
Scheduling Strategy to Improve
Response Time for Web Applications

Ludmila Cherkasova

Hewlett-Packard Laboratories,
1501 Page Mill Road, Palo Alto, CA 94303,

e-mail: fcherkasovag@hpl.hp.com, fax: 1-650-813 3381, phone: 1-650-857 3753

Abstract. We propose a tunable scheduling strategy that lies between
FIFO and shortest-�rst, based on the value of a coe�cient Alpha. If
Alpha is set to zero then this strategy is just FIFO. Larger Alpha gets
us closer to shortest-�rst strategy which is known to provide optimal
response time. However, unlike the shortest-�rst, proposed scheduling
strategy is starvation free. This scheduling strategy, called Alpha schedul-
ing with no preemption, allows to improve overall response time per
HTTP request more than 3 times under heavy load. We demonstrate
our results with a simple simulation model using SpecWeb96 to generate
representative WWW workload.

1 Introduction

With the growth of the World Wide Web, HTTP (Hyper Text Transfer Proto-
col [FGMFB97]) use has increased dramatically. It became the dominantmethod
to transfer the data over Wide Area Networks. Some web sites became extremally
popular and to function e�ciently they needed fast, high-performance http
servers. There are several factors limiting performance of Unix HTTP servers.
The two basic and most likely ones are the connection rate (de�ned by the CPU
power) and the network bandwidth [PDGWW96]. Thus, scheduling HTTP re-
quests for the e�cient usage of two basic shared resources on a web server such
as CPU and shared network interface can have a signi�cant impact on the per-
formance of this web server.

A new scheduling technique for jobs competing to be serviced using shared
resources is proposed. A scheduling strategy, called Alpha scheduling with no
preemption, allows to improve overall response time per HTTP request more
than 3 times under heavy load.

Using SpecWeb96 benchmark [SpecWeb96] to generate representative WWW
workload and a simple simulation model, we show how this scheduling strategy
can be applied to the HTTP requests queue. Di�erent HTTP requests retrieve
the �les of di�erent sizes which occupy shared system resources for di�erent
amounts of time: small �les consume less CPU amounts as well as network
bandwidth than the big ones. The requests are stored in a priority queue with a
key, which is computed using a function of \clock" and the size of the requested
�le. Alpha scheduling logically looks similar to a shortest-�rst strategy due to a
part of the key formula which depends on the size of the requested �le. However,
it allows to avoid the inevitable for shortest-�rst strategy starvation problem
due to a part related to the \clock".

Proposed scheduling strategy allows to reorder the requests queue in such
a way that it signi�cantly reduces waiting time in a queue, and as a result
signi�cantly improves overall response time per request. Thus under the same

load, a server using Alpha scheduling will have shorter queue of requests than a
server operating under FIFO scheduling. This leads to better system resources
utilization, and as a result to improved system throughput.

The remainder of this paper is organized as follows: Section 2 introduces
the basic scheduling algorithm, called Alpha scheduling with no preemption;
Section 3 describes how the proposed algorithm can be used to reorder HTTP
requests for e�cient processing; Section 4 presents the SpecWeb96 benchmark
description; Section 5 presents the performance analysis study results for Alpha
scheduling with no preemption using SpecWeb96 benchmark as a workload gen-
erator; Section 6 and Section 7 generalizes Alpha scheduling with no preemption
to correctly handle requests from di�erent classes.

Acknowledgements:My thanks to Tomas Rokicki with whom I had plea-
sure to work on related ideas for packet-switched interconnect [CR94], and to my
colleagues Peter Phaal and Sekhar Sarukkai for useful discussions and remarks.
My special thanks to colleagues from New Jersey Lab: Pranav Naik who has
implemented Alpha scheduling in Apache code and proved that it works, and
Hari Pulijal and Ashok Nadkarni who appreciated the idea and supported this
work.

2 Alpha Scheduling with No Preemption

There is set of known scheduling algorithms proposed in the past such as round
robin, di�erent priority queue based algorithms (with aging and without, which
are actively used in OS), Alpha scheduling [CR94], etc. They were proposed for
di�erent purposes: some of them intend to optimize overall service response time,
some of them are targeting fair access in sharing the critical resources.

All of the algorithms mentioned above are strongly based on the assumption
that a job can be partitioned in \chunks" and the scheduling dictates which job
\chunk" is executed next. Often additionally, they have one more assumption
that a short job can preempt the execution of the longer one.

Two well known scheduling disciplines which do not have above assumptions
are FIFO (�rst-in, �rst-out) and \shortest job �rst". Typical current scheduling
of HTTP queue is FIFO (with obvious extensions for high priority jobs). With
such a strategy, starvation is impossible; each request will eventually be serviced.
The maximum time waiting in the queue is proportional to the sum of the
requested �le lengths of all the requests in the queue. For example, if we have
the following three requests in a queue:

{ �rst request requires 1000 (conditional) time units to be serviced;
{ second request requires 10 time units to be serviced;
{ third request requires 20 time units to be serviced;

If these three requests are processed in FIFO order then

{ �rst request response time is 1000 time units;
{ second request response time is 1010 time units;
{ third request response time is 1020 time units;

In such a way, two \short" requests processed after the \long" one, observe this
\long" request processing time and include it in their response time. Resulting
average response time is 1010 time units per request.

\Shortest job �rst" discipline provides the optimal response time. If shortest-
�rst strategy is used to serve three requests above then

{ as a �rst request will be served those that requires 10 time units;
{ as a second request will be served those that requires 20 time units;
{ as a third request will be served those that requires 1000 time units;

Resulting average response time is 343.3 time units per request.
\Shortest job �rst" is not used in practice because it leads to starvation

problem of long jobs in presence of continuous arrivals of shorter jobs.
We propose a scheduling strategy that lies between FIFO and shortest-�rst,

based on the value of a coe�cient Alpha, and which is starvation free.
Consider requests ri(i � 0) competing to be serviced using shared resource

S (or set of shared resources).
Let cost(ri) be a function reecting amount of time the request ri occupies

shared resource S such that if request rj occupies shared resource S less than
request rk then cost(rj) < cost(rk).

To optimize the average response time per request ri, which includes both
waiting time in a queue and service time using shared resource S, we are going
to schedule requests queue in the following manner.

Requests are stored in a priority queue.
Request ri is inserted into the priority queue with a priority of

c + � � cost(ri):

where

{ The parameter c is a running queue \clock" that starts at zero and incre-
ments for each serviced request ri by the cost(ri).

{ The tuning parameter � controls the balance between fairness and latency
minimization; it can range from 0 to 1

Requests with the lowest priorities get processed �rst.
If � = 0 then this strategy is simply FIFO .
If � = 1 or some other �nite positive value, then this scheduling will not

allow any single request to be delayed inde�nitely by the other requests, no
matter how the request stream looks like. For �nite � every request is eventually
delivered. This is because c increases with each request sent, so eventually every
new request will be inserted in the priority queue after a given request. That is,
starvation is impossible. Larger � provides better average response time because
it allows larger key gap for insertion of \cheap" requests in front of \expensive"
ones; smaller � provides better fairness among requests of di�erent cost.

Let us call this scheduling discipline as Alpha scheduling with no preemption.
Values of parameter c and element keys are easily kept bounded, either by

resetting c to zero whenever the request queue empties, or by performing a scan
through the priority queue and decreasing all the priorities and c by the priority
of the head request on those rare occasions when the clock (or lement key) is
about to exceed some maximum.

3 Reordering HTTP Requests Queue Using Alpha

Scheduling with No Preemption

An http server is a �leserver that uses TCP/IP to reliably transport data over
Wide Area Networks. CPU service time and requirements for network bandwidth
are directly proportional to the size of the requested �le.

Using this observation we are going to reschedule HTTP requests queue in
the following manner.

Let cost(ri) = length(ri) , where length(ri) is a �le size retrieved by the
request ri.

Request ri is inserted into the priority queue with a priority of

c+ � � length(ri):

REMARK: In case of persistent connections [FGMFB97], the requests be-
longing to the same connection have to be serviced in order they arrive. In this
case, the generalization of Alpha scheduling described in Section 6 has to be
used.

4 SpecWeb96 Benchmark

We use SpecWeb96 benchmark [SpecWeb96] parameters to generate representa-
tive WWW workload, which is an industry standard benchmark for generating
HTTP requests and measuring Web Servers performance.

File mix is de�ned by the �les (requests) distribution from the following four
classes:

{ 0 Class: 100bytes - 900bytes (35%)
{ 1 Class: 1Kbytes - 9Kbytes (50%)
{ 2 Class: 10Kbytes - 90Kbytes (14%)
{ 3 Class: 100Kbytes - 900Kbytes (1%)

The average �le size for SpecWeb96 workload is 14,675 bytes.
We will show the impact of Alpha scheduling with no preemption on average

response time for HTTP requests generated by SpecWeb96 workload.
There are two major contributors to the request response time:

{ Request Response Time = waiting time in queue + processing and transfer
time.

Our main strategy is to minimize waiting time in the queue.

5 Simulation Results of Alpha Scheduling with No

Preemption Using SpecWeb96 Benchmark

To justify the proposed scheduling, the following simpli�ed simulation model
was built. For example, one can imagine a server which can serve X requests/sec
as an upper limit. Applied to SpecWeb96 terminology it is X OPS/sec or X
connections per second. We will apply load of 5% of X, 10% of X, ..., 95% of X
to see the impact of servicing requests queue using the Alpha Scheduling with
no preemption against the original FIFO strategy.

We have set a capacity of our server to 100 OPS/sec.
Figure 1 shows average response time for SpecWeb96: FIFO vs Alpha-scheduling

with no preemption (� = 1,10,20,30).
The performance improvement for SpecWeb96 under Alpha scheduling with

no preemption is extremally good. Parameter � = 30 is close to optimal.
The interesting question is how has the performance improved for requests

from di�erent classes.

FIFO

Alpha=1

Alpha=10

Alpha=20

Alpha=30

Latency (sec)

Load (%)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

20.00 40.00 60.00 80.00 100.00

Fig. 1. Average Response Time for SpecWeb96: FIFO vs Alpha Scheduling with No
Preemption.

FIFO

Alpha=1

Alpha=10

Alpha=20

Alpha=30

Latency (sec)

Load (%)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

20.00 40.00 60.00 80.00 100.00

Fig. 2. Average Response Time for Class0 �les in SpecWeb96: FIFO vs Alpha Schedul-
ing with No Preemption.

FIFO

Alpha=1

Alpha=10

Alpha=20

Alpha=30

Latency (sec)

Load (%)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

20.00 40.00 60.00 80.00 100.00

Fig. 3. Average Response Time for Class1 �les in SpecWeb96: FIFO vs Alpha Schedul-
ing with No Preemption.

FIFO

Alpha=1

Alpha=10

Alpha=20

Alpha=30

Latency (sec)

Load (%)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

20.00 40.00 60.00 80.00 100.00

Fig. 4. Average Response Time for Class2 �les in SpecWeb96: FIFO vs Alpha Schedul-
ing with No Preemption.

FIFO

Alpha=1

Alpha=10

Alpha=20

Alpha=30

Latency (sec)

Load (%)

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

20.00 40.00 60.00 80.00 100.00

Fig. 5. Average Response Time for Class3 �les in SpecWeb96: FIFO vs Alpha Schedul-
ing with No Preemption.

Figures 3, 4, 5 show the average request response time for SpecWeb96 classes 0,1,2,3:
FIFO vs Alpha scheduling with no preemption.

We can clearly see, that average response time of classes 0,1,2 (which make
99% of all requests) is signi�cantly improved compared with average response
time of these classes under FIFO strategy.

Only the response time of class 3 (1% of all requests) became worse. It should
be expected. Proposed scheduling is favoring the \short" requests by letting them
to overpass the \long" ones. However, the performance penalty for requests of
class 3 is reasonable. It is about 2-3 times worse in a heavy loaded area.

6 Generalization of Alpha Scheduling with No

Preemption to serve Di�erent Job Classes

Consider requests ri(i � 0) competing to be serviced using shared resource S.
Let these requests belong to di�erent job classes Jk(k = 1; :::;K). Additionally,
there is a requirement that jobs from the same class should be executed in order
they arrive.

REMARK: In case of persistent connections introduced by HTTP 1.1, there
is a requirement that the requests belonging to the same open connection have
to be serviced in order they issued.

In this case, the reordering can be done only among the requests belonging
to di�erent classes since the requests withing the same class should be processed
in the same order they arrive. We will show a simple generalization of Alpha
scheduling to handle this situation.

Let cost(ri) be a function reecting amount of time the request ri occupies
shared resource S such that if request rj occupies shared resource S less than
request rk then cost(rj) < cost(rk).

Requests are stored in a general priority queue.
Let us introduce two additional parameters for each class Jk(k = 1; :::;K):

{ cur queue length(Jk) to reect the current number of requests in the general
priority queue belonging to the class Jk and

{ cur pr(Jk) to reect the priority which was assigned to the last request from
the class Jk when cur queue length(Jk) is not equal to zero. Otherwise,
cur pr(Jk) is zero.

Initially, both of these parameters are set to zero.
Request ri from the job class Jk is inserted into the general priority queue

with a priority pr(ri) calculated in the following manner.

{ 1). First, the pr(ri) is calculated using usual formula from Section 2:

pr(ri) = c+ � � cost(ri)

{ 2). If pr(ri) � cur pr(Jk) then request ri is inserted into the general priority
queue with the priority pr(ri) computed above, and cur queue length(Jk)
and cur pr(Jk) are recomputed by the following formula:

cur queue length(Jk) = cur queue length(Jk) + 1

and
cur pr(Jk) = pr(ri):

{ 3). If pr(ri) < cur pr(Jk) then request ri is inserted into the general priority
queue with a priority

pr(ri) = cur pr(Jk) + 1:

If this takes place, cur queue length(Jk) and cur pr(Jk) are recomputed by
the following formula:

cur queue length(Jk) = cur queue length(Jk) + 1

and
cur pr(Jk) = pr(ri):

Requests with the lowest priorities get processed �rst. Whenever the head
request ri, belonging to the job class Jk gets serviced, the following actions take
place:

{ The parameter c (a running general queue \clock" that starts at zero) is
incremented by the cost(ri).

{ cur queue length(Jk) = cur queue length(Jk) � 1:
{ If cur queue length(Jk) becomes equal to zero then cur pr(Jk) is reset to
zero too.

The tuning parameter � controls the balance between fairness and latency
minimization in the same way as described above in Section 2; it can range from
0 to 1.

The proposed modi�cation of Alpha scheduling allows to service requests
from the same job class in order they arrive, while optimizing the overall response
time via e�cient rescheduling of the requests from the di�erent job classes.

7 Extention of Alpha Scheduling with No Preemption to

serve Job Classes of Di�erent Priorities

Let the job classes have di�erent priorities. If Jm job class has higher priority
than Jn job class then it means that requests from Jm has to be served before
requests from Jn.

The simplest way to optimize response time for those jobs is to introduce a
priority queue (with its own parameters) per priority class and schedule requests
within their priority class (queue).

Service starts with highest priority queue, and it is switched to next priority
queue only when highest priority queue becomes empty, etc.

REMARK: There is an equivalent way to serve requests from job classes
having di�erent priorities using one priority queue. It can be achieved by splitting
the range of general priority queue keys into disjoint sections (ordered the same
way as correspondent priority classes) and using this section of a priority queue
(with its own parameters) to serve the requests of correspondent priority class.

8 Conclusion

In this paper, we have introduced a new scheduling strategy, Alpha scheduling
with no preemption, and using SpecWeb96 benchmark we have shown how it
can signi�cantly improve the overall response time per HTTP requests by simply
scheduling the requests appropriately.

Reordering the HTTP requests assumes that the HTTP request processing
is split into two phases: parsing the request where the header of the request is
parsed and the size of the requested �le is recognized, and completing the request
where the �le is moved from memory or disk to network.

There is another place inside the Web Server where Alpha scheduling with
no preemption can be used. Proposed scheduling can be applied to reorder the
replies for processed HTTP requests, i.e. to reorder the �les at network interface
for their e�cient network transfer. This will have similar performance bene�ts
and will be simpler to implement, since at network interface the size of �le to
transfer is known and it covers all types of HTTP requests.

In both cases, reducing overall response time per request will lead to better
system resources utilization, and as a result to improved system throughput.

References

[CR94] Cherkasova, L. and Rokicki, T.: Alpha Message Scheduling for Packet-Switched
Interconnects. HP Laboratories Report No. HPL-94-71, August, 1994.

[FGMFB97] Fielding, R., Gettys, J.,Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext
Transfer Protocol { HTTP/1.1. Internet Proposed Standard Protocol, RFC-2068.
URL http://www.ics.uci.edu/pub/ietf/http/.

[PDGWW96] Prefect, F., Doan, L., Gold, S., Wicki, Th., Wilcke, W.: Performance
Limiting Factors in HTTP (Web)Server Operations. In Proceedingds of COMP-
CON96, Santa Clara, California, February, 1996, p.267-272.

[SpecWeb96] The Workload for the SPECweb96 Benchmark. URL
http://www.sepcbench.org/osg/web96/workload.html

This article was processed using the Lscaled 913aTEXmacro package with LLNCS style

