Three Pieces of the MapReduce Workload Management Puzzle

Abhishek Verma*, Ludmila Cherkasova*, Vijay S. Kumar*, Roy H. Campbell*
*\{verma7, rhc\}@illinois.edu University of Illinois at Urbana-Champaign,
Job Profiles and MapReduce Performance Model

Problem

- Often MapReduce applications are a part of critical business pipelines and require job completion time guarantees (SLOs)
- Problem: Existing job schedulers do not support SLOs
- Goal: Design a workload management framework for efficient processing of MapReduce jobs with completion time goals
- Controlling tailored allocation and efficient use of resources in shared MapReduce environments is a key challenge

Three Pieces of the Puzzle

1. Job Ordering

- Which order should the jobs be allocated resources?

2. Tailoring amount of resources

- How many slots should be allocated to the chosen job?

3. Allocating spare resources

- How to allocate the spare resources in the system and de-allocate them in case of a new urgent job?

Simulator and Metrics

- Replay traces using the simulator SimMR

- Discrete event simulator replays job traces at task-level
- Accuracy > 95\%
- Can replay two weeks workload in 2 seconds
- Comparison metrics

1. \% of missed jobs
2. Average job completion time
3. Number of spare slot allocations and cancellations

Job Execution with Different Resources

- Different amounts of resources can lead to drastically different job executions and different completion times

1. Earliest Deadline First

- Allocate all the resources in the system to the job with the earliest deadline

2. Min-EDF

- Compute the minimum resources to allocate to the job with the earliest deadline

3. Min-EDF-WC

- Allocate any spare resources among running jobs
- When new job arrives, compute if enough slots will be released in the future to satisfy the job
- If not, cancel spare tasks of the currently running jobs
- Job Profiles compactly summarize performance metrics of different job stages collected from logs

