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Abstract— We consider shared resource pool management
taking into account per-application quality of service (QoS)
requirements and server failures. Application QoS requirements
are defined by complementary specifications for acceptable and
time-limited degraded performance. Furthermore, a requirement
specification is provided for both the normal case and for the case
where an application server fails in the pool. Independently, the
resource pool operator provides a resource access QoS commit-
ment for two classes of service (CoS). These govern statistical
multiplexing within the pool. A QoS translation automatically
maps application demands onto the resource pool’s CoS to
best enable sharing. A workload placement service consolidates
applications to a small number of servers while satisfying
application QoS requirements. The service reports whether a
spare server is needed or how applications affected by a single
failure can operate according to failure QoS constraints using
remaining servers until the failure can be repaired. A case study
demonstrates the approach.

I. INTRODUCTION

Many enterprises are beginning to exploit large shared
resource pools in data center environments to lower their
infrastructure and management costs. These environments may
have tens, hundreds, or even thousands of server resources.
Capacity management for resource pools decides how many
resources are needed to support a given set of application
workloads, which applications must be assigned to each re-
source, and per-application scheduling parameters that ensure
appropriate sharing and isolation for the applications. Capacity
management is a challenging task for shared environments
that currently requires significant manual effort and tends to
over-provision resources. This article describes our approach
to automate the steps of a capacity self-management system
that best matches resource supply with demand.

Resource pools are collections of resources, such as clusters
of servers or racks of blade servers, which offer shared
access to computing capacity. Virtualization and automation
technologies support the lifecycle management (e.g., creation,
destruction, migration) of resource containers (e.g., virtual ma-
chines, virtual disks [19], [3], [5], [18]). Workload managers
for resources [9], [8], [6] provide containers with time-varying
access to shares of resource capacity. Application workloads
are associated with the containers; the containers are then
assigned to resources in the pool. In this paper we assume
that each container supports exactly one workload.

Applications can make complex demands on such pools. For
example, many enterprise applications operate continuously,
have unique time-varying demands, and have performance-
oriented Quality of Service (QoS) objectives. Resource pool
operators must decide which workloads share specific re-
sources and how workload managers should be configured

to support each application. This is a challenge because (i)
the capacity of resource pools are generally overbooked (i.e.,
the sum of per-application peak demands are greater than
the capacity of the pool), (ii) because different applications
can have different QoS requirements that are affected by the
applications’ ability to obtain capacity when needed, and (iii)
because such pools may incur resource failures – resource pool
operators must have a plan to deal with failures and ensure
that their service level agreements remain satisfied.

To address these challenges, we propose to replace the stan-
dard capacity management process with a framework named
R-Opus that supports capacity-as-a-service utilities using re-
source pools of servers. R-Opus is a composite framework
with several features that include:

• independently specified per-application QoS requirements
for normal and failure modes;

• resource pool QoS commitments expressed for classes of
service (CoS);

• QoS translation that maps application resource demands
to resource workload manager allocation priorities that
implement resource pool CoS; and

• a workload placement service for normal and failure
modes.

Application QoS requirements are defined by complementary
specifications for acceptable and time-limited degraded per-
formance and are specified for normal and failure modes.
Resource pool QoS commitments quantify the likelihood that
a resource container will receive a unit of capacity when
required. QoS commitments are expressed for each CoS. Each
CoS is associated with a workload manager allocation priority.
The workload placement service consolidates applications to
a small number of resources while satisfying normal and
then failure mode application QoS requirements. The service
reports whether a spare server is needed in case of a single
node failure.

Section II explains our approach to capacity management
for resource pools in more detail. Section III defines appli-
cation QoS requirements for normal and failure modes. Sec-
tion IV introduces resource pool QoS commitments. Section V
presents methods for automatic QoS translation. The workload
placement service is introduced and explained in Section VI.
A case study is presented in Section VII. Related work is
discussed in Section VIII; summary and concluding remarks
are given in Section IX.

II. CAPACITY MANAGEMENT AND RESOURCE POOLS

This section provides an introduction to resource pool ca-
pacity management. We give an overview of capacity manage-



Fig. 1. Capacity Management Activities and Time Scales.

ment activities, their corresponding timescales, and describe
resource workload managers and the workload placement
service in more detail. We then describe R-Opus and how
it exploits workload managers and the workload placement
service to support per-application QoS requirements.

Figure 1 illustrates capacity management activities for re-
source pools and their different timescales. Long term man-
agement corresponds to capacity planning; the goal here is
to decide when additional capacity is needed for a pool so
that a procurement process can be initiated. Over a medium
timescale (e.g., weeks to months), groups of resource con-
tainers are chosen that are expected to share resources well.
Each group is then assigned to corresponding resources.
Assignments may be adjusted periodically as service levels
are evaluated or as circumstances change (e.g., new appli-
cations must be supported; servers are upgraded, added, or
removed). Once resource containers are assigned to a resource,
a workload manager for the resource [9], [8] adjusts workload
capacity allocations over short timescales based on time-
varying workload demand. Finally, resource schedulers operate
at the time-slice (sub-second) granularity according to these
allocations. Adjustments to allocations in response to changing
workloads can greatly increase the efficiency of the resource
pool while providing a degree of performance isolation for the
containers.

We now describe resource workload managers in more
detail. A workload manager monitors its workload demands
and dynamically adjusts the allocation of capacity (e.g., CPU)
to the workloads, aiming to provide each with access only
to the capacity it needs. When a workload demand increases,
its allocation increases; similarly, when a workload demand
decreases, its allocation decreases. Such managers can control
the relationship between demand and allocation using a burst
factor; a workload resource allocation is determined periodi-
cally by the product of some real value (the burst factor) and its
recent demand. For example, if the measured utilization over
the previous 5 minutes is 66% of 3 CPUs, then the demand is
2 CPU. A burst factor of 2 would cause an allocation in the
next 5 minute interval of 4 CPUs. In this way, a burst factor
guides the application towards a utilization of allocation of
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burst factor . In other words, even though the application’s
allocation may vary over time its utilization of allocation
remains somewhat consistent.

The burst factor addresses the issue that allocations are
adjusted using utilization measurements. Utilization measure-
ments over any interval are mean values that hide the bursts of
demand within the interval. The product of mean demand for
an interval and this burst factor estimates the true demand of

Fig. 2. R-Opus.

the application at short time scales and is used for the purpose
of allocation. In general, the greater the workload variation
and client population, the greater the potential for bursts in
demand, the greater the need for a larger allocation relative
to mean demand (i.e., utilization), and hence the greater the
need for a larger burst factor.

We assume that the workload manager implements two
allocation priorities that correspond to the resource pool CoS.
Demands associated with the higher priority are allocated ca-
pacity first; they correspond to the higher CoS. Any remaining
capacity is then allocated to satisfy lower priority demands;
this is the lower CoS. R-Opus uses these CoS along with
workload placement to manage application QoS.

The workload placement service employs a trace-based ap-
proach to model the sharing of resource capacity for resource
pools [12]. Each application workload is characterized using
several weeks to several months of demand observations (e.g.,
with one observation every five minutes) for capacity attributes
such as CPU, memory, and disk and network input-output. The
general idea behind trace-based methods is that traces capture
past demands and that future demands will be roughly similar.
We simulate the assignment of multiple application workloads
to a resource and estimate the resulting resource access QoS
that is provided. Placements are found that satisfy resource
access QoS commitments for the historical data. We assume
the resource access QoS will be similar in the near future.
Though we expect demands to change, for most applications
they are likely to change slowly (e.g., over several months).
By working with recent data, we can adapt to such a slow
change. Significant changes in demand, due for instance to
changes in business processes or application functionality, are
best forecast by business units; they need to be communicated
to the operators of the resource pool so that their impact can
be reflected in the corresponding traces.

Figure 2 illustrates the R-Opus approach to capacity man-
agement for resource pools as supported by such workload
managers and a workload placement service:

• A resource pool operator decides on resource access QoS
commitments for two classes of services for resources in
the resource pool [12]. These specifications express the
likelihood that a unit of capacity will be available when
needed.

• For each application workload, the application owner
specifies its application’s workload QoS requirement as



an acceptable range for the burst factor. The range corre-
sponds to low and high utilization of allocation targets for
the application. Furthermore, the application is permit-
ted time-limited and bounded performance degradation
beyond the range, e.g., a service level degradation, to
account for spikes in demand that the application owner
does not want to affect capacity sizing.

• A QoS translation takes the independently specified ap-
plication QoS requirements and the resource access QoS
commitments as input and maps the application’s work-
load demands to allocations for the workload manager’s
two allocation priorities in a manner that assures the
application QoS requirement will be satisfied as long as
the resource pool offers the per-CoS QoS it commits to.

• Finally, over the medium term, the workload placement
service [12], [15] assigns application workload resource
containers to resources in the pool in a manner expected
to satisfy the resource access QoS commitments for the
two resource CoS in the pool.

The overall approach assumes that the analysis of application
behaviour as described in the traces is representative of future
behaviour. We rely on historical data to forecast whether
certain applications can co-exist on a resource while satisfying
QoS requirements [12].

III. APPLICATION QOS REQUIREMENTS

The relationship between acceptable application QoS and
system resource usage is complex. We employ an empirical
approach that aims to find an acceptable range for the burst
factor that relates workload demand to a scheduled allocation
for CPU capacity. A stress testing exercise is used to submit
a representative workload to the application in a controlled
environment [10]. Within the controlled environment, we
vary the burst factor that governs the relationship between
application demand and allocation. First, we search for the
value of the burst factor that gives the responsiveness required
by application users (i.e., good but not better than necessary).
Next, we search for the value of the burst factor that offers
adequate responsiveness (i.e., a worse responsiveness would
not be acceptable to the application users). These define
an acceptable range of operation for the application on the
resource and give a preferred range for the utilization of the
allocation for a given application. Similarly, these values can
be chosen or refined in operational environments.

More formally, each QoS requirement has a goal and
constraints with respect to a range of utilization of allocation:

• U low - defines a utilization of allocation of that supports
ideal application performance 1;

• Uhigh - represents a threshold on utilization of allocation
beyond which the application performance would be
undesirable to users;

• Udegr - defines another threshold on utilization of allo-
cation that can be used for coping with infrequent high
bursts in demand. Typically, these occasional bursts of
demand should not be used for determining the overall
application’s capacity requirements, since they might lead

1Clearly, the utilization of allocation lower than U low also supports the
ideal application performance, however at a price of underutilized (over-
allocated) resources. We use 1

Ulow as a burst factor for determining the
relationship between the demand and the required ideal allocation.

to significant over provisioning and increased configura-
tion cost.

An application owner can specify application QoS by stating
his/her requirement of acceptable and degraded application
performance. The owner specifies application QoS for two
modes of operation: i) normal mode that means that all planned
resources are available; ii) failure mode that corresponds to the
case of 1-node failure (note that this scenario can be extended
to multiple node failures).

• acceptable performance: for at least M% of measure-
ments, utilization of allocation Ualloc should be within
the desirable range, i.e., U low ≤ Ualloc ≤ Uhigh;

• degraded application performance: for the remaining
measurements Mdegr = 100% − M% the utilization
of allocation should not exceed Udegr, i.e., Uhigh <
Ualloc ≤ Udegr. Moreover, T degr specifies the maximum
contiguous time 2 when measured utilization of allocation
Ualloc may exceed Uhigh.

A time-limited degradation T degr value relates the specifica-
tion to user experience. While application users may tolerate
intermittent poor performance, e.g., for 5-10 minutes, but
sustained poor performance typically leads to user complaints.
We further bound the utilization of allocation for times of
non-compliance to Udegr < 1 to ensure that, in our model,
demands are satisfied within their measurement interval.

Consider the following application QoS requirement. Let
U low = 0.5, Uhigh = 0.66, Mdegr = 3%, Udegr = 0.9,
and T degr = 30 minutes. This states that based on the past
history of application demands, we need to tailor the resource
allocation schema for this application to permit no more than
Mdegr = 3% of measurements in the trace to have utilization
of allocation above Uhigh = 66%. Additionally, these observa-
tions must not have value greater than Udegr = 90% and must
not exceed Uhigh = 0.66 for more than T degr = 30 minutes
at a time.

Historical demand values are transformed to time-varying
allocation requirements for the pool using these utilization
of allocation values. The Mdegr and T degr terms affect the
maximum allocation value for the application.

IV. RESOURCE POOL QOS COMMITMENTS

The resource access QoS commitments specified by the
resource pool operator govern the degree of overbooking in
the resource pool. We assume that the first class of service
offers guaranteed service. For each resource, the workload
placement service ensures that the sum of the per application
peak allocations associated with this higher class of service
does not exceed the capacity of the resource. The second
class of service offers a lower QoS. It is associated with a
resource access probability, θ, that expresses the probability
that a unit of resource capacity will be available for allo-
cation when needed. The workload placement service finds
workload placements such that both constraints are satisfied.
Thus it manages overbooking for each resource (i.e., statistical
multiplexing).

A formal definition for a resource access probability θ is
as follows. Let C be the number of workload traces under

2An additional constraint on the number of degraded epochs per time pe-
riod, e.g., per day or week, is a useful enhancement. To simplify presentation
we do not consider it in this paper.



consideration. Each trace has W weeks of observations with
T observations per day as measured every m minutes. Without
loss of generality, we use the notion of a week as a timescale
for service level agreements. Time of day captures the diurnal
nature of interactive enterprise workloads (e.g., those used
directly by end users). Other time scales and patterns can also
be used. Each of the T times of day, e.g., 8:00am to 8:05am,
is referred to as a slot. For 5 minute measurement intervals
we have T = 288 slots per day. We denote each slot using an
index 1 ≤ t ≤ T . Each day x of the seven days of the week
has an observation for each slot t. Each observation has an
allocation value for each of the capacity attributes considered
in the analysis. Without loss of generality, consider one class
of service and one attribute that has a capacity limit of L units
of demand. Let Aw,x,t be the sum of the allocations upon the
attribute by the C workloads for week w, day x and slot t.
We define the measured value for θ as follows.

θ = minW
w=1 minT

t=1

∑7

x=1
min(Aw,x,t , L)

∑7

x=1
Aw,x,t

Thus, θ is reported as the minimum resource access probability
received any week for any of the T slots per day. Furthermore,
we define a CoS constraint as the combination of a required
value for θ and a deadline s such that those demands that are
not satisfied are satisfied within the deadline. Let L′ be the
required capacity for an attribute to support a CoS constraint.
A required capacity L′ is the smallest capacity value, L′ ≤ L,
to offer a probability θ′ such that θ′ ≥ θ and those demands
that are not satisfied upon request, Aw,x,t − L′ > 0, are
satisfied within the deadline. We express the deadline as an
integer number of slots s.

V. PARTITIONING APPLICATION DEMANDS ACROSS TWO

CLASSES OF SERVICE

We now describe our technique for mapping an application’s
workload demands across two CoS to realize its application
QoS objectives. Our method takes as input a characterization
of an application’s workload demands on the resource, the re-
source access QoS commitments for resources in the resource
pool, and the application-level QoS requirements (expressed
using a range for the burst factor that corresponds to U low and
Uhigh). As output, it describes how the application’s workload
demands should be partitioned across the pool’s two classes
of service (i.e., workload manager allocation priorities).

The proposed method is motivated by portfolio theory [7]
which aims to construct a portfolio of investments, each having
its own level of risk, to offer maximum expected returns
for a given level of risk tolerance for the portfolio as a
whole. The analogy is as follows. The resource access QoS
commitments quantify expected risks of resource sharing for
the two CoS. These CoS correspond to potential investments
with the lower CoS having a greater return because the
resource pool operator can provide a lower cost service when
permitted to increase overbooking. The application demands
represent investment amounts. They are partitioned across the
CoS so that application QoS remains in the tolerated range,
which corresponds to the risk tolerance for the portfolio as
a whole. By making greatest use of the lower CoS we offer
the resource pool operator the greatest opportunity to share
resources and hence lower the cost to the application owner.

We present the approach in three steps:

1) first, we describe how to partition an application’s work-
load demands across two classes of service to support
acceptable performance [13];

2) second, we extend the partitioning method for the case
where Mdegr% of measurements can experience de-
graded performance;

3) finally, we describe how to partition an application’s
workload demands across two classes of service to
support time-limited performance degradation.

1). First, we describe how to partition an application’s
workload demands across two classes of service, CoS1 and
CoS2, to ensure that an application’s utilization of allocation
Ualloc remains within the acceptable performance range:

U low ≤ Ualloc ≤ Uhigh

CoS1 offers guaranteed access to capacity. By associating part
of the demands with CoS1, we limit the resource access risk
to the demands associated with CoS2. The resource access
probability θ of CoS2 is chosen by the resource pool operator.
Consider three operating scenarios for a resource: (i) it has
sufficient capacity to meet its current demands; (ii) demand
exceeds supply but the resource is satisfying its resource access
constraint; and (iii) demand exceeds supply and the resource
is not satisfying its resource access constraint. We consider
the first two scenarios here and rely on workload placement
techniques to avoid and react to the third scenario [12].

When the system has sufficient capacity, each application
workload gets access to all the capacity it needs. In this case,
the application’s resource needs will all be satisfied and the
application’s utilization of allocation will be ideal., i.e. less
than or equal to U low.

In the case where demands exceed supply, the allocations as-
sociated with CoS1 are all guaranteed to be satisfied. However,
the allocations associated with CoS2 are not guaranteed and
will be offered with at worst the operator-specified resource ac-
cess probability θ. We aim to divide workload demands across
these two classes of services while ensuring that the utilization
of allocation remains in the acceptable range (Ulow, Uhigh)
defined above to satisfy the application’s QoS requirements.

Let p be a fraction of peak demand Dmax for the CPU
attribute for the application workload that is associated with
CoS1. The value p × Dmax gives a breakpoint for the
application workload such that all demand less than or equal
to this value is placed in CoS1 and the remaining demand is
placed in CoS2.

The range of acceptable allocations must be between
Aideal = Dmax × 1

Ulow and Aok = Dmax × 1
Uhigh .

So the allocation for the lower but acceptable QoS offered
to the application is:

Aok = Aideal × p + Aideal × (1 − p) × θ.

Solving this equation for p, we get:

p =
Ulow

Uhigh − θ

1 − θ
(1)

where 1 ≥ θ > 0.
If Ulow

Uhigh ≤ θ then p = 0, i.e., all the demand can be associ-
ated with class CoS2. This provides desirable performance for
utilization of allocation in the acceptable range (Ulow, Uhigh).



Thus, breakpoint p is computed using the three basic pa-
rameters: bounds for acceptable utilization of allocation Ulow,
Uhigh, and resource access probability θ for the second class
of service CoS2.

Then, applying breakpoint p to the workload peak demand
Dmax, we compute the maximum portion of demand that
should be assigned to CoS1:

Dmax
CoS1

= p × Dmax

Consider demand Dcur from the workload trace. We partition
Dcur across two classes of services: CoS1 and CoS2 as
follows:

• if Dcur ≤ Dmax
CoS1

then it is assigned entirely to CoS1;
• if Dcur > Dmax

CoS1
then demand Dcur is split across two

classes:
– a fraction of demand equal to Dmax

CoS1
is satisfied

using CoS1,
– the remaining part (Dcur−Dmax

CoS1
) is satisfied using

the second class of service CoS2.
2). Now, let us consider more complex application QoS re-

quirements that have a description of acceptable and degraded
performance:

• acceptable performance: for at least M% of measure-
ments, utilization of allocation Ualloc should be within
the desirable range, i.e., U low ≤ Ualloc ≤ Uhigh;

• degraded application performance: for the remaining
measurements Mdegr = 100% − M% the utilization of
allocation should not exceed Udegr.

Let DM% be a demand that corresponds to M -th percentile of
the workload demands. For many workloads, DM% is much
smaller than D100% for M% < 100%.

The condition for acceptable application performance re-
quires that the maximum allocation for a workload should be
at least:

Aok =
DM%

Uhigh

At the same time, the condition for degraded performance
requires that the maximum allocation for a workload should
be at least:

Adegr =
Dmax

Udegr

If Aok ≥ Adegr then the allocation provided by accept-
able performance requirement (based on M -th percentile of
workload demands) is also sufficient for assuring the degraded
performance for the remaining Mdegr% of the measurements.
In this case, demand DM% is used as a new maximum
demand Dnew max that controls maximum allocation for given
workload:

Dnew max = DM% (2)

Therefore, all demands less than or equal to p × Dnew max

are placed in CoS1 and the remaining demands are placed in
CoS2, where breakpoint p is computed by formula 1.

If Aok < Adegr then the allocation Aok provided by ac-
ceptable performance requirement (based on M -th percentile
of workload demands) is not sufficient for providing degraded
performance for the remaining Mdegr% of the measurements.
Hence, we need to use allocation Adegr as the maximum
allocation, and compute a new maximum demand Dnew max
that supports such an allocation in the following way:

Dnew max =
Adegr

1
Uhigh

=
Dmax × Uhigh

Udegr
(3)

Using this formula we can evaluate an upper bound on poten-
tial capacity savings one can realize by weakening application
QoS requirements and allowing some percentage of points be
supported at degraded performance. The potential reduction in
capacity, called MaxCapReduction, can be computed in the
following way:

MaxCapReduction =
Dmax − Dnew max

Dmax
(4)

Using formula 3 we can replace Dnew max in formula 4 above
and express the upper bound on MaxCapReduction in the
following way:

MaxCapReduction ≤ Dmax − Dmax×Uhigh

Udegr

Dmax
= 1 − Uhigh

Udegr
(5)

Since formula 5 depends only on Uhigh and Udegr, we can
see that the upper bound for MaxCapReduction is the same
for different values of U low, θ, and values used for M -th
percentile.

For example, if Uhigh = 0.66 and Udegr = 0.9 then
potential MaxCapReduction = 26.7%. This is an upper
bound. Whether these maximum capacity reduction can be
realized or not depends on the application workload as well
as whether Aok < Adegr .

3). Finally, when a degraded performance has an additional
time-limiting constraint that Uhigh < Ualloc ≤ Udegr for no
more than T degr contiguous minutes at a time, we perform a
special trace analysis to verify this condition within the trace.

Let there be R observations in T degr minutes. Suppose
we discover during the trace analysis that there are R + 1
contiguous observations with utilization of allocation higher
than Uhigh, i.e., they have degraded performance. In order
to support time-limiting constraint on degraded performance
we need to “break” this continuous “degraded performance”
sequence by supporting at least one of these demands at
acceptable performance range, i.e., for one of those demands
we have to increase its allocation so that its utilization is less
or equal to Uhigh.

Let Dmin degr be the smallest demand among considered
R + 1 contiguous measurements. The current maximum allo-
cation for the overall workload is based on demand Dnew max

that is computed using formula 2 or 3. Since we need to
increase the current maximum allocation for Dmin degr we
have to recompute a value for Dnew max in such a way
that a new allocation for Dmin degr based on a recomputed
Dnew max has its utilization of allocation not greater than
Uhigh.

First of all, let us compute the allocation that currently is
assigned for demand Dmin degr. According to our portfolio
approach demand Dmin degr is split across two classes of
services CoS1 and CoS2, where

• the fraction of demand assigned to CoS1 is

Dmin degr
CoS1

= p × Dnew max (6)

• the fraction of demand assigned to CoS2 is

Dmin degr
CoS2

= Dnew max − p × Dnew max (7)

Note, that if Dmin degr ≤ Dnew max then Dmin degr
CoS2

=
Dmin degr−p×Dnew max. However, when Dmin degr >
Dnew max, demand Dnew max is enforcing a limiting
cap on the maximum allocation, and Dmin degr

CoS2
=

Dnew max − p × Dnew max.
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Fig. 3. Sensitivity of breakpoint p and maximum allocation to θ for
CoS2, where (Ulow, Uhigh) = (0.5, 0.66).

This way, the overall allocation Amin degr provided for de-
mand Dmin degr is computed in the following way:

Amin degr = (Dmin degr
CoS1

+ Dmin degr
CoS2

× θ) × 1

Ulow
(8)

We use Amin degr to recompute a value for Dnew max, such
that the utilization of a new allocation for Dmin degr , based
on this recomputed Dnew max, is less or equal to Uhigh:

Uhigh =
Dmin degr

Amin degr
(9)

By replacing Amin degr in this equation with formula 8,
and by replacing Dmin degr

CoS1
and Dmin degr

CoS2
using formu-

las 6 and 7, we have:

Uhigh =
Dmin degr × Ulow

p × Dnew max + (Dnew max − p × Dnew max) × θ

By solving this equation relative to Dnew max, we find:

Dnew max =
Dmin degr × Ulow

Uhigh × (p × (1 − θ) + θ)
(10)

This trace analysis continues iteratively until we find a new
Dnew max that satisfies the additional time-limiting constraint
on degraded performance for the entire workload.

Note that if p > 0 then equation 10 has a very simple
outcome (once p us replaced using Formula 1):

Dnew max = Dmin degr.

If p = 0, i.e., all the demand is associated with class of
service CoS2, then equation 10 can be transformed as follows:

Dnew max =
Dmin degr × Ulow

Uhigh × θ
(11)

Suppose the values Ulow and Uhigh are fixed. The outcome
of formula 10 strongly depends on resource access probability
θ for CoS2. Higher values of θ lead to a smaller Dnew max

because the higher values of θ imply a lower risk for class of
service CoS2. Since Dnew max limits and controls the maxi-
mum allocation per application, smaller values of Dnew max

lead to smaller capacity requirements on the resource pool.
Thus, we have shown that if there are time-limiting constraints
on degraded performance then higher values of θ may result
in the smaller maximum allocation per application.

Figure 3 shows impact of θ on breakpoint p (where p
defines a fraction of demand that is assigned to CoS1) and

Fig. 4. Simulation Algorithm

maximum allocation per application. We used (Ulow, Uhigh) =
(0.5, 0.66) as an acceptable performance range.

The plot shows the trend for Dnew max in a normalized
way: the ratio of any two points on the line approximates the
ratio in Dnew max per application for different values of θ.
For example, it shows that for θ = 0.95 the maximum demand
Dnew max is 20% lower than for θ = 0.6, i.e., the maximum
allocation for θ = 0.95 is 20% less than for θ = 0.6.

VI. WORKLOAD PLACEMENT SERVICE

The workload placement service has two components. A
simulator component emulates the assignment of several appli-
cations to a single resource. It traverses the traces of allocation
requirements to estimate a required capacity that satisfies the
resource access QoS commitments. The required capacity can
be compared with resource capacity limits. An optimizing
search algorithm examines many alternative assignments and
reports the best solution found for the consolidation exercise.
These components are described in the following sections.

A. Simulator and resource access CoS commitments

Figure 4 illustrates the simulator algorithm. The simulator
considers the assignment of a set of workloads to a single re-
source. It replays the workload allocation traces, compares the
aggregate allocations of the observations in the traces with the
capacity of the resource, and computes resource access CoS
statistics. If the computed values satisfy the CoS commitments
then the workloads are said to fit on the resource. A search
method, e.g., a binary search, is used to find the required
capacity, i.e., smallest value, for each capacity attribute such
that the CoS resource pool commitments are satisfied.

When two CoS are involved, the simulation component
schedules access to capacity in the following way. Capacity
is assigned to CoS1 first. The remaining capacity is then
assigned to CoS2. This corresponds to the behaviour of the
workload managers as described earlier in the paper.

The required capacity of each attribute is found as follows.
First a check is made to ensure the sum of the peak application
demands associated with CoS1 do not exceed the capacity of
the resource. If they do then the workloads do not fit, otherwise
they may fit. If the workloads may fit, then the following
process is initiated. If the current capacity satisfies the CoS



Fig. 5. Optimizing Search

commitments then the algorithm reduces the capacity value
for the attribute. If the current capacity does not satisfy the
commitments, the algorithm increases the value for capacity
up to the limit L of the attribute. The algorithm completes
when it finds that the commitments cannot be satisfied or when
the value for capacity changes by less than some tolerance.
Currently we use a binary search, but other search mechanisms
could also be used. Upon termination, the algorithm reports
whether the commitments are satisfied (for each attribute). If
so, the resulting value for capacity is reported as the required
capacity (for each capacity attribute).

B. Optimizing search

Figure 5 illustrates the optimizing search algorithm for
the consolidation exercise. The resource access QoS commit-
ments, workload allocation traces, and an initial assignment
of workloads to resources are the inputs of the algorithm.
The behavior of each resource is simulated using the method
described in Section VI-A. The results of the simulations are
then used to compute a score for the consolidation objective
function. If there is little improvement in the score then
the algorithm reports a configuration that achieved the best
score while satisfying resource access QoS commitments and
terminates. Otherwise a new configuration is enumerated and
the simulation process is repeated. A genetic algorithm is used
to guide the search.

The consolidation exercise begins with the initial configu-
ration of the system and causes a search for a workload as-
signment that satisfies commitments and uses a small number
of servers. A score is computed for each assignment of the
workloads to resources. The score is a sum of values computed
for each resource. To simplify the presentation, we assume
that each CPU in the pool has the same processing capacity
but that resources may have different numbers of CPUs. The
values that contribute to the score are:

• 1: for a resource in the pool that isn’t used;
• f(U): a function of utilization for a resource with re-

quired capacity R less than or equal to the capacity of
the resource L, where U = R

L and 0 < U ≤ 1; and,
• −N : for resources that are over-booked, i.e., R > L,

where N is the number of application workloads assigned
to the resource.

The function f(U) provides a greater value for higher uti-
lizations than lower utilizations. However, the function scales
utilization with respect to the number of CPU resources to
reflect that resources with more CPUs can operate at higher
utilization levels. Let Z be the number of CPUs per server,

we define f(U) as: f(U) = (UZ)2 = U2×Z . The square term
in the power exaggerates the advantages of higher utilizations
(in a least squares sense), the Z term demands that servers
with greater numbers of CPUs be higher utilized. The Z term
is motivated by the function 1

1−UZ that estimates the mean
response time of clients with unit demand in an open queueing
network having a single resource with Z CPUs.

The genetic algorithm has mutation and cross-over func-
tions. The mutation function associates a mutation probability
with each server that is used according to its value for f(U).
The lower the value of f(U) for a resource the greater the
likelihood that the resource’s application workloads will be
migrated to other resources. With each mutation step, the
algorithm tends to reduce the number of resources being used
by one. The cross-over function mates earlier assignments in a
straightforward manner. It simply takes some random number
of application assignments from one assignment and the rest
from the other to create a new assignment.

C. Planning for Failures

The workload placement service can also be used to report
on the impact of single and/or multiple failures. Basically, the
configuration of the consolidated system is taken as the initial
configuration. This configuration is for a small number of
servers as needed to support the applications with their normal
mode QoS requirements. For failure modes (e.g., one server
at a time), the workload placement service systematically
removes one server at a time from the pool, associate its
affected applications with their failure mode application QoS
requirements, and repeats the consolidation algorithm. The
consolidation algorithm reports whether it is possible to place
all the affected applications on the remaining servers in the
pool with their failure QoS requirements. If this is possible
for all failures under study then the service reports that failure
modes can be supported without an additional spare server.
More detailed information about which applications can be
supported in this way and for which failures can be combined
with expectations regarding time to repair for servers, the
frequency of failures, and penalties to decide on whether it
is cost effective to have a spare server or not. However, in our
case study in this paper we simply show that the use of an
alternative set of application QoS constraints can result in the
requirement for one less server.

VII. CASE STUDY

In this section, we present a case study to demonstrate the
features of R-Opus for a large enterprise order entry system
with 26 applications. The study presents a characterization
of the application workloads, results regarding the portfolio
approach, and workload placement results. The case study
relies on four weeks of workload CPU demand traces with
measurement values recorded every 5 minutes.

Figure 6 shows the percentiles of CPU demand for the 26
applications. The demands are normalized as a percentage with
respect to their peak values. The 100-percentile of demand
corresponds to 100% normalized CPU demand. Several curves
are shown that illustrate the 99.9 through 97 percentile of
demand. The figure shows that 2 applications, i.e., the leftmost
in the figure, have a small percentage of points that are
very large with respect to their remaining demands. The left-
most 10 applications have their top 3% of demand values
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Fig. 6. Top Percentile of CPU Demand for Applications under Study.

between 10 and 2 times higher than the remaining demands
in the trace. It shows the bursty nature of demands for most
of the applications under study.

In our case study, we consider the following application
QoS requirements:

• acceptable application performance: U low = 0.5,
Uhigh = 0.66, with utilization of allocation in the range
(0.5, 0.66) for 97% of measurements;

• degraded application performance: for the remaining
measurements Mdegr = 3% the utilization of allocation
should not exceed Udegr = 0.9. We consider four values
for T degr: none, 2 hours, 1 hour, and 30 min, i.e.,
from no additional time-limiting constraints on degraded
performance to the case when degraded performance
should not persist longer than 30 min.

The workloads are partitioned across the two CoS to satisfy
these application QoS requirements.

Figures 7 a) and b) show the impact of Mdegr and T degr on
maximum allocations for 26 applications under study and two
different values for resource access probability: θ = 0.95 and
θ = 0.6. The y-axis shows the percent reduction for the maxi-
mum allocation with Mdegr=3% as compared to Mdegr = 0%.
For both values of θ, many of the 26 applications have a 26.7%
in reduction for maximum allocation that corresponds to an
expected upper bound on MaxCapReduction (as described
by formula 5 in Section V). Overall MaxCapReduction is
affected more by T degr for θ = 0.6 than for the higher value of
θ = 0.95. Again, this is consistent with our general derivations
in Section V, where we observe that under time-limiting
constraints, higher values of θ lead to a smaller maximum
allocation requirements.

Figures 8 a) and b) show the percentage of measurements
that have degraded performance, i.e., with utilization of alloca-
tion in the range (Uhigh, Udegr). While up to 3% of measure-
ments were allowed to be in the degraded range, the additional
time-limiting constraint T degr=30 min significantly reduces
the number of measurements with degraded performance: it is
less than 0.5% for θ = 0.95 and less than 1.5% for θ = 0.6
as shown in Figures 8 a) and b), respectively.

To summarize, for these workloads, a small but controlled
relaxation for application QoS requirements can lead to up
to an approximately 25% reduction in maximum allocation
requirements.

We now consider the use of the workload placement service.
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Contiguous Requirement on Degraded Performance.

Table I shows the impact of Mdegr, T degr and θ 3 on the
CPU capacity needed to satisfy the 26 application workloads.
The table shows the number of 16-way servers reported as
being needed by the workload placement service, the sum
of per server required capacity Crequ, and the sum of per-
application peak CPU allocations Cpeak . All cases had the
same workload placement algorithm termination criteria and
used approximately 10 minutes of CPU time on a 3.4 Ghz
Pentium CPU. The required capacity values are between 37%
to 45% lower than the sum of per-application peak allocations.
This shows that resource sharing presents significant opportu-
nity for reducing capacity requirements for these workloads.
Furthermore, for cases 1-3 some demands are in both CoS1

and CoS2; for cases 4-6 all demands are in CoS2. If all
demands were associated with CoS1 then, because we would
have to limit the sum of per-application peak allocations to the
capacity of the resource, we would require at least 15 servers
for case 1 and 11 servers for case 3. Thus having multiple
classes of service is advantageous.

We now consider the impact of Mdegr on Cpeak and then on
Crequ. With Mdegr = 3%, we allow 3% of the measurement
points to have utilization of allocation between Uhigh and
Udegr.

For the cases with T degr = none, the impact of Mdegr =
3% on Cpeak is identical for both values of θ. There is a

3For all the experiments the resource access QoS commitment has a
deadline value s that corresponds to 60 min (see Section IV).
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Case Mdegr θ T degr Num. of Crequ Cpeak

16-way CPU CPU
servers

1 0 0.60 none 8 123 218
2 3 0.60 30 min 7 106 188
3 3 0.60 none 7 104 166
4 0 0.95 none 8 118 218
5 3 0.95 30 min 7 103 167
6 3 0.95 none 7 104 166

TABLE I

IMPACT OF Mdegr , T degr AND θ ON RESOURCE SHARING.

reduction in Cpeak of 24%. For the cases with T degr = 30
minutes, for θ = 0.6 there is a reduction in Cpeak of 14%,
whereas for θ = 0.95 there is a reduction of 23%. This is due
to the interaction between T degr and θ as discussed above.
Having a higher θ value appears advantageous for a resource
pool operator.

We now compare the impact of Mdegr = 3% and T degr =
30 minutes on the values for Crequ and Cpeak . For θ = 0.6 the
impact is about the same, and is a reduction of approximately
14% with respect to the Mdegr = 0% case. For θ = 0.95,
the Crequ is reduced by 14% and Cpeak is reduced by 23%
with respect to the Mdegr = 0 case. The workload placement
service was not able to realize the same reduction in Crequ,
most likely because lowered per-application peak demands do
not necessarily coincide with peaks in aggregate demand.

Finally, we note that cases 1 and 4 from Table I require

8 servers, one more server than the remaining cases. Thus,
from the perspective of application QoS constraints for normal
and failure modes, we can offer case 1 and 4 constraints as
normal mode constraints and the remaining cases as possible
constraints for failure mode. In normal mode, the system
would use 8 servers. In the case of a single server failure
the table shows that the remaining 7 servers could support the
system with the other application QoS constraints, i.e, cases
2, 3, 54, or 6. However, an appropriate workload migration
technology is needed to realize the new configuration without
disrupting the application processing.

To summarize, higher values of θ permit more demand to
be associated with CoS2. This gives greater freedom to the
workload placement service to overbook capacity. Mdegr has a
bigger impact on Cpeak than Crequ because not all reductions
in peak application demands occur at the same times as peak
aggregate allocation requirements. Greater values for θ can
decrease the maximum required allocations of applications
as compared to lower values for θ. Finally, even minor
reductions in application QoS requirements can have a big
impact on system resource requirements. The appropriate use
of QoS requirements can help to support workload placement
exercises that deal with resource failures.

VIII. RELATED WORK

Historically, enterprise capacity management groups have
relied upon curve fitting and queueing models to anticipate
capacity requirements for shared resources such as mainframes
or large servers. Curve fitting and business level demand
forecasting methods are used to extrapolate measurements
of application demands on each resource. Queueing models
may be used to relate desired mean response times for model
specific workload classes (e.g., batch or interactive, payroll,
accounts receivable) to targets for maximum resource utiliza-
tions. Unfortunately, such planning exercises are a people
intensive and hence expensive process. Most organizations
only conduct these exercises when the costs can be justi-
fied. Even so, capacity management remains a challenge as
today’s enterprise data centers can have hundreds of large
shared servers and thousands of lightly utilized smaller server
resources.

We employ a trace-based approach to model the sharing
of resource capacity for resource pools. Many groups have
applied trace-based methods for detailed performance evalu-
ation of processor architectures [11]. They can also be used
to support capacity management on more coarse data, e.g.,
resource usage as recorded every five minutes. Our early work
on data center efficiency relied on traces of workload demands
to predict opportunities for resource sharing in enterprise data
centers [2]. We conducted a consolidation analysis that packed
existing server workloads onto a smaller number of servers us-
ing an Integer Linear Programming based bin-packing method.
Unfortunately the bin-packing method is NP-complete for this
problem, and as a result is a computationally intensive task.
This makes the method impractical as a method for larger
consolidation exercises and on-going capacity management.

4We note that case 5 requires one fewer CPU than case 6 where we
would have expected it to require the same or a larger number of CPUs. We
believe this is an anomaly of the genetic algorithm based workload placement
algorithm.



As a result heuristic search approaches seem most appropriate
for this problem.

Traces have been used to support what-if analysis that
consider the assignment of workloads to consolidated servers.
AOG [1] and TeamQuest [16] offer products that employ
trace-based methods to support consolidation exercises. Auto-
Globe [4] proposes a static analysis that also relies on traces
for workload placement. To the best of our knowledge these
rely on greedy algorithms (or provide a manual interface for
a planner) for workload placement. We believe our genetic
algorithm approach provides for better solutions, as it has
compared favorably to the greedy algorithms we implemented
ourselves. Other heuristic search approaches that also take into
account correlations in resource demands among workloads
may also be worth exploring. Furthermore, our workload
placement methods go further than these other methods by
addressing issues including resource access Quality of Service
(QoS) [14], and, as described in this paper, per-application
QoS requirements. This permits a layering of application and
resource access QoS objectives to be realized as we have
shown in this paper.

Finally, the application QoS objective we considered im-
proves on other QoS objectives we have seen for resource
pools. Some researchers propose to limit the capacity re-
quirement of an application workload to a percentile of its
demand [17]. This does not take into account the impact
of sustained performance degradation on user experience as
our Mdegr and T degr terms do. Others look only at QoS
objectives for resources as a whole [4] rather than permitting
each application workload to have an independently specified
QoS objective as is the case with R-Opus.

IX. SUMMARY AND CONCLUSIONS

We have introduced R-Opus, a composite framework for
realizing application QoS requirements in shared resource
pools. The framework brings together several features. It
includes a method for dividing application workload demands
across two workload manager allocation priorities. We have
shown how this can be done to satisfy per-application QoS
objectives in shared resource environments. Application own-
ers specify application QoS requirements using a range for
acceptable performance along with terms the limit acceptable
degradations to this performance. These, along with resource
pool resource access QoS, determine how much of each
application’s demands must be associated with a guaranteed
allocation class of service and how much with a second class
of service that offers resources with a given probability defined
by a resource pool operator. A workload placement service
assigns workloads to resources in a manner expected to satisfy
the resource access CoS objectives. The more workload that
is associated with the second class of service, the greater the
opportunity for the resource pool to overbook resources.

Case study results validate our technique. The results show
that relatively small diminishment in application QoS require-
ments can lead to a significant reduction in per-application
maximum allocation, e.g., 25% in our case study. Higher
θ values from resource pool operators can lead to greater
reductions; in particular when the time-limited degradation is
employed. Having a non-guaranteed CoS greatly reduces ag-
gregate capacity requirements when consolidating workloads
to servers. The workload placement service was able to realize

significant benefits from consolidation, e.g., up to 45% with
respect to the sum of peak aggregate application allocation
requirements, for these workloads.

Finally, the approach we present aims to ensure that applica-
tions have utilization of allocation values that they need. This
is necessary to provide application quality of service. However,
other system features may also affect responsiveness but are
not modeled by our approach. These include the impact of
caching, database locks, garbage collection, and software bugs.
Furthermore, performance tuning and capacity management
exercises often aim ensure that sufficient memory and input-
output capacity are available to make CPU resources the
bottleneck to manage. Future work will look at extending our
techniques to consider the impact of greater sharing of other
capacity attributes such as memory and input-output resources.
We believe R-Opus should be part of a larger management
system that takes these aspects of system behaviour into
account as well.
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