
Session Based Admission Control:
a Mechanism for Improving Performance

of Commercial Web Sites

Ludmila Cherkasova and Peter Phaal

Hewlett-Packard Labs
1501 Page Mill Road, Palo Alto, CA 94303, USA

e-mail: fcherkasova,phaalg@hpl.hp.com

Abstract
In this paper, we introduce a new, session-based workload

for measuring a web server performance. We define a session
as a sequence of client’s individual requests. We then measure
server throughput as a number of successfully completed ses-
sions. Using a simulation model, we show that an overloaded
web server can experience a severe loss of throughput mea-
sured as a number of completed sessions comparing against
the server throughput measured in requests per second. More-
over, statistical analysis of completed sessions reveals that the
overloaded web server discriminates against longer sessions.

We introduce a session based admission control (SBAC) to
prevent a web server from becoming overloaded and to ensure
that longer sessions can be completed.

We show that a web server augmented with the admission
control mechanism is able to provide a fair guarantee of com-
pletion, for any accepted session, independent of a session
length. This provides a predictable and controllable platform
for web applications, and is a critical requirement for any
e-business.

1 Introduction
As the Internet matures, companies are implementing mis-

sion critical Internet applications. These applications provide
dynamic content, integrate with databases and offer secure
commercial transactions.

Customers are becoming increasingly reliant on these com-
plex business applications for services such as banking, prod-
uct purchases and stock trading. These new services make
greater demands on web servers at a time when traffic is in-
creasing rapidly, making it difficult to ensure adequate level
of service.

Evaluation of web server performance generally focuses
on achievable throughput and latency for request-based type
of workload as a function of traffic load. SpecWeb96 bench-
mark [SpecWeb96] is an industry standard for measuring Web
Servers performance. It is based on generating HTTP requests
to retrieve different length files accordingly to a particular
distribution. The server performance (throughput) is charac-
terized as a maximum achievable number of connection per
second while maintaining the required file mix.

However, commercial applications impose a set of addi-
tional, service level expectations. Typically, access to a web
service occurs in the form of a session consisting of many
individual requests. Placing an order through the web site
involves further requests relating to selecting a product, pro-
viding shipping information, arranging payment agreement

and finally receiving a confirmation. So, for a customer trying
to place an order, or a retailer trying to make a sale, the real
measure of a web server performance is its ability to process
the entire sequence of requests needed to complete a transac-
tion.

In this paper, we introduce a new model of workload based
on sessions. Session-based workload gives a new interesting
angle to revisit and re-valuate the definition of web server per-
formance. It naturally proposes to measure a server through-
put as a number of successfully completed sessions.

Let us consider the situation when a server is processing a
load that exceeds its capacity.

If a load consists of single, unrelated requests then the
server throughput is defined by its maximum capacity, i.e. a
maximum number of connections the server can support. Any
extra connections will be refused and extra load-requests will
be dropped. Thus, once a server has reached its maximum
throughput, it will stay there, at a server maximum capacity.

However, if the server runs a session-based workload then
a dropped request could occur anywhere in the session. That
leads to aborted, incomplete sessions. Using a simulation
model, we show that an overloaded web server can experi-
ence a severe loss of throughput when measured in completed
sessions while still maintaining its throughput measured in re-
quests per second. As an extreme, a web server which seems to
be busily satisfying clients requests and working at the edge of
its capacity could have wasted its resources on failed sessions
and, in fact, not accomplishing any useful work. Statistical
analysis of completed sessions reveals that an overloaded web
server discriminates against the longer sessions. Our analy-
sis of a retail web site showed that sessions resulting in sales
are typically 2-3 times longer than non-sale sessions. Hence
discriminating against the longer sessions could significantly
impact sales and profitability of the commercial web sites.

Quality of service is a way of describing the end to end
performance requirements and conditions that a particular ap-
plication imposes to be successfully executed. For a web
server running a commercial application the following web
quality of service requirement is crucial:

� a fair chance of completion for any accepted session,
independent of session length.

We introduce session based admission control (SBAC) as a
way to provide a web quality of service guaranties for a server
running a session-based workload.

The main goal of a session based admission control is
the prevention of web server from overload. An admission

control mechanism will accept a new session only when a
server has the capacity to process all future requests related to
the session, i.e. a server can guarantee the successful session
completion. If a server is functioning near its capacity, a new
session will be rejected (or redirected to another server if one
is available).

We introduce a simple implementation of session based
admission control based on server CPU utilization.

Deferring a client at the very beginning of their transaction
(session) rather than in a middle - is another desirable web
quality of service property for an overloaded server. It will
minimize an amount of wasted server work.

We believe that sending a clear message of rejection to a
client is very important. It will stop clients from unnecessary
retries which could only worsen the situation and increase
the load on the server. However, issuing an explicit rejection
message imposes an additional load on a web server. For the
most load values and workloads of interest – the overhead is
less than 5-10% of total server work.

We examine trade off between two desirable properties for
an admission control mechanism: responsiveness and stability
and introduce a family of admission control policies which
cover the space between stable and responsive policies.

We show that a web server augmented with session based
admission control is able to provide a fair guarantee of com-
pletion, for any accepted session, independent of a session
length. This provides a predictable and controllable platform
for web applications, and is a critical requirement for any
e-business.

On May 11, 1998, Hewlett-Packard, as a part of its “How
to succeed in E-Business” press event, announced the intro-
duction of the HP Service Control product [HP-98]. This
product deploys the session based admission control mech-
anism, described in this paper, in order to ensure the high
levels of service required to successfully complete commerce
transactions on the web.

2 Workload Model: Requests versus Sessions
WebStone [WebStone] and SpecWeb96 [SpecWeb96] are

the industry standard benchmarks for measuring web server
performance. Using a finite number of clients to generate
HTTP requests they retrieve different length files according
to a particular file size distribution.

For example, SpecWeb96 file mix is defined by the files
(requests) distribution from the following four classes:

� 0 Class: 100bytes - 900bytes (35%)

� 1 Class: 1Kbytes - 9Kbytes (50%)

� 2 Class: 10Kbytes - 90Kbytes (14%)

� 3 Class: 100Kbytes - 900Kbytes (1%)

The web server performance is measured as a maximum
achievable number of connection per second supported by a
server when retrieving files in the required file mix. Current
typical web servers running SpecWeb96 achieve 1000 - 4000
connections per second per processor.

Commercial applications exhibit very different behavior: a
typical access to a web service consists of a sequence of steps
(a sequence of individual requests). A transaction is successful
only when the whole sequence of requests is completed. The
real measure of server performance is the server’s ability to
process the entire sequence of requests needed to complete a
transaction.

We introduce a notion of a session as a unit of session
workload. Session is a sequence of clients individual requests.

Throughout this paper, we consider a file mix as defined
by a SpecWeb96. So, the individual requests retrieve the files
defined by a SpecWeb96 distribution.

The client issues the next request only when it receives
a reply for the previous request. The client issues its next
request with some time delay, called think time. Think time
is a part of the client definition rather than a session structure.
The client waits for a reply for a certain time, called timeout.
After a timeout, the client may decide to repeat its request –
this is termed a retry. A limit is placed on retries – if this
limit is reached and the reply is not received in time, both the
request and the whole session is aborted.

Thus, a client model is defined by the following parameters:

� client (sender) address;

� think time between the requests of the same session;

� timeout - a time interval where the client waits for a
server reply before reissuing the request;

� the number of retries before the session is aborted.

A session is successfully completed when all its requests
are successfully completed. We will evaluate web server
performance in terms of successfully completed sessions.

We decided to use the synthethic workload generator rather
than real traces from commercial sites, because it allows us to
perform the sensitivity analysis. By varying the parameters in
the workload generator, it is possible to analyze and predict
the behaviour of SBAC mechanism across the different range
of workloads, and derive a specific properties of the proposed
mechanism, as well as identify its potential problems. How-
ever, we have analyzed a set of commercial traces in Section 5
to make sure that in our simulation and performance analysis
we have covered this range as well.

3 Server Model: Basic Parameters
To understand the difference in web server behavior while it

runs request-based or session-based workloads we built a sim-
ulation model using C++Sim [Schwetman95]. Basic structure
of the model is outlined in Figure 1.

It consists of the following components:

� a session workload generator;

� N clients;

� a web server.

A session workload generator produces a new session re-
quest accordingly to specified input model parameters:

� session load and

� sessions length distribution.

A session request (i.e first request of a session) is sent to a
web server and is stored in the server listen queue. We limit
the size of the listen queue to 1024 entries which is a typical
default value.

In this way, we are able to use an open model for sessions
generation. Each consequent request from a session is issued
and handled by a specified client. Client behavior is defined
by a closed (feed back) loop model: the client issues the next

 WEB

 SERVER

LISTEN QUEUE

 1024

NEW SESSIONS

 GENERATOR

CLIENT_1

CLIENT_2

CLIENT_N

Figure 1: Basic Structure of Simulation Model.

session request only when it receives a reply from the previous
request.

Two reasons could cause a request, and a session it belongs
to, to be aborted:

� if a listen queue is full then the connection to a server
is refused, and both the request and the whole session is
aborted.

� after issuing the request, the client waits for a server reply
for a certain time. After timeout, the client resends the
request. There is limited number of retries. If the reply
still has not been received in time, both the request and a
whole session is aborted.

REMARK: When the client receives “connection refused”
message due to a full listen queue, he/she can try to resend the
request again. In case of overloaded server, it only can worsen
the situation. We decided to simplify the model by aborting
the request and the whole session, when a listen queue is full,
without an additional client retry.

In this paper, we assume that a server capacity is 1000
connections per second for SpecWeb96. This assumption does
not influence the results validity. In [CP98], we investigate
the importance of the server and client parameters, such as
think time, timeout, and the number of retries, in order to
narrow the simulation space. We conclude that, in general,
the impact of think time is insignificant and independent of
session length. Hence we can narrow a simulation space by
assuming a client with a fixed mean think time. A client
timeout of 1 second might be considered as an additional
quality of service requirement: it sets a limit on a request
latency to 1 second. If this requirement is not met (after a
given number of retries) the session is aborted.

We intentionallyeliminated network delay from our model,
in order to concentrate on the effect of overloaded web server.
Since a server processes 1000 connections per second and the
listen queue length is 1024, the latency to process any accepted
request is less than 2 seconds. If the client timeout is greater
than a server time needed to process all the requests from the
listen queue then it eliminates the possibilityof client timeouts
and retries. Since we are interested in studying a model with
a full range of possible client-server interactions, we carefully
select the model parameters allowing them.

SesLength=5

SesLength=15

SesLength=50

Throughput in Completed Sessions (%)

Load (%)56.00

58.00

60.00

62.00

64.00

66.00

68.00

70.00

72.00

74.00

76.00

78.00

80.00

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

100.00 150.00 200.00 250.00 300.00

Figure 2: Throughput in Completed Sessions for Overloaded
Server.

Without loss of generality for the rest of the paper, we
assume a model with the following client parameters:

� a think time between the requests of the same session is
exponentially distributed with a mean of 5 seconds;

� a timeout - the time client waits for a reply before re-
sending the request - is set to 1 second;

� one retry to resend the request after timeout.

� a service time of the request is linearly proportional to
the requested file size.

4 Characteristics of Overloaded Web Server
For the rest of the paper, we assume the session lengths to

be exponentially distributed with a given mean. In order to
analyze the server behavior depending on a session length, we
have performed experiments for session lengths with a mean
of 5, 15 and 50.

Figure 2 shows throughput in completed sessions for an
overloaded web server.

At first glance, the server throughput in completed sessions
looks somewhat acceptable. However, the ordering is some-
what counterintuitive: web server performance is better for
workloads with a longer session mean.

How can it be explained?
First of all, the server throughput is measured as a number

of completed sessions. We have sessions of different length,
since the session lengths are exponentially distributed. Our
first explanation of the above phenomenon is that shorter ses-
sions have higher chances to complete. Thus, the acceptable
“quantitative” value of throughput can be obtained at a price
of “lower quality” of this throughput.

The second explanation is of a different nature. Let us con-
sider a session length distribution with a mean of 50. When

SesLength=5_Applied

SesLength=15_Applied

SesLength=50_Applied

SesLength=5_Completed

SesLength=15_Completed

SesLength=50_Completed

Average SesLength of Output

Load (%)0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

100.00 150.00 200.00 250.00 300.00

Figure 3: Average Length of Completed Sessions.

a long session gets aborted, it creates a potential amount of
unused server resources, big enough to service several short
sessions. Applying the same reasoning to a session length
distribution with a mean of 5 – we can see that the difference
between “long” and “short” session lengths for this distribu-
tion is less significant: often several sessions are aborted be-
fore it creates enough “unused” server resources to complete
an additional session.

Let us analyze the simulation results in detail. Fig-
ure 3 shows the average session length of completed sessions
against the average session length of all generated sessions
as the model input. As it is clearly seen, the average session
length of completed sessions is significantly lower than the
original,input distribution. For the load of 300% and the orig-
inal average session length of 5, 15 and 50, the average length
of completed sessions is 1.7, 4.3 and 13.4 correspondingly.

The session lengths are defined to be exponentially dis-
tributed with a given mean m. In order to analyze the dis-
tribution of the completed sessions in more detail, we will
partition them in the following three bins:

� first bin: the sessions shorter or equal to m;

� second bin: the sessions longer than m but shorter or
equal to 2 �m;

� third bin: the sessions longer than 2 �m;

Figure 4 shows the percentage of original and completed
sessions in three bins by length for an overloaded server run-
ning a session-based workload with a mean of 50.

The original distribution by session lengths is the follow-
ing:

� first bin: 63%;

� second bin: 23%;

SesLength<=50_Applied

50<SesLength<=100_Applied

SesLength>100_Applied

SesLength<=50_Completed

50<SesLength<=100_Completed

SesLength>100_Completed

% of Completed Sessions

Load (%)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

100.00 150.00 200.00 250.00 300.00

Figure 4: Percentage of Completed Sessions in Three Bins
by Length for an Overloaded Server Running Session-Based
Workload with Mean = 50.

� third bin: 14%.

The distribution of completed sessions under 300% load
changes dramatically:

� first bin: 98.14%;

� second bin: 1.83%;

� third bin: 0.03%.

Indeed, the overloaded web server discriminates against
the medium and long sessions in a quite severe way: almost
all the completed sessions fall in the first bin, the sessions
from the second and the third bins are practically absent.

To complete the analysis of an overloaded web server run-
ning a session-based workload we introduce a new perfor-
mance measure: useful server utilization. Traditionally, a
server performance is characterized by its throughput and uti-
lization. We have shown a difference in throughput of an
overloaded web server, when measured in percentage of com-
pleted requests and in percentage of completed sessions. We
apply the same idea to characterize server utilization. We
define useful server utilization as server busy time spent pro-
cessing only sessions which complete.

Figure 5 shows useful server utilization as a function of load
and session length. The results are overwhelming: the over-
loaded, “busy looking” server produces an amazingly small
amount of useful work: around 15% for a 200% load; less
than 7% for a 300% load.

This concludes our preliminary analysis of the behavior
and performance characteristics of an overloaded web server
running a session-based workload. This section raises rather
serious question: is such server behavior expected and accept-
able for commercial sites? Since the answer is rather obvious,

SesLength=5

SesLength=15

SesLength=50

Server Utilization (%)

Load (%)
5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00 150.00 200.00 250.00 300.00

Figure 5: Server Useful Utilization of Processing Sessions
which Complete.

the next question to ask is: can a web server be augmented
with session based admission control mechanism to prevent
the server from becoming overloaded and to ensure that longer
sessions are completed?

5 Sessions Length Distribution for Commer-
cial Web Sites

In order to outline a workload space of interest and narrow
the simulation space, we have analyzed web server access log
data from a particular commercial site. This commercial site
allows small businesses to purchase products online. This site
provides the clients with product catalogues to browse, ability
to add selected products to a “shopping cart”, and finally to
purchase the contents of the shopping cart, completing the
sale. We analyzed a session length distribution, specific for
sales and non-sales transactions.

The distributions clearly show that the sale sessions are
much longer than non-sale sessions. The following table
summarizes the distribution statistics:

Mean Session Length Percentage of Sessions
Total 36.5 100%
Sales 73.6 18.3%

Non-Sales 28.2 81.7%

(1)
The average session length of a sale is more than 2.5 times

longer that of non-sale. If we apply the partitioning in three
bins proposed in Section 4 then sale-sessions belong to the
second and third bins. As it was shown the vast majority
(98%) of sessions which complete on an overloaded server
fall in a first bin. As a result it would significantly impact
sales and profitability of the site.

6 Web Quality of Service Requirements
We introduce the term, web quality of service, to describe

the service levels needed to complete web sessions. A web
server that ensures a fair opportunity and guarantee of com-
pletion for all sessions, independent of session length, exhibits
good web quality of service.

A competing requirement is the site operators desire to
maximize the number of sessions completed. Server through-
put should be maximized subject to providing adequate web
quality of service. Our notion of useful server utilization
captures this combined goal and results in the objective of
maximizing useful server utilization.

To summarize, a web server providing good web quality
of service will have the following characteristics:

1. Visitors will have a fair chance of completing sessions,
independent of session length.

2. Server will minimize waisted work in order to maximize
useful server utilization.

3. There will be a minimal number of aborted sessions (ide-
ally zero).

7 Session Based Admission Control Mecha-
nism: Responsiveness vs Stability

To satisfy the web quality of service requirements discussed
in Section 6, we introduce a session based admission control
mechanism for a server handling a session-based workload.

The main goal of an admission control mechanism is to pre-
vent a web server from becoming overloaded. We introduce
a simple admission control mechanism based on the server
CPU utilization.

The basic idea of a session based admission controller is
as follows: the server utilization is measured during prede-
fined time intervals (say, each second). Using this measured
utilization (for the last interval) and some data characterizing
server utilization in the resent past, it computes an “observed”
utilization. If the observed utilization gets above a specified
threshold then for the next time interval (i.e. the next second),
the admission controller will reject all the new sessions and
will only serve the requests from already admitted sessions.
Once the observed utilization drops below the given thresh-
old, the server (controller) changes its policy for the next time
interval and begins to admit and process new sessions again.

Formally, the admission control mechanism is defined by
the following parameters:

� Uac – an ac-threshold which establishes the critical server
utilization level to switch on the admission control pol-
icy;

� T1; T2; :::; Ti; ::: – a sequence of time intervals used for
making a decision whether to admit (or to reject) new
sessions during the next time interval. This sequence is
defined by the ac-interval length;

� fac – an ac-function used to evaluate the observed uti-
lization.

We distinguish two different values for server utilization:

� Umeasured

i
– a measured server utilization during Ti –

the i-th ac-interval;

� U observed

i+1 – an observed utilization computed using a
given ac-function fac after ac-interval Ti and before a
new ac-interval Ti+1 begins, i.e. U observed

i+1 = fac(i+1).

In this paper, we will consider ac-function fac(i+1) defin-
ing U observed

i+1 in the following way:

� fac(1) = Uac;

� fac(i+1) = (1�k)�fac(i)+k�Umeasured

i
;where k is

a coefficient between 0 and 1, and it is called ac-weight
coefficient.

A web server with an admission control mechanism re-
evaluates its admission strategy on specified by the time in-
tervals T1; T2; :::; Ti; ::: boundaries. Web server behavior for
the next time interval Ti+1 is defined in the following way:

� If U observed

i+1 > Uac then any new session arrived during
Ti+1 will be rejected, and web server will process only
requests belonging to already accepted sessions.

� If U observed

i+1 � Uac then web server during Ti+1 is func-
tioning in a usual mode: processing requests from both
new and already accepted sessions.

There are two desirable properties for an admission con-
trol mechanism: responsiveness and stability. If a server’s
load during previous time intervals is consistently high, and
exceeds its capacity, then responsiveness is very important:
the admission control policy should be switched on as soon
as possible, to control and reject newly arriving traffic. How-
ever, if the server receives an occasional burst of new traffic,
while still being under a manageable load, then the stability,
which takes into account some load history, is a desirable
property. It helps to maximize server throughput and does not
unnecessary reject newly arriving traffic.

As we can see, these two properties are somewhat contra-
dictory:

� responsiveness leads to a more restrictive admission pol-
icy (since there is a chance of “over reacting” to oc-
casional traffic bursts while overall a server is not yet
overloaded). It aims to achieve higher web quality of
service guaranties at a price of slightly lower server ses-
sion throughput (in particular, when a server operates in
a heavy load area but is not yet overloaded).

� stability takes into account a server’s load history. In
such a way, that it delays a first reaction of an admission
control policy to the overload, while it still looks like an
occasional burst, rather than a consistent overload. If a
total server load is still around the server capacity then
such a strategy allows better server session throughput
to be achieved. However, if the overload is consistent
then a less restrictive rejection policy inevitably leads to
a higher rate of aborted sessions, and as result to poorer
session completion characteristics.

The value of coefficient k in definition of fac introduces
a family of admission control policies which cover the space
between stable and responsive policies.

If k = 1 then the admission control policy is based entirely
on a value of measured server utilization during the last ac-
interval. Let us call this strategy ac-responsive.

If k = 0:1 then the admission control policy decision is
strongly influenced by a server load prehistory, while the im-
pact of a measured server utilization during the last ac-interval
is limited. Let us call this strategy ac-stable.

8 Cost of Rejection
We believe that sending a clear message of rejection to a

client is very important. It will stop clients from unnecessary
retries which could only worsen the situation and increase
the load on the server. If the server promises to serve these
clients, say in five minutes, it might be enough to resolve the
current overload and provide a high level of service without
loosing customers. Commercial sites might use some addi-
tional stimuli and bonuses issued in these rejection messages
to keep their customers satisfied.

However, issuing an explicit rejection message imposes an
additional load on a web server. The higher the load – the
greater the number of rejection messages sent by the server.
How large is the rejection overhead? What percentage of total
messages constitutes the rejection messages?

This section derives a worst case bound to estimate the re-
jection overhead as a function of the applied load and average
session length.

We use the following denotations:

� Sr - a server capacity in requests, i.e. number of connec-
tions (requests) per second a server can sustain.

� Ss - a server capacity in sessions, i.e. number of sessions
per second a server can complete.

� SesLength - an average session length.

� Load - an applied load in sessions (Load = 2 means a
load of 200% of server capacity).

� x - a number of rejected sessions per second.

� y - a number of completed sessions per second.

First of all, there is a simple relation between Sr , Ss and
SesLength:

Ss =
Sr

SesLength
(1)

Since Ss is a server capacity in sessions and Load is an
applied load in sessions, Load�Ss is a total number of issued
sessions per second. Obviously, the sum of completed and
rejected sessions per second is a number of sessions in total,
a server has received per second:

x+ y = Load � Ss (2)

There are two types of sessions: completed and rejected
ones. Each completed session implies that a client conse-
quently makes, on average, the number of requests defined
by the SesLength. Each rejected session is equivalent to
processing a single request - a worst case estimate of the cost
of sending an explicit rejection message to the client. Thus a
number of requests per second handled by a server is defined
in the following way:

y � SesLength + x = Sr (3)

Replacing Ss in (2) with a formula (1), and expressing y
from (2), we have the following equation:

y =
Load � Sr

SesLength
� x (4)

Replacing y with (4) in equation (3) we can express x:

x =
Sr � (Load� 1)
SesLength � 1

(5)

Since x is a number of rejected sessions (rejection mes-
sages) per second, and Sr defines a total number of requests
per second processed by a server, then a percentage of rejec-
tion messages from the total number of requests is defined as
follows:

100% � x

Sr

Let us call this percentage the RejectionOverhead. Here is
the final equation:

RejectionOverhead = 100% �
(Load � 1)

SesLength � 1
(6)

The rejection cost varies depending on the average session
length and applied load: the higher the load and the shorter the
session length – the higher the rejection overhead. However,
for most of the load values and workloads of interest – the
overhead is less than 10%.

REMARK: Formula (6) holds for theLoad andSesLength
values, satisfying the following condition: Load � 1 �
SesLength � 1. For the other values, formula (6) is mean-
ingless and reflects the situation that the applied load is so
high that the server’s capacity is not enough to send all the
rejection messages.

9 Characteristics of Overloaded Web Server
with Session Based Admission Control

This section analyzes the simulation results of an over-
loaded web server augmented with session based admission
control.

We analyze the results produced by the ac-responsive ad-
mission control policy introduced in Section 7 (i.e. ac-weight
coefficient k=1) with the following parameters:

� ac-threshold Uac = 95%

� ac-interval length of 1 second;

a web server augmented with such an admission control
policy re-evaluates its admission strategy each second. Since
the ac-responsive policy, U observed

i+1 is defined entirely by the
cpu utilization measured during i-th second, i.e. U observed

i+1 =

Umeasured

i
:

If a measured cpu utilization for the previous i-th second is
above the ac-threshold, i.e. Umeasured

i
> 95% then any new

session arriving during the next second will be rejected, and
web server will process only requests belonging to already
accepted sessions. Otherwise, for the next second, the web
server is functioning in a usual mode: processing requests
from both new and already accepted sessions.

We performed the experiments for the average session
lengths of 5, 15 and 50. We varied a load from 80% to
300%. The session workload with mean of 5 is not a realistic
representative of commercial workloads. However, we in-
cluded this case to cover the simulation space and understand
the possible admission control limitations. The same can be
said about a load of 300%: if a web server is consistentlyover-
loaded more than 200% it is a time to increase capacity and to

SesLength=5

SesLength=15

SesLength=50

Throughput in Completed Sessions (%)

Load (%)
40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

100.00 150.00 200.00 250.00 300.00

Figure 6: Throughput in Completed Sessions for Server with
Admission Control.

extend it with an additional server. However, for complete-
ness, and to understand the general behaviour of admission
control mechanism we included a load of 300% too.

Figure 6 shows throughput in completed sessions. At a
first glance, the only results for sessions with mean length of
50 look perfect. In order to explain the curves correspondent
to sessions with mean of 15 and 5, we need to remind one of
the important details related to sessions rejection. Under high
load, the more sessions are rejected and the rejection overhead
increases correspondingly. The percentage of completed ses-
sions is largely offset by that amount.

One of the goals of the admission control mechanism is to
minimize the number of aborted sessions (ideally, reducing
them to 0) by explicit session rejection. Figure 7 shows the
percentage of aborted sessions from those admitted for pro-
cessing. The results for sessions with a mean of 15 and 50 are
perfect across the whole load space. They meet the desired
quality of service requirement: zero aborted sessions from
those accepted for service.

For a workload with mean of 5, the results are getting worse
at load greater than 200%. The reason is that the shorter the
average session length – the higher the number of sessions
generated by the clients and accepted by the server during the
ac-interval (i.e. 1 second). For example, if a web server is in
“accept mode” then for a load of 300%, during one second it
accepts around 600 new sessions, in addition to the sessions
which are already in progress.

The main reason for aborted sessions under this scenario is
that the listen queue overflows. One way to fix the problem
is to reduce the ac-interval. Figure 11 shows significantly
improved percentage of aborted sessions for a workload with
mean of 5 and an admission control mechanism with an ac-
interval of 0.5 seconds. We will discuss further how to tune
an admission control strategy for better performance in Sec-
tion 10.

SesLength=5

SesLength=15

SesLength=50

% of Aborted Sessions

Load (%)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

100.00 150.00 200.00 250.00 300.00

Figure 7: Percentage of Aborted Sessions from Admitted for
Processing by Server with Admission Control.

One of the main goals of the admission control mechanism
is to ensure completion of any accepted session, independent
of a session length.

Figure 8 shows the average session length of completed
sessions against the average session length of all generated
sessions as the model input. The results are perfect for sessions
with a mean of 15 and 50 across the whole load space. For a
workload with mean of 5, the results are getting slightlyworse
at load around 300% of server capacity.

The admission control mechanism dramatically improves
the “quality” of the web server output compared with the
similar results for a web server with no admission control
shown in Figure 3.

Finally, Figure 9 shows useful server utilization as a func-
tion of a load and a session length. Again, for sessions with
a mean of 15 and 50 the results are improved almost an order
of magnitude in overloaded area comparing with the similar
results for a web server with no admission control shown in
Figure 5. A slight decline for a curve, characterizing a server
running sessions with a mean of 15, is due to occasional retries
in an overloaded area (but no aborted sessions yet). Useful
server utilization for a workload with mean of 5, is expectedly
lower for 300% load due to a number of aborted sessions and
related problems discussed above.

This concludes the analysis of an overloaded web server
augmented with a session based admission control policy. It
convincingly shows that an admission control mechanism is
able to provide the web-qualityof service guaranties discussed
in Section 6 – critical for success of e-commerce retail sites.

10 Tuning the Admission Control Mechanism
for Better QoS

Choosing the right parameters for the admission control
mechanism is very important. In Section 9, we analyzed

SesLength=5_Applied

SesLength=15_Applied

SesLength=50_Applied

SesLength=5_Completed

SesLength=15_Completed

SesLength=50_Completed

Average SesLength of Output

Load (%)

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

100.00 150.00 200.00 250.00 300.00

Figure 8: Average Length of Completed Sessions by Over-
loaded Server with Admission Control.

SesLength=5

SesLength=15

SesLength=50

Server Utilization (%)

Load (%)
15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

100.00 150.00 200.00 250.00 300.00

Figure 9: Useful Utilization for a Server with Admission
Control.

SesLength=5

SesLength=15

SesLength=50

% of Aborted Sessions

Load (%)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00 150.00 200.00 250.00 300.00

Figure 10: Percentage of Aborted Sessions from Admitted for
Processing for Server with Admission Control, AC-Interval =
5sec, Workload with Average Session Length of 5.

the results produced by the ac-responsive admission control
policy with the following parameters:

� ac-threshold Uac = 95%

� ac-interval length of 1 second;

How do the results depend on the length of the ac-interval?
What will happen if an ac-interval is set to 5 seconds?

Figure 10 shows the percentage of aborted sessions from
those admitted for processing for an admission control mecha-
nism with an ac-interval of 5 seconds. Results are significantly
worse than similar ones shown in Figure 7 for an admission
control mechanism with an ac-interval of 1 second. The rea-
son is that the shorter the average session length – the higher
the number of sessions generated by the clients, and accepted
by the server during the ac-interval. For example, if a web
server is in “accept mode” then for the load of 300% during 5
seconds it accepts around:

� 3000 new sessions (5sec � 3load � 200sessions) for a
workload with an average session length of 5;

� 1000 new sessions (5sec � 3load � 66:7sessions) for a
workload with an average session length of 15;

� 300 new sessions (5sec�3load�20sessions) for a work-
load with an average session length of 50.

These new sessions are accepted in addition to the sessions
which are already in progress. The main reason, for aborted
sessions under this scenario, is that the listen queue overflows:
it has a limited size of 1024 entries. As a snowball effect:
when the listen queue gets full, it also triggers a set of retries for
the requests at the end of the listen queue. The timeout value

SesLength=5

SesLength=15

SesLength=50

% of Aborted Sessions

Load (%)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

100.00 150.00 200.00 250.00 300.00

Figure 11: Percentage of Aborted Sessions from Admitted for
Processing for Server with Admission Control, AC-Interval =
0.5sec, Workload with Average Session Length of 5.

is 1 second, and the server can only process 1000 requests per
second (accordingly to our initial assumption about server
capacity). One way to fix the problem is to define a shorter
ac-interval.

Figure 11 shows the percentage of aborted sessions for an
admission control mechanism with an ac-interval of 0.5 sec-
onds. The number of aborted sessions, for a session length of
5, is significantly less than for an admission control mecha-
nism with an ac-interval of 1 second (see Figure 7 for com-
parison).

Varying an ac-thresholdUac from 95% to 97% will slightly
increase throughput in completed sessions at a price of greater
number of aborted sessions too, especially for workloads with
shorter average session length. Conversely, decreasing an ac-
threshold Uac from 95% to 93% will improve the quality of
output, decreasing the number of aborted sessions, but at a
price of slight decrease of throughput in completed sessions.

Similar impact has an ac-weight parameter in definition
of ac-function allowing to define a family of ac-functions:
from ac-stable one to ac-responsive one. Figure 12 shows
the server throughput while running workload with average
session length of 15, depending on ac-weight k used in ac-
function fac definition (see Section 7).

As expected, the server throughput is higher under “more
stable” ac-functions for a load below 170%. The situation
changes for higher load in favor of “more responsive func-
tions”. The rates of aborted sessions are worse for “more
stable functions” in higher load area as shown in Figure 13.

This shows again that ac-stable admission control functions
achieve better throughput in the load range of 85%-120% at a
price of higher number of aborted sessions under higher loads.
While ac-responsive admission control functions lead to more
restrictive admission policies and achieve higher quality of
service guaranties, especially at high loads but at the price of

Weight=0.1_Stable

Weight=0.3

Weight=0.5

Weight=0.7

Weight=1_Responsive

Throughput in Completed Sessions (%)

Load (%)
74.00

75.00

76.00

77.00

78.00

79.00

80.00

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

89.00

90.00

91.00

100.00 150.00 200.00 250.00 300.00

Figure 12: Throughput in Completed Sessions for Family of
AC-Functions: from AC-Stable to AC-Responsive, Workload
with Average Session Length of 15.

Weight=0.1_Stable

Weight=0.3

Weight=0.5

Weight=0.7

Weight=1.0_Responsive

% of Aborted Sessions

Load (%)
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

100.00 150.00 200.00 250.00 300.00

Figure 13: Number of Aborted Sessions for Family of AC-
Functions: from AC-Stable to AC-Responsive, Workload
with Average Session Length of 15.

slightly lower server session throughput (in particular, when
a server operates at loads in the range 85%-120%).

Obviously, a hybrid admission control strategy is a desir-
able goal. Developing a hybrid strategy is one of the goals of
the future work.

Another interesting question for future research is the fol-
lowing. For a given web server and workload characteristics,
define an optimal or nearly optimal admission control mech-
anism.

11 Conclusion
In this paper, we introduce a new, session-based work-

load for measuring a web server performance. We show that
an overloaded web server can experience a significant loss
of throughput as a number of completed sessions comparing
against the server throughputmeasured in requests per second.

However, this loss is not always easy to recognize.
When the session lengths are exponentially distributed (in
other words, there is enough variability in session lengths)
the throughput in sessions for overloaded server decreases
slightly, but not dramatically.

Analysis of the completed sessions reveals, however, that
the majority (up to 98%) of completed sessions are short: the
overloaded web server discriminates against the medium and
long sessions. This could significantly impact sales and prof-
itability of commercial web sites because the sale-sessions
are typically 2-3 times longer than non-sale ones. Based on
this analysis, we formulate the web-quality of service require-
ments a web server has to support. In particular, a fair guar-
antee of completion, for any accepted session, independent of
a session length - is a crucial requirement for commercial web
site to be successful.

We show that a web server augmented with admission
control mechanism is able to provide required web-quality of
service guaranties. Incorporating this technique into product
allows HP to offer solutions to customers that enables them to
migrate core business functions onto web based technologies,
and to use web applications for strategic advantage.

References
[CP98] L. Cherkasova, P. Phaal: Session Based Ad-

mission Control: a Mechanism for Improving
the Performance of an Overloaded Web Server.
HP Laboratories Report No. HPL-98-119, June,
1998. http://www.hpl.hp.com/techreports/98/HPL-98-
119.html 8/HPL-98-119.html

[HP-98] HP Software Depot. http://www.software.hp.com/

[Schwetman95] Schwetman, H. Object-oriented simulation
modeling with C++/CSIM. In Proceedings of 1995 Win-
ter Simulation Conference, Washington, D.C., pp.529-
533, 1995.

[SpecWeb96] The Workload for the SPECweb96 Benchmark.
http://www.specbench.org/osg/web96/workload.html

[WebStone] WebStone: The Standard Web Server Bench-
mark. http://www.mindcraft.com/benchmarks/webstone/

