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Abstract
Resource pools are computing environments that offer vir-

tualized access to shared resources. When used effectively
they can align the use of capacity with business needs (flex-
ibility), lower infrastructure costs (via resource sharing),
and lower operating costs (via automation). This paper
describes the Quartermaster capacity manager service for
managing such pools. It implements a trace-based technique
that models workload (e.g., application) resource demands,
their corresponding resource allocations, and resource access
quality of service. The primary advantages of the technique
are its accuracy, generality, support for resource access qual-
ities of service, and optimizing search method. We pose gen-
eral capacity management questions for resource pools and
explain how the capacity manager helps to address them
in an automated manner. A case study demonstrates and
validates the method on empirical data from an enterprise
application. We show that the technique exploits much of
the resource savings to be achieved from resource sharing
and is significantly more accurate at estimating per-server
required capacity than a benchmark method used in prac-
tice to manage a resource pool. Finally, we explain how the
problems relate to other practices regarding enterprise ca-
pacity management and software performance engineering.

1. INTRODUCTION
The Quartermaster (QM) capacity manager is a manage-

ment service for resource pools that support enterprise appli-
cations. It automatically searches for workload assignments
that best meet objectives such as consolidation, load lev-
eling, and problem solving. Consolidation packs workloads
onto a small set of resources, load leveling distributes work-
loads across a fixed size resource pool to lessen the likelihood
of service level violations, and problem solving recommends
alternative assignments to lessen the impact of unexpected
demands on a particular resource. The service evaluates al-
ternative workload assignments more quickly and accurately
than human operators. As a result it can lower administra-
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tive costs, reduce the risks associated with resource sharing,
and improve the use of resource pool infrastructure.

Resource pools are collections of resources, such as clus-
ters of servers or racks of blades, that offer shared access to
computing capacity. Virtualization services offer interfaces
that support the lifecycle management (e.g., create, destroy,
move, size capacity) of resource containers (e.g., virtual ma-
chines, virtual disks) that provide access to shares of capac-
ity. Application workloads are assigned to the containers
which are then associated with resources. A resource pool
and its resources have capacity attributes, e.g., CPU, mem-
ory, I/O operation rates, and bandwidths, each with limited
capacity.

Figure 1: Average CPU Utilization of Servers at an

Enterprise Data Center.

Figure 1 provides some motivation for resource pools and
the potential sharing they offer. It illustrates the average
CPU utilization of servers at an enterprise computing site.
Each bar gives the average CPU utilization of a server. The
figure shows that many servers have low CPU utilizations.
The site is typical of many enterprise data centers. There is
an opportunity to consolidate many workloads on a smaller
number of servers. The figure also shows that some servers
are over utilized. Ideally, it would be possible to make more
resources available to workloads if they need them.

We consider the problem of hosting enterprise applications
in such resource pools. These applications often operate
continuously, have unique time varying demands, can share
individual resources such as a CPU or may require many
resources, and may have different service level expectations.
These complexities make it difficult and time consuming for
human operators to make effective use of such pools.

When managing resource pools there are numerous capac-
ity management questions that must be answered to ensure
that the resources are used effectively. For example: how



much capacity is needed to support the current workloads?
Which workloads should be assigned to each resource? What
is the performance impact of workload scheduler and/or pol-
icy settings that govern sharing? How should workloads
be assigned to make workload scheduler and/or policy set-
tings most effective? What should be done when a resource
doesn’t have sufficient capacity to meet its workloads’ needs?
How many resources will be needed over a planning horizon?
The QM capacity manager can be used to automate analysis
steps that address these questions. We demonstrate the ef-
fectiveness of the method using a case study. The technique
proves to be significantly more accurate at anticipating ca-
pacity requirements than a method, the benchmark method,
used in practice.

The following sections describe related work, the QM ca-
pacity manager technique, our approach towards addressing
the above questions, and a case study. We close with a
summary of our work.

2. RELATED WORK
Historically, enterprise capacity management groups have

relied upon curve fitting and queueing models to anticipate
capacity requirements for shared resources such as main-
frames or large servers. Curve fitting and business level
demand forecasting methods are used to extrapolate mea-
surements of application demands on each resource. Queue-
ing models may be used to relate desired mean response
times for general workload classes (e.g., batch or interac-
tive, payroll, accounts receivable) to targets for maximum
resource utilizations. Unfortunately, such planning exercises
are a people intensive and hence expensive process. Most
organizations only conduct these exercises when the costs
can be justified. Furthermore, today’s enterprise data cen-
ters can have hundreds of large shared servers and thou-
sands of lightly utilized smaller server resources. To reduce
management costs, enterprises are evolving their data center
architectures to exploit resource pools. Resource pool au-
tomation and virtualization capabilities promise lower costs
of ownership for similar quantities of capacity. However,
methods are needed that systematically address the capac-
ity management questions for such environments.

We employ a trace-based approach to model the shar-
ing of resource capacity for resource pools. The general
idea behind trace-based methods is that traces capture past
demands and that future demands will be similar. Many
groups have applied trace-based methods for detailed per-
formance evaluation of processor architectures [1]. They
can also be used to support capacity management on more
coarse data, e.g., resource usage as recorded every five min-
utes. Our early work on data center efficiency relied on
traces of workload demands to predict opportunities for re-
source sharing in enterprise data centers [2]. We conducted a
consolidation analysis that packed existing server workloads
onto a smaller number of servers using an Integer Linear
Programming based bin-packing method. Unfortunately the
bin-packing method is NP-complete for this problem, and as
a result is a computationally intensive task. This makes the
method impractical as a method for on-going capacity man-
agement.

Traces have been used to support what-if analysis that
consider the assignment of workloads to consolidated servers.
AOG [3] and TeamQuest [4] now offer products that employ
trace-based methods to support consolidation exercises. Our

methods are similar, but go further by addressing issues in-
cluding resource access Quality of Service (QoS) [5] and fast
optimizing searches in support of on-going automated man-
agement [6]. The work described in this paper integrates
the concepts of QoS and fast optimization heuristics and
demonstrates the resulting service in a case study. Qual-
ities of service are realized by associating workloads with
resource access classes of service that have specific service
level objectives.

Others have used traced-based methods to support the
creation of performance models for software performance
engineering exercises [7]. Clearly traces can be exploited
at many levels of abstraction. We suggest that they are an
excellent mechanism to bridge the divide between software
performance engineering and capacity management.

The approach we consider is targeted towards enterprise
application environments. In these environments workloads
are often repetitive and predictable. Those responsible for
the applications are typically risk averse. The approach we
employ aims to reduce risk. We believe that the approach
is more appropriate than pure priority and market based
mechanisms for resource allocation that do not offer any
assurances regarding qualities of service [10][11]. However,
at this time our belief remains a subject of debate.

3. QM CAPACITY MANAGER SERVICE
We have developed the Quartermaster Capacity Manager

Service to address the capacity management questions. The
service is part of the Quartermaster resource utility [8]. The
tool has several inputs that are described below. These in-
clude traces of application workload demands on capacity
attributes, an association of the demands with classes of ser-
vice, resource access Class of Service (CoS) constraints for
each class of service [2], constraints on application assign-
ments (e.g., which applications may or may not be assigned
to the same resource), and a specification (limits) for the
capacity attributes of resources in the resource pool. The
service implements several kinds of analysis including the
simulation of a workload assignment (e.g., what-if) and an
optimizing search to find an assignment of applications to re-
sources that best satisfies an objective (e.g., consolidation,
load leveling, problem solving) subject to the constraints.
We now describe each of these inputs in greater detail. This
is followed by a description of the components that imple-
ment the service.

Consolidation refers to an objective of minimizing the
number of resources, e.g., computer servers, needed to sup-
port the workloads. Load leveling balances workloads across
a resource pool of known size to reduce the likelihood of ser-
vice level violations. Problem solving focuses on a single
resource. It reports on the impact of moving one or more
workloads from a resource, that may not be satisfying its
service level objectives, to other resources and recommends
which workloads to migrate. Combinations of these func-
tions can be used to address the capacity management ques-
tions of Section 1. This paper focuses on the consolidation
objective.

Each workload has demands upon capacity attributes such
as CPU, memory, network and storage usage. Workload
traces are gathered by existing monitoring systems such as
HP’s OpenView Performance Agent or the Windows Per-
formance Monitor to record these demands. Such traces
are gathered as a matter of best practice in professionally



Figure 2: Simulation Algorithm

managed enterprise environments to support capacity man-
agement exercises. Often they are gathered on a per-server
basis, and sometimes on a per-application workload basis.
If they are only gathered on a per-server basis we treat the
aggregate load on the server as a single workload in our
analysis.

Each resource access CoS constraint includes a probabil-
ity, θ, and a deadline, s. θ is the probability that a workload
associated with the CoS receives a unit of capacity when re-
quested. Those requests for units of capacity that are not
received on demand are deferred. Deferred units of capacity
must be made available to the workload within the deadline
s. If either part of the constraint is unsatisfied then there is
a service level violation. The demands in traces are used to
compute the empirical value for θ for the traces and/or the
minimum capacity required to ensure that a CoS constraint
is satisfied. Multiple CoS are supported so that workloads
with different needs can be accommodated. We refer to the
minimum capacity needed to satisfy all resource access CoS
constraints jointly as the required capacity. We define re-
source access CoS further in the next section.

Application placement constraints can also be important.
For example, some workloads must be hosted on separate
resources for the purpose of availability. Some workloads
must be associated with specific resources because of licens-
ing constraints. The capacity manager supports these kinds
of placement constraints.

The capacity manager has two components. A simulator
component emulates the assignment of several applications
to a single resource. It traverses the traces of observed de-
mands to estimate a required capacity that satisfies the re-
source access QoS constraints. The required capacity can be
compared with resource capacity limits to support what-if
analysis. An optimizing search algorithm examines many

alternative assignments and reports the best solution found
for an objective such that the placement constraints are sat-
isfied. These components are described in the following sec-
tions.

3.1 Simulator and resource access CoS con-
straints

Figure 2 illustrates the simulator algorithm. The simula-
tor considers the assignment of a set of workloads to a single
resource. It replays the workload traces, compares the ag-
gregate demand of the observations in the traces with the
capacity of the resource, and computes resource access CoS
statistics. If the computed values satisfy the CoS constraints
then the workloads are said to fit on the resource. A search
method, e.g., a binary search, is used to find the required
capacity, i.e., smallest value, for each capacity attribute such
that the CoS constraints are satisfied. Next, we consider the
computation of the CoS statistic θ in detail.

A formal definition for a resource access probability θ is
as follows. Let A be the number of workload traces un-
der consideration. Each trace has W weeks of observations
with T observations per day as measured every m minutes.
Without loss of generality, we use the notion of a week as
a timescale for service level agreements. Time of day cap-
tures the diurnal nature of interactive enterprise workloads
(e.g., those used directly by end users). Other time scales
and patterns can also be used. Each of the T times of day,
e.g., 8:00am to 8:05am, is referred to as a slot. For 5 minute
measurement intervals we have T = 288 slots per day. We
denote each slot using an index 1 ≤ t ≤ T . Each day x of
the seven days of the week has an observation for each slot
t. Each observation has a measured value for each of the
capacity attributes considered in the analysis.

To define resource access CoS more formally, consider one



CoS and one attribute that has a capacity limit of L units
of demand. Let Dw,x,t be the sum of the demands upon the
attribute by the A workloads for week w, day x and slot t.
We define the measured value for θ as follows.

θ =
W

min
w=1

T

min
t=1

�7
x=1 min(Dw,x,t , L)
�7

x=1 Dw,x,t

Thus, θ is reported as the minimum resource access proba-
bility received any week for any of the T slots per day. Fur-
thermore, let L′ be the required capacity for an attribute
to support a CoS constraint. A required capacity L′ is the
smallest capacity value, L′ ≤ L, to offer a probability θ′ such
that θ′ ≥ θ and those demands that are not satisfied upon
request, Dw,x,t −L′ > 0, are satisfied within a deadline. We
express the deadline as an integer number of slots s.

As an example, suppose we replay the A workload traces
with respect to a server with L′ CPUs that has a sched-
uler that allocates/re-allocates CPUs to workloads each slot
based on the current use of capacity. All the workloads are
associated with a CoS with resource access probability θ.
The CoS offers CPUs to its workloads with probability no
worse than θ during each slot as evaluated on a weekly basis.
To give an intuitive feel for the impact of the resource ac-
cess probability, an aggregate workload that requires a CPU
week (10,080 minutes) worth of CPU time and receives a re-
source access probability of 0.999 receives all but 10 minutes
of CPU time when requested. A resource access probability
of 0.99 implies that all but 100 CPU minutes are received
when requested. Suppose that one of the A workloads, that
we name unlucky, has a demand of 100 CPU minutes while
the remaining workloads we consider have a total demand
of 9,980 minutes. In the degenerate case, all of unlucky’s
demands may get deferred while the other workloads may
receive all of their demands when requested. If this is a
likely yet unacceptable scenario then the workload should
be placed in its own CoS.

Note that system CPU schedulers often re-allocate shares
of resources on the time scale of sub-seconds to 15 seconds
for more transparent processor sharing. We rely on system
schedulers to ensure that workloads do not starve, e.g., be-
come unlucky, during the many scheduling cycles that con-
tribute to an observation. Also, the measurements provided
by monitoring tools are typically an average value over the
entire interval. As a result the θ value applies to the m
minute slot time scale as evaluated on a weekly basis.

Next, we contrast the use of required capacity L′ with the
use of a utilization metric alone for workload placement. In
our earlier work [2], we limited the assignment of workloads
to servers by constraining the maximum aggregate utiliza-
tion of the target servers. For example, we assigned work-
loads subject to the constraint that the maximum aggregate
CPU utilization never exceeds a limit u, e.g., u = 80%. We
show that resource access probability with a deadline pro-
vides a more practically useful constraint than utilization
constraints alone.

Figure 3 gives a cumulative distribution function (CDF)
for the percentiles of CPU utilization for 1459 enterprise
servers from three data centers over a one month period in
2001. For each server, a CPU utilization measure is recorded
every five minutes for the month giving 8,640 measurements.
For each server, we sort these measurements in increasing or-
der. We present a CDF for the percentiles of these utilization
values for the servers. We present results that correspond to
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Figure 3: Cumulative Distribution Function for per-

centiles of CPU Utilization for 1459 Servers

the 100th, 99.9th and 99th percentiles of the sorted values.
The illustration is with respect to buckets that show the per-
centage of servers that have a CPU utilization u in the range
0% ≤ u < 10%, 10% ≤ u < 20%, up to 90% ≤ u < 100%,
and u = 100% where u is the CPU utilization for the given
percentile. The 100th percentile curve, as read from the
70% CPU utilization value on the x axis, shows that 45% of
servers each have a maximum utilization that is greater than
or equal to 0% and less than 80%. It follows that 55% of
servers each have one or more CPU utilization measurements
greater than or equal to 80%. The 99.9th percentile curve
indicates that approximately 42% of servers each have 8 or
more 5-minute observations with a CPU utilization greater
than or equal to 80%. The 99th percentile curve reveals
that 23% of servers each have 100 or more CPU utilization
measurement values that are greater than or equal to 80%.

The figure shows that a constraint that limits target server
utilization to 80% causes us to omit approximately two thirds
of the servers from workload placement exercises. Nearly
one quarter of the servers each have one hundred or more
utilization values greater than or equal to 80% over the
month. Simple utilization constraints may omit too many
workloads from a consolidation analysis. This problem is
particularly acute when the workloads are being assigned to
target servers that have similar capacity. This is the typ-
ical case for the on-going management of a resource pool.
We use resource access probability and the deadline to cap-
ture the notion that a quantified amount of demand may be
deferred for a limited amount of time.

Workloads can exploit the CoS parameters in the follow-
ing way. An interactive workload may require a very high
probability and may not benefit much from the notion of a
deadline. Degraded access to resources will likely result in
higher application response times rather than any deferral
of work. A batch workload may be more flexible regarding
when it receives its resources. It could have a lower resource
access probability, e.g., θ = 0.5 which gives a window of time
that is approximately double the demand to complete the
work, but could rely on the deadline to ensure its demands
are not deferred by too much.

When multiple CoS are involved, the simulation compo-
nent schedules access to capacity in the following way. Ca-
pacity is assigned to the highest priority, e.g., greatest θ
value, CoS first. If a CoS does not have a probability of



1.0, then it is only offered its specified probability of access
with remaining demands deferred to future intervals. The
remaining capacity is assigned to the next lower CoS. This
repeats for other lower classes of service.

The required capacity of each attribute is found as follows.
If the current capacity satisfies the CoS constraints then the
algorithm reduces the capacity value for the attribute. If
the current capacity does not satisfy the constraints, the al-
gorithm increases the value for capacity up to the capacity
limit L of the attribute. The algorithm completes when it
is found that the constraints cannot be satisfied or when
the value for capacity changes by less than some tolerance.
Currently we use a binary search, but other search mecha-
nisms could also be used. Upon termination, the algorithm
reports whether the constraints are satisfied (for each at-
tribute). If so, the resulting value for capacity is reported
as the required capacity (for each capacity attribute).

3.2 Optimizing search
Figure 4 illustrates the optimizing search algorithm. An

objective, constraints, workload traces, and an initial as-
signment of workloads to resources are the inputs of the
algorithm. The behavior of each resource is simulated us-
ing the method described in Section 3.1. The results of
the simulations are then used to compute a score for the
objective’s corresponding objective function. If there is lit-
tle improvement in the score then the algorithm reports a
configuration that achieved the best score and terminates.
Otherwise a new configuration is enumerated using a genetic
algorithm [6] and the simulation process is repeated.

We have two methods for setting the initial configuration
for the system. The first method takes the current config-
uration of a system. It is most appropriate in support of
what-if analysis and where solutions are required that have
only small numbers of changes to the environment.

The second approach applies a greedy algorithm to choose
the initial placement. The greedy approach is a clustering
algorithm that starts with each workload in its own cluster.
The algorithm then simulates the merging of pairs of clus-
ters to determine the amount of sharing between workloads
in the clusters. A sharing distance ∆i,j between a pair of
clusters i and j is defined as the difference between the re-
quired capacity of the merged cluster Li,j and the sum of the
two required capacities Li and Lj of the original clusters. It
is computed as follows.

∆i,j =
Li,j

Li + Lj

The lower the sharing distance the greater the sharing of
resources between workloads in the clusters. For each iter-
ation, we merge the pair of clusters with the lowest sharing
distance, such that placement and resource access CoS con-
straints are satisfied. A weighting value is specified to factor
the importance of each capacity attribute in this equation.
The more important it is to share a resource, e.g., CPU
or memory, the greater its weight. The greedy algorithm is
most appropriate when consolidating to a new resource pool
or when many changes are permitted, e.g., as supported by
virtualization mechanisms that enable the migration of a
workload from one resource to another with minimal dis-
ruption to the service that it provides and minimal human
effort.

The consolidation objective causes a search for a work-

load assignment that satisfies constraints and uses a small
number of servers. The number of servers of an intermediate
solution is used as its score. The solver reports a solution
that had the lowest score. The solution gives the assignment
of each workload to each server and the required capacity
of each server. Other objectives (e.g., load leveling) have
different expressions for assigning scores. They are also im-
plemented within the same framework.

3.3 Assumptions and Validation Method
This section considers several assumptions of the trace

based approach. The technique assumes that the traces are
of sufficient duration to capture the correlations between
workload demands, and that each workload’s demand trace
is representative of its future demands. These assumptions
support our use of the capacity manager for forward look-
ing management. With regard to specific resource pools, we
assume that the simulator’s approach for scheduling access
to resources is compatible with the scheduling mechanism
in the resource pool. Last, we assume that the workloads
operate in an additive manner, i.e., when the workloads are
reassigned to different resources we assume that their de-
mands will not change significantly. We now discuss each of
these assumptions in more detail.

The capacity manager considers the sensitivity of required
capacity to correlations in workload demands by implement-
ing a technique that exaggerates correlations. The trace
data we exploit typically has an observation for each work-
load for five minute slots. We can also perform the analysis
at more coarse time scales that exaggerate correlations. For
example, we may perform the analysis with 1 hour slots
where the demands for each slot are the peak capacity at-
tribute values of the 12 corresponding 5 minute observations.
As a result, the aggregate demand is greater than or equal
to per-5 minute aggregate demand values for the same hour.
This allows for the possibility that future per-workload de-
mands will be similar but may shift slightly in time causing
greater peaks. The approach leads to more pessimistic re-
sults. We rely on a validation method to help decide what
slot duration is most appropriate for studying a particular
system’s behavior.

We envision the capacity manager being used in an on-
going capacity management scenario where recently gath-
ered data is used to prepare a capacity plan for the near
future. The capacity management plan may call for the
re-assignment of some workloads to make better use of the
resource pool. We assume this process is repeated periodi-
cally, e.g., weekly, bi-weekly or monthly. This scenario also
corresponds to the validation method we present in the case
study.

The validation method is as follows. Given a large amount
of workload data, e.g., several months, the analysis is ap-
plied to contiguous subsets of the data. For each subset,
a part is used as training data to report a solution. This
solution gives an assignment of workloads to servers and the
predicted required capacity for each server. Then the remain-
ing part of the subset of data is used to validate how that
solution would have behaved in practice. It gives the actual
required capacity for each server for the remaining data. This
is sometimes referred to as a walk-forward test in the liter-
ature. We define per-server error as the predicted required
capacity minus the actual required capacity. A characteri-
zation of errors over time gives a measure of confidence for



Figure 4: Optimizing Search

the results of the capacity manager for a particular set of
workloads.

As a simulation-based approach, the resource scheduler of
the simulation component can model any scheduling mech-
anism that operates on data offered in the workload traces.
For example, it is compatible with the HP-UX Process Re-
source Manager (PRM) scheduler [9] when the QM capacity
manager’s highest priority CoS is given a resource access
probability of one.

We note as well that demands in traces are typically av-
erages. The PRM scheduler supports a goal mode to en-
sure application level QoS for interactive workloads at the
sub-five minute timescale. It has the same role for this ca-
pacity management approach as the queueing analysis step
described in the related work section. The basic idea is
that the scheduler allocates sufficient resources to maintain
a particular target utilization level within an allocation. For
example, if the target utilization, g, of an allocation is 50%
and a workload has a demand of one CPU then the sched-
uler allocates two CPUs. The QM capacity manager models
the goal mode by scaling each CPU demand in a trace, d,
using the the target utilization goal, g, to an allocation value
d
g
. The allocation values are used when computing required

capacity. This ensures sufficient resources are available for
interactive workloads.

We have not yet addressed the additive assumption in our
work. This is in part a function of the virtualization mecha-
nisms that are used to enable sharing, and in part affected by
the detailed interactions of application demands below the
sub-five minute boundary. We regard this as future work.

4. CASE STUDY
To assess the accuracy and benefits of our method we

obtained demand traces from an enterprise application en-
vironment. The environment is a large order processing sys-
tem. It has application components that tend to require
resources at the same time. We chose this application be-
cause it allows us to explore the benefits of resource sharing
for applications that have highly correlated demands. We

demonstrate the effectiveness of the QM capacity manager
for the environment.

The data set spans 32 weeks, collected between October
2003 and June 2004. It includes traces that describe 26 ap-
plication servers each with either 6 or 8 CPUs. We conduct
our study with respect to a particular reference processor
speed. The applications are hosted on the equivalent of ap-
proximately 138 of these reference CPUs.

The order processing system includes interactive and batch
workloads. We use a target CPU utilization of g = 50% for
the interactive workloads. This results in an allocation that
is double the observed demand. The purpose is to keep the
interactive response times low. The batch workloads have a
target CPU utilization of 100%. Thus for batch, the alloca-
tions are the same as the observed demands. The original
system requires 207 CPUs when its demands are scaled in
this way.

There are both production and non-production (e.g., test
and development) workloads in our data set. The produc-
tion workloads are placed in the highest CoS. The non-
production workloads are associated with a second CoS.
This lets us associate the workloads with different resource
access constraints.

We present three sets of results. The first set considers the
simulation component only. It demonstrates the sensitivity
of required capacity to slot size, resource access CoS con-
straints, the stability of predicted required capacity based
on the number of weeks of data used for prediction, and
compares the prediction of required capacity with the ac-
tual required capacity. The second set of results demon-
strates the optimizing search method for the consolidation
objective. The third set of results focuses on on-going ca-
pacity management. We apply the consolidation method to
successive subsets of trace data and report how accurately
the technique predicts required capacity over time. We con-
duct our analysis for the CPU demand attribute only to
simplify the presentation of results and report required ca-
pacities as real values rather than integers for the purpose
of illustration.



4.1 Sensitivity Analysis
The first set of results rely on the simulation component

to determine the required capacity for the order process-
ing workloads as a whole. This assumes a sufficiently large
server that is able to share its resources among all work-
loads. Though this is an unlikely consolidation scenario, it
gives a lower bound for required capacity. We use this case
to show the sensitivity of required capacity to slot size, e.g.,
5 minutes, 15 minutes or 1 hour, the impact of resource ac-
cess CoS, the stability of predicted required capacity based
on the number of weeks of data used for prediction, and the
prediction of required capacity with actual required capac-
ity.
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Figure 5: (a) Predicted Required Capacity for Several

Slot Sizes, (b) Impact of QoS on Required Capacity.

For the first scenario, both CoS have a resource access
probability of 1.0. Figure 5(a) shows the required capacity
for 5 minute, 15 minute, and 1 hour slot sizes. The values
are reported weekly as computed using the past two weeks
of data. The corresponding peak required capacities are
79, 80, and 86 CPUs, respectively. As expected, as slot
duration increases the correlation in demands also increases
leading to larger values for required capacity. Note that
these peaks for required capacity are significantly lower than
both the 207 CPUs for the comparable original system, i.e.,
with allocations scaled based on utilization goals, and the
138 CPUs of the original system.

Figure 5(b) considers 1 hour slots. It shows the required
capacity for the case where both CoS have resource access
probability of 1.0, as referred to in the figure as θp = 1.0 for
production and θnp = 1.0 for non-production, and for the
case where the non-production workloads have a resource
access probability of θnp = 0.8 and a deadline of s = 2
slots. This means that non-production workloads can have

some demand deferred by up to 2 slots. This is a reasonable
scenario in that priority is given to production workloads
yet the non-production loads still receive significant capac-
ity when requested. From the figure we see that required
capacity drops from a peak value of 86 CPUs to 79 CPUs.
This information is helpful in several ways. It may serve to
lower management or software licensing costs if fewer servers
are needed to support the workloads, or may simply provide
a quantitative assessment of the impact of current capacity,
e.g., 79 CPUs, on the lower CoS workloads.
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Figure 6: (a) 3-week subset: 2 weeks predicting 1 week,

(b) 6 week subset: 4 weeks predicting 2 weeks, (c) 12

week subset: 8 weeks predicting 4 weeks.

Next, we show the impact of the choice of the number of
weeks of historical data used for analysis on the stability of
predicted required capacity. Figure 6 shows predicted values
for required capacity for 1 hour slots with 3, 6, and 12 week
subsets of data. For the 3 week subsets, 2 weeks of training
data are used to predict required capacity for the third week.
The analysis is repeated weekly. The 6 week subsets use
4 weeks of training data to predict the required capacity of
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Figure 7: Predicted and Actual Values for Required

Capacity with QoS

the next 2 weeks with the analysis repeated every two weeks;
the 12 week subsets use 8 weeks of training data to predict
required capacity for the following 4 weeks with the analy-
sis repeated every four weeks. Predicted values for required
capacity are computed using hourly slots. Actual values for
required capacity are computed using 5 minute slots. The
more weeks that are used for prediction the greater the like-
lihood of larger peak values arising. From the figure we see
that longer data set sizes tend to yield larger estimates for
required capacity. The 4 and 8 weeks subsets offer more sta-
ble estimates for required capacity than the 2 week subsets.
Hence we choose to use 4 week subsets for the remainder
of our study. In general, the training portion of the subset
should have sufficient data to capture peaks that arise due
to predictable but time varying business needs. For exam-
ple, if end of month capacity requirements are always larger
than mid-month requirements, the training portion of the
subset of data should always include end of month data.

Figure 7 compares predicted values for required capacity
with actual values. Predicted values for required capacity
are computed using 1 hour slots. Actual values for required
capacity are computed using 5 minute slots. This figure
corresponds to the scenario where the production workloads
have a resource access probability of θp = 1.0 and the non-
production workloads have a resource access probability of
θnp = 0.8 with a deadline of s = 2 slots. With hourly slots
the predicted values are typically greater than the actual
values. Other figures not included in the paper show similar
accuracy for the cases where both CoS have a resource ac-
cess probability of 1.0. We note that the results we present
do not take into account any trends that can be observed
from the data. Nor do they consider any business planning
information that can be used to predict changes in demands
more directly. Such information is likely to improve predic-
tions.

4.2 Consolidation Method
Figure 8(a) shows the sum of per-server required capacity

for the assignment of the workloads to servers with CPU
capacity limits of 16, 32, 64 and 128 CPUs. The required
capacity values are reported for four week subsets of data.
Both CoS have a resource access probability of 1.0. The
peak required capacities over all subsets of data are 101.5,
90.6, 85.9, and 84.2 CPUs, respectively. As the number of
CPUs per server increases from 16 to 32 we see a drop in
the required capacity values. This is because larger servers
provide greater opportunities for resource sharing. The 16

CPU servers suffer the most from resource sharing fragmen-
tation. The required capacity values for 32 and 64 CPU
servers drop, but with diminishing returns. Improvements
are smaller still for the single large 128 CPU server. Most
of the sharing that can be achieved is realized by the 64
CPU servers. The 16 CPU servers realize all but 20% of
the savings possible from sharing, with respect to the 128
CPU server. We note that when a server is used, not all of
its CPUs are exploited. For each scenario, the total number
of CPUs for the resource pool is the product of the maxi-
mum number of servers needed and the number of CPUs per
server. The total number of CPUs needed for the 16, 32, 64,
and 128 CPU per server scenarios are 112, 96, 128, and 128
CPUs, respectively. The difference between a server’s per-
server capacity limit and its required capacity is available
to support additional work. Often, unused CPUs can be
disabled to reduce server costs and software licensing costs.
These can then be enabled on-demand if and when they are
needed.
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Figure 8: (a) Consolidation to 16 CPU servers, (b) Im-

pact of Slot Size on Required Capacity, (c) Impact of

QoS on Required Capacity



Figure 8(b) shows the impact of slot size on the sum of re-
quired capacity for the 16 CPU server case. The slot size has
less of an impact than in the large server case. This is rea-
sonable as the search algorithm aims to co-locate workloads
with smaller or negative demand correlations onto the same
server. Thus, our method of increasing slot duration to ex-
aggerate correlations has less of an impact because there are
fewer positive correlations to exaggerate as compared to the
large server scenario where all the workloads are assigned to
the same server.

Figure 8(c) shows the sum of required capacity values for
the 16 server scenario, for 1 hour slots, for the case where
both CoS have a θ = 1.0 and for the case where the pro-
duction workloads have a θp = 1.0 and the non-production
workloads have a θnp = 0.8 with a deadline of s = 2 slots.
The peak of required capacity values are 101.5 and 95, re-
spectively. The sum of required capacities drops by 6.5
CPUs case where both CoS have a resource access proba-
bility of 1.0. The large server case differed by 7 CPUs. This
shows that most of the advantages of the quality of service
specification are achieved on the 16 CPU servers.

4.3 On-going Capacity Management
This section focuses of a validation of the capacity man-

ager for on-going management. We apply the optimizing
search consolidation method to 6 week subsets of data to
assign and re-assign workloads to servers over time. For
each subset, we use 4 weeks of training data to compute a
predicted required capacity for 1 hour slots. This is then
compared with the computation of the actual required ca-
pacity for the next two weeks as computed using 5 minute
slots. We define error for a server as its predicted required
capacity minus its actual required capacity. Positive errors
correspond to an over-estimate of required capacity. Neg-
ative errors correspond to an underestimate. Our figures
show the distribution of errors for the individual servers.

We compare the accuracy of the technique with a bench-
mark method used to manage a resource pool. Its advantage
is that it is straightforward for an operator to calculate with-
out significant effort. It computes a ratio between the sum
of per-application peak demands and the observed aggregate
demand for all the workloads on all servers as a whole. We
compute this ratio using the four most recent weeks of data
and use it to predict the demand for each server for the next
two weeks.

Figure 9(a) shows the distribution of errors for the QM
capacity manager’s trace-based method for the case study
data on 16 CPU servers. 38% of the errors are negative,
for these cases the error was never greater than 2 CPUs.
62% of the errors are greater than zero. These are over-
estimates for required capacity. Together, the estimates are
within 2 CPUs of per-server required capacity values 85% of
the time. In the remaining 15% of cases, the capacity man-
ager over-estimates required capacity by more than 2 CPUs.
From the figure, we see that the benchmark approach has
errors that are significantly larger and more frequent than
the trace-based approach.

Figures 9(b) and (c) show the distribution of error val-
ues for servers with 32 and 64 CPU, respectively. The
trace-based method becomes more optimistic as the server
size increases. This suggests that an analysis using slots of
less than 60 minutes is more appropriate for these servers.
Again, the benchmark approach has errors that are larger
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and more frequent than the trace-based approach.
The accuracy of the trace-based method provides confi-

dence to system operators. It offers insights regarding how
much workload can be assigned to a server and what the
impact is likely to be of moving workloads from one server
to another.

5. SUMMARY AND CONCLUSIONS
This paper describes a trace-based approach to capac-

ity management for resource pools. We define an empiri-
cal measure of required capacity and resource access quality
of service constraints. We describe an optimizing search
method with a focus on consolidation and re-consolidation
for the purpose of on-going management as an objective for
the search. Results from approximately 1500 servers show
that our approach to resource access quality of service is
superior to our earlier utilization based method, which is



too constraining for capacity management, in particular for
on-going management. Case study results show that our
consolidation approach realizes much of the opportunity for
resource sharing for a large order processing system. It au-
tomates the process of deciding workload assignments for
resource pools and is much more accurate than a benchmark
approach for capacity management used in practice.

Though our focus has been on a consolidation objective
for the optimizing search, other objectives including load
leveling and problem solving are also supported. Together
these automate functions needed by operators to address the
capacity management problems described in Section 1.

The trace-based approach provides confidence to system
operators as they manage resource pools. However many
challenges still remain. Changing business conditions, new
applications, changing applications, and issues such as run-
away processes in applications can all have big impact on
past and future resource usage. To improve the approach,
methods are needed to systematically obtain capacity re-
quirement estimates from business planning systems, and
from software design, development, and maintenance pro-
cesses. Software performance engineering exercises could
provide initial estimates for the capacity requirements of
new or modified applications so that their impact on re-
source pools can be anticipated prior to deployment. Meth-
ods are needed to assure the quality of historical trace data.
These are all requirements for further automation of capac-
ity management for resource pools.
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