and its special cases, GDS and
GDF). We assume that the cache has size Total bytes, and that Used bytes



(initially 0) are already in use to store �les. With each �le f in the cache we
associate a \frequency" Fr(f) counting how many times f was accessed since
the last time it entered the cache. We also maintain a priority queue for the �les
in the cache. When a �le f is inserted into this queue, it is given priority Pr(f)
computed in the following way:

Pr(f) = Clock + Fr(f)=Size(f) (1)

where Clock is a running queue \clock" that starts at 0 and is updated, for each
replaced (evicted) �le fevicted, to its priority in the queue, Pr(fevicted); Fr(f) is
the frequency count of �le f , initialized to 1 if a request for f is a miss (i.e., f
is not in the cache), and incremented by one if a request for f results in a hit
(i.e., f is present in the cache); and Size(f) is the �le size, in bytes. Now, let us
describe the caching policy as a whole, when �le f is requested.

1. If the request for f is a hit, f is served out of cache and:
{ Used and Clock do not change.
{ Fr(f) is increased by one.
{ Pr(f) is updated using Eq. 1 and f is moved accordingly in the queue.

2. If the request for f is a miss, we need to decide whether to cache f or not:
{ Fr(f) is set to one.
{ Pr(f) is computed using Eq. 1 and f is enqueued accordingly.
{ Used is increased by Size(f).

Then, one of the following two situations takes place:
{ If Used � Total , �le f is cached, and this completes the updates.
{ If Used > Total , not all �les �t in the cache. First, we identify the
smallest set ff1; f2; : : : ; fkg of �les to evict, which have the lowest priority

and satisfy Used �
Pk

i=1 Size(fi ) � Total . Then:
(a) If f is not among f1; f2; : : : ; fk:

i. Clock is set to maxki=1 Pr(fi).

ii. Used is decreased by
Pk

i=1 Size(fi ).
iii. f1; f2; : : : ; fk are evicted.
iv. f is cached.

(b) If f is instead among f1; f2; : : : ; fk, it is simply not cached and re-
moved from the priority queue, while none of the �les already in the
cache is evicted. This happens when the value of Pr(f) is so low that
it would put f (if cached) among the �rst candidates for replacement,
e.g., when the �le size is very large { thus the proposed procedure
will automatically limit the cases when such �les are cached.

We note that the above description applies also to the GDS and GDF policies,
except that, in GDS, there is no need to keep track of the frequency Fr(f) while,
in the GDF policy, we use the constant 1 instead of Size(f) in Eq. 1.

Let us now consider some properties of GDFS. Among documents with sim-
ilar size and age (in the cache), the more frequent ones have a larger key, thus a
better chance to remain in a cache, compared with those rarely accessed. Among
documents with similar frequency and age, the smaller ones have a larger key
compared to the large ones, thus GDFS tends to replace large documents �rst,



to minimize the number of evicted documents, and thus maximize the �le hit
ratio. The value of Clock increases monotonically (any time a document is re-
placed). Since the priority of �les that have not been accessed for a long time
was computed with an old (hence smaller) value of Clock, at some point, the
Clock value gets high enough that any new document is inserted behind these
\long-time-not-accessed" �les, even if they have a high frequency count, thus it
can cause their eviction. This \aging" mechanism avoids \web cache pollution".

4 Data Collection Sites

In our simulation study, we used four access logs from very di�erent servers:
HP WebHosting site (WH), which provides service to internal customers.
Our logs cover a four-month period, from April to July, 1999. For our analysis,
we chose the month of May, which represents well the speci�cs of the site.
OpenView site (www.openview.hp.com, OV), which provides complete
coverage on OpenView solutions from HP: product descriptions, white papers,
demos illustrating products usage, software packages, business related events,
etc. The log covers a duration of 2.5 months, from the end of November, 1999
to the middle of February, 2000.
External HPLabs site (www.hpl.hp.com, HPL), which provides informa-
tion about the HP Laboratories, current projects, research directions, and job
openings. It also provides access to an archive of published HPLabs research re-
ports and hosts a collection of personal web pages. The access log was collected
during February, 2000.
HP site (www.hp.com, HPC), which provides diverse information about
HP: HP business news, major HP events, detailed coverage of the most soft-
ware and hardware products, and the press related news. The access log covers
a few hours1 during February, 2000, and is a composition of multiple access logs
collected on several web servers supporting the HP.com site (sorted by time).

The access log records information about all the requests processed by the
server. Each line from the access log describes a single request for a document
(�le), specifying the name of the host machine making the request, the time the
request was made, the �lename of the requested document, and size in bytes of
the reply. The entry also provides the information about the server's response to
this request. Since the successful responses with code 200 are responsible for all
of the documents (�les) transferred by the server, we concentrate our analysis
only on those responses. The following table summarizes the characteristics of
the reduced access logs:

Log Characteristics WH OV HPL HPC
Duration 1 month 2.5 months 1 month few hours
Number of Requests 952,300 3,423,225 1,877,490 14,825,457
Combined Size, or Working Set (MB) 865.8 5,970.8 1,607.1 4,396.2
Total Bytes Transferred (GB) 21.3 1,079.0 43.3 72.3
Number of Unique Files 17,489 10,253 21,651 114,388

The four access logs correspond to very di�erent workloads. WH, OV, and
HPL had somewhat comparable number of requests (if normalized per month),
1 As this is business-sensitive data, we cannot be more speci�c.



while HPC had three orders of magnitude heavier traÆc. If we compare the
characteristics of OV and HPC, there is a drastic di�erence in the number of
accessed �les and their cumulative sizes (working sets). OV's working set is the
largest of the four sites considered, while its �le set (number of accessed �les)
is the smallest one: it is more than 10 times smaller than the number of �les
accessed on HPC. In spite of comparable number of requests (normalized per
month) for WH, OV, and HPL, the amount of bytes transferred by OV is almost
20 times greater than for WH and HPL, but still an order of magnitude less than
the bytes transferred by HPC.

5 Basic Simulation Results

We now present a comparison of Least-Recently-Used (LRU), GDS, GDFS and
GDF on a trace-driven simulation using our access logs. Fig. 1 compares GDS,
GDFS, GDF and LRU according to both �le and byte miss ratio (a lower line on
the graph corresponds to a policy with better performance). On the X-axis, we
use the cache size as a percentage of the trace's working set. This normalization
helps to compare the caching policies performance over di�erent traces.

The �rst interesting observation is how consistent the results are across all
four traces. GDFS and GDS show the best �le miss ratio, signi�cantly outper-
forming GDF and LRU for this metric. However, when considering the byte miss
ratio, GDS performs much worse than either GDF or LRU. The explanation is
that large �les are always \�rst victims" for eviction, and Clock is advanced very
slowly, so that even if a large �le is accessed on a regular basis, it is likely to
be repeatedly evicted and reinserted in the priority queue. GDFS incorporates
the frequency count in its decision making, so popular large �les have a better
chance of remaining in the queue without being evicted very frequently. Incorpo-
rating the frequency in the formula for the priority has also another interesting
side e�ect: the Clock is now advanced faster, thus recently-accessed �les are in-
serted further away from the beginning of the priority queue, speeding-up the
eviction of \long time not accessed" �les. GDFS demonstrates substantially im-
proved byte miss ratio compared to GDS across all traces except HPL, where
the improvement is minor.

LRU replaces the least recently requested �le. This traditional policy is the
most often used in practice and has worked well for CPU caches and virtual
memory systems. However it does not work as well for web caches because web
workloads exhibit di�erent traÆc pattern: web workloads have a very small tem-
poral locality, and a large portion of web traÆc is due to \one-timers" | �les
accessed once. GDF incorporates frequency in the decision making, trying to
keep more popular �les and replacing the rarely used ones, while �les with sim-
ilar frequency are ordered accordingly to their age. The Clock is advanced much
faster, helping with the eviction of \long time not accessed" �les. However, GDF
does not take into account the �le size and results in a higher �le miss penalty.



0

2

4

6

8

10

12

14

16

18

5 10 20 30 40

W
eb

 H
os

tin
g 

M
is

s 
R

at
io

 (
%

) LRU
GDF
GDS

GDFS

5

10

15

20

25

30

35

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

LRU
GDF
GDS

GDFS

0
1
2
3
4
5
6
7
8
9

10

5 10 20 30 40

O
pe

n 
V

ie
w

 M
is

s 
R

at
io

 (
%

) LRU
GDF
GDS

GDFS

0

10

20

30

40

50

60

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

LRU
GDF
GDS

GDFS

0

2

4

6

8

10

12

14

5 10 20 30 40

H
P

La
bs

 M
is

s 
R

at
io

 (
%

)

LRU
GDF
GDS

GDFS

15
20
25
30
35
40
45
50
55
60
65

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

LRU
GDF
GDS

GDFS

0

1

2

3

4

5

6

7

5 10 20 30 40

H
P

.c
om

 M
is

s 
R

at
io

 (
%

)

LRU
GDF
GDS

GDFS

10

15

20

25

30

35

40

45

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

LRU
GDF
GDS

GDFS

Fig. 1. File and byte miss ratio as a function of cache size (in % of the working set).

6 Generalized GDFS Policy and Its Simulation Results

The Clock in GDFS is updated for each evicted �le fevicted to the priority of this
�le, Pr(fevicted). In such a way, the clock increases monotonically, but at a very
slow pace. Devising a faster increasing clock mechanism leads to a replacement
strategy with features closer to LRU, i.e., the strategy where age has greater
impact than size and frequency. An analogous reasoning applies to Size(f) and
Fr(f): if one uses Fr(f)2 instead of Fr(f), the impact of frequency is stressed
more than that of size; if one uses log(Size(f)) instead of Size(f), the impact
of size is stressed less than that of frequency.

With this idea in mind, we propose a generalization of GDFS (g-GDFS),

Pr(f) = Clock + Fr(f)�=Size(f)� (2)

where � and � are rational numbers. Setting � or � above one emphasizes the
role of the correspondent parameter; setting it below one de-emphasizes it.



Impact of Emphasizing Frequency in g-GDFS. Introducing frequency in
GDS had a strong positive impact on byte miss ratio and an additional slight
improvement in the already excellent �le miss ratio demonstrated by GDS. Led
by this observation, we would like to understand whether g-GDFS can further
improve performance by increasing the impact of the �le frequency over �le size
in Eq. 2, for example setting � = 2; 5; 10. Fig. 2 shows a comparison of GDF,
GDFS, and g-GDFS with � = 2; 5; 10 (and � = 1). The simulation shows that,
indeed, the additional emphasis on the frequency parameter in g-GDFS improves
the byte miss ratio (except for HPL, for which we already observed in Section 5
very small improvements due to the introduction of the frequency parameter).
However, the improvements in the byte miss ratio come at the price of a worse
�le hit ratio. Clearly, the idea of having a di�erent impact for frequency and size
is sound, however, frequency is dynamic parameter that can change signi�cantly
over time. Special care should be taken to prevent Fr(f)

�
from over
ow in the

priority computation. As we can see, the impact is workload dependent.

Impact of Deemphasizing Size in g-GDFS The question is then whether
we can achieve better results by de-emphasizing the role of size against that of
frequency instead. If this hypothesis leads to good results, an additional bene�t is
ease of implementation, since the �le size is a constant parameter (per �le), unlike
the dynamic frequency count. We then consider g-GDFS where we decrease the
impact of size over frequency in Eq. 2, by using � = 0:1; 0:3; 0:5 (and � = 1),
and compare it with GDF and GDFS, in Fig. 3. The simulation results fully
support our expectations: indeed, the decreased impact of �le size parameter in
g-GDFS improves signi�cantly the byte miss ratio (and, at last, also for HPL).
For example, g-GDFS with � = 0:3 has a byte miss ratio almost equal to that of
GDF, while its �le miss ratio is improved two-to-three times compared to GDF.
The g-GDFS policy with decreased impact of �le size parameter shows close to
perfect performance under both metrics: �le miss ratio and byte miss ratio.

7 Conclusion and Future Work

We introduced the generalized Greedy-Dual-Size-Frequency caching policy aimed
at maximizing both �le and byte hit ratios in web caches. The g-GDFS policy
incorporates in a simple way the most important characteristics of each �le: size,
�le access frequency, and age (time of the last access). Using four di�erent web
server logs, we studied the e�ect of size and frequency (and the related aging
mechanism) on the performance of web caching policies. The simulation results
show that GDS-like replacement policies emphasizing the document size yield
the best �le hit ratio, but typically show poor byte hit ratio, while GDF-like
replacement policies, exercising frequency, have better byte hit ratio, but result
in worse �le hit ratio. We analyzed the performance of g-GDFS policy, which
allows to emphasize (or de-emphasize) size or frequency (or both) parameters,
and performed a sensitivity study to derive the impact of size and frequency on
�le hit ratio and byte hit ratio, showing that decreased impact of �le size over
�le frequency leads to a replacement policy with close to perfect performance in
both metrics: �le hit ratio and byte hit ratio.



0

2

4

6

8

10

12

14

5 10 20 30 40

W
eb

 H
os

tin
g 

M
is

s 
R

at
io

 (
%

) GDF
g-GDFS (alpha=2)
g-GDFS (alpha=5)

g-GDFS (alpha=10)
GDFS

5

10

15

20

25

30

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

GDF
g-GDFS (alpha=2)
g-GDFS (alpha=5)

g-GDFS (alpha=10)
GDFS

0

1

2

3

4

5

6

7

8

9

5 10 20 30 40

O
pe

nV
ie

w
 M

is
s 

R
at

io
 (

%
) GDF

g-GDFS (alpha=2)
g-GDFS (alpha=5)

g-GDFS (alpha=10)
GDFS

0

10

20

30

40

50

60

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

GDF
g-GDFS (alpha=2)
g-GDFS (alpha=5)

g-GDFS (alpha=10)
GDFS

1

2

3

4

5

6

7

8

9

10

5 10 20 30 40

H
P

La
bs

 M
is

s 
R

at
io

 (
%

)

GDF
g-GDFS (alpha=2)
g-GDFS (alpha=5)

g-GDFS (alpha=10)
GDFS

15
20
25
30
35
40
45
50
55
60
65

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

GDF
g-GDFS (alpha=2)
g-GDFS (alpha=5)

g-GDFS (alpha=10)
GDFS

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5 10 20 30 40

H
P

.c
om

 M
is

s 
R

at
io

 (
%

)

GDF
g-GDFS (alpha=2)
g-GDFS (alpha=5)

g-GDFS (alpha=10)
GDFS

10

15

20

25

30

35

40

45

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

GDF
g-GDFS (alpha=2)
g-GDFS (alpha=5)

g-GDFS (alpha=10)
GDFS

Fig. 2. File and byte miss ratio for new g-GDFS policy: � = 2; 5; 10:

The interesting future research question is to derive heuristics that tie the
g-GDFS parameters (in particular, �) to a workload characterization. Some
promising work in this direction has been done in [6].

References

1. M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, T. Jin: Evaluating Content Man-
agement Techniques for Web Proxy Caches. In Proceedings of the 2nd Workshop
on Internet Server Performance WISP'99, May, 1999, Atlanta, Georgia.

2. M. Arlitt, C.Williamson: Trace-Driven Simulation of Document Caching Strate-
gies for Internet Web Servers. The Society for Computer Simulation. Simulation
Journal, vol. 68, No. 1, pp23-33, January 1997.

3. M.Abrams, C.Stanbridge, G.Abdulla, S.Williams, E.Fox: Caching Proxies: Limita-
tion and Potentials. WWW-4, Boston Conference, December, 1995.

4. P.Cao, S.Irani: Cost Aware WWW Proxy Caching Algorithms. Proceedings of
USENIX Symposium on Internet Technologies and Systems (USITS), Monterey,
CA, pp.193-206, December 1997.



0

2

4

6

8

10

12

14

5 10 20 30 40

W
eb

 H
os

tin
g 

M
is

s 
R

at
io

 (
%

) GDF
g-GDFS (beta=0.1)
g-GDFS (beta=0.3)
g-GDFS (beta=0.5)

GDFS

5

10

15

20

25

30

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

GDF
g-GDFS (beta=0.1)
g-GDFS (beta=0.3)
g-GDFS (beta=0.5)

GDFS

0

1

2

3

4

5

6

7

8

9

5 10 20 30 40

O
pe

nV
ie

w
 M

is
s 

R
at

io
 (

%
) GDF

g-GDFS (beta=0.1)
g-GDFS (beta=0.3)
g-GDFS (beta=0.5)

GDFS

0

10

20

30

40

50

60

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

GDF
g-GDFS (beta=0.1)
g-GDFS (beta=0.3)
g-GDFS (beta=0.5)

GDFS

1

2

3

4

5

6

7

8

9

10

5 10 20 30 40

H
P

La
bs

 M
is

s 
R

at
io

 (
%

)

GDF
g-GDFS (beta=0.1)
g-GDFS (beta=0.3)
g-GDFS (beta=0.5)

GDFS

15
20
25
30
35
40
45
50
55
60
65

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

GDF
g-GDFS (beta=0.1)
g-GDFS (beta=0.3)
g-GDFS (beta=0.5)

GDFS

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5 10 20 30 40

H
P

.c
om

 M
is

s 
R

at
io

 (
%

)

GDF
g-GDFS (beta=0.1)
g-GDFS (beta=0.3)
g-GDFS (beta=0.5)

GDFS

10

15

20

25

30

35

40

45

5 10 20 30 40

B
yt

e 
M

is
s 

R
at

io
 (

%
)

GDF
g-GDFS (beta=0.1)
g-GDFS (beta=0.3)
g-GDFS (beta=0.5)

GDFS

Fig. 3. File and byte miss ratio for new g-GDFS policy: � = 0:1; 0:3; 0:5:

5. S. Jin, A. Bestavros. Popularity-Aware GreedyDual-Size Web Proxy Caching Al-
gorithms, Technical Report of Boston University, 2000-011, August 21, 1999.

6. S. Jin, A. Bestavros. GreedyDual* Web Caching Algorithm: Exploiting the Two
Sources of Temporal Locality in Web Request Streams, Technical Report of Boston
University, 1999-009, August 21, April 4, 2000.

7. P.Lorensetti, L.Rizzo, L.Vicisano. Replacement Policies for Proxy Cache.
Manuscript, 1997.

8. S.Williams, M.Abrams, C.Stanbridge, G.Abdulla, E.Fox: Removal Policies in Net-
work Caches for World-Wide Web Documents. In Proceedings of the ACM Sig-
comm96, August, 1996, Stanford University.

9. R.Wooster, M.Abrams: Proxy Caching the estimates Page Load Delays. In pro-
ceedings of 6th International World Wide Web Conference, 1997.

10. N.Young: On-line caching as cache size varies. In the 2nd Annual ACM-SIAM
Symposium on Discrete Algorithms, 241-250,1991.


