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Abstract—Many industries experience an explosion in digital
content. This explosion of electronic documents, along with new
regulations and document retention rules, sets new requirements
for performance efficiency of traditional data protection and
archival tools. During a backup session a predefined set of objects
(client filesystems) should be backed up. Traditionally, no infor-
mation on the expected duration and throughput requirements of
different backup jobs is provided. This may lead to a suboptimal
job schedule that results in the increased backup session time. In
this work, we characterize each backup job via two metrics, called
job duration and job throughput. These metrics are derived from
collected historic information about backup jobs during previous
backup sessions. Our goal is to automate the design of a backup
schedule that minimizes the overall completion time for a given
set of backup jobs. This problem can be formulated as a resource
constrained scheduling problem where a set of n jobs should be
scheduled on m machines with given capacities. We provide an
integer programming (IP) formulation of this problem and use
available IP-solvers for finding an optimized schedule, called bin-
packing schedule. Performance benefits of the new bin-packing
schedule are evaluated via a broad variety of realistic experiments
using backup processing data from six backup servers in HP
Labs. The new bin-packing job schedule significantly optimizes
the backup session time (20%-60% of backup time reduction).
HP Data Protector (DP) is HP’s enterprise backup offering and
it can directly benefit from the designed technique. Moreover,
significantly reduced backup session times guarantee an improved
resource/power usage of the overall backup solution.

I. INTRODUCTION

One of continuous challenges for IT departments is effec-

tively backing up and protecting the vast amounts of data

stored throughout the enterprise. It is a daily struggle. The

explosion of digital content, along with new compliance and

document retention rules, requires more efficient data protec-

tion and archival tools. Current data protection shortcomings

and challenges will only be exacerbated by continuing double-

digit growth rates of data. Backup and restore operations

still involve many manual processes, they are staff and labor

intensive. Current systems should be significantly optimized

and automated to timely handle growing volumes of data.

Reliable and efficient backup/recovery processing remains

a primary pain point for most storage organizations. The

estimates are that 60% to 70% of the effort associated with

storage management is related to backup/recovery [20].

HP Data Protector (DP) is HP’s enterprise backup offering.

Currently, Data Protector maintains course-grained metadata

for each backup period which can be used to provide data

points for deriving metadata analysis and trending. In our ear-

lier paper [7], we analyzed a traditional backup job scheduling

and demonstrated that the random job scheduling traditionally

used in backup tools may lead to inefficient backup processing

and an increased backup time. Therefore, we proposed a new

backup job scheduling, called LBF (longest backup first),

which aims to optimize the overall backup time. This scheduler

takes advantage of a historic information about the object

backup processing time available from the previous backups

and uses this information for job scheduling in the upcoming

backup.

Typically, a backup tool has a configuration parameter

which defines a level of concurrency, i.e., the number of

concurrent processes (called disk agents) which can backup

different objects in parallel to the tape drives. One of the

unsolved problems in our previous work [7] was automating

the parameter setting of concurrent disk agents per tape drive

that optimizes the tape drive throughput.

In this work, we take a different approach to the problem.

We characterize each backup job via two metrics, called

job duration and job throughput. These metrics are derived

from collected historic information about backup jobs during

previous backup sessions. Our goal is to automate the design of

a backup schedule that minimizes the overall completion time

for a given set of backup jobs. This problem can be formulated

as a resource constrained scheduling problem where a set

of n jobs should be scheduled on m machines with given

capacities. However, as shown in [22] this problem is NP-

complete even for m = 1. We provide a general integer

programming (IP) formulation of the backup job scheduling

problem for multiple tape drives configuration. Then we design

an improved and more compact IP formulation for the case

of a single drive configuration. We use available IP-solvers

(e.g., CPLEX) for finding an optimized schedule, called a bin-

packing job schedule.

In our performance study, we use a realistic workload

collected from six backup servers at HP Labs. There are

significant time savings achieved under the new bin-packing

job scheduling: a 20%-60% backup time reduction compared

to the already optimized backup time under the LBF sched-

uler proposed in [7]. Moreover, significantly reduced backup

session times result in the improved resource/power usage and

price/performance ratio of the overall backup solution.

The traditional challenge in applying the integer program-

ming technique is finding a solution in a reasonable time

(for being useful in practice). The solution time for inte-

ger programming models is notoriously difficult to predict.

We observed that the solution time is very bimodal for all

the experiments that we have performed: either the optimal

solution is found very quickly (within 10 sec-1.5 min), or

it takes a few hours to produce a good result. In order to

understand the performance benefits, efficiency, and limita-

tions of the designed approach we have created a broad

spectrum of different realistic workloads using the combined



workload from six HP Labs backup servers. We identified a

metric which can be derived from a given workload and the

backup tool configuration parameters. This metric correlates

very well with a solution time and therefore can be useful

in its prediction. These findings highlight an interesting and

promising approach for a future work: how to tune the backup

tool configuration parameters or change a workload profile to

satisfy the identified metric and to provide a quick solution of

corresponding IP model for building an efficient bin-packing

job schedule.

The remainder of the paper is organized as follows. Sec-

tion II outlines a traditional backup tool architecture and

explains potential performance shortcomings of the traditional

approach. The LBF scheduling is described in Section III.

A general integer programming formulation of backup job

scheduling is provided in Section IV-A. An improved IP

formulation for a single drive configuration in is described

Section IV-B. The performance study evaluating potential

benefits and limitations of the designed bin-packing schedule

is presented in Section V. Section VI describes a review of

related work. Finally, Section VII draws conclusions.

II. TRADITIONAL FILESYSTEM BACKUP TOOL

The functionality of a backup tool is built around a backup

session and the objects (mount points or filesystems of the

client machines) that are backed up during the session. The

traditional architecture of a backup tool which uses a tape

library is shown in Figure 1. 1

Fig. 1. Traditional Architecture of a Backup Tool with a Tape Library.

The software processes, called disk agents, abbreviated as

DAs, are associated with each tape drive. Each disk agent is

responsible for backing up a single object at a time. Each

tape drive has a configuration parameter which defines a

concurrency level, i.e., the number of concurrent disk agents,

which can backup different objects in parallel to the tape drive.

This is done because a single data stream typically cannot fully

utilize the capacity/bandwidth of the backup tape drive due to

slow client machines (a typical throughput of a client system

is 10-20 MB/s). A system administrator can configure a high

1HP Data Protector provides the integration with Virtual Tape Libraries
(VTL) by emulating the drives of a physical tape library while storing the
backup images to disk [14]. The job schedules designed in the paper will
automatically apply to DP with VTL deployment as well.

number of DAs per tape drive to enable concurrent backup of

different objects at the same time. The drawback of such an

approach is that the data streams from many different objects

are interleaved on the tape, and when the data of a particular

object needs to be restored there is a higher restoration time for

retrieving such data compared with a continuous data stream

written by a single disk agent.

There are a few potential problems with a traditional backup

solution which may cause inefficient backup processing.

• When a group of n objects is assigned to be processed

by the backup tool, there is no way to enforce an order in

which these objects should be processed by the tool. If a

large (or slow) object with a long backup time is selected

significantly later in the backup session this leads to an

inefficient schedule and an increased overall backup time.

• When configuring the backup tool, a system administrator

should not over-estimate the required number of concur-

rent DAs because the data streams from these concurrent

agents are interleaved on the tape, and this leads to a

higher restoration time for retrieving such data. Moreover,

when the aggregate throughput of concurrent streams

exceeds the specified tape drive throughput, it may in-

crease the overall backup time instead of decreasing it.

Often the backup time of a large object dominates the

overall backup time. Too many concurrent data streams

written at the same time to the tape drive might decrease

the effective throughput of each stream, and therefore,

unintentionally increase the backup time of large objects

and result in the overall backup time increase.

In this work, we aim to revisit a traditional backup job

scheduling and configuration issues in order to investigate

potential opportunities and benefits of building a tailored

backup job schedule from the available historical information

on the workload profile.

III. BACKGROUND: LBF SCHEDULING

In this section, we briefly describe the LBF job schedule

originally proposed in [7], since our goal is to investigate the

potential performance improvements and changes to the latest

available and already optimized backup job scheduler.

For an upcoming full backup, we use information about the

job durations from the previous full backup. At this phase,

an ordered list of objects sorted in decreasing order of their

backup durations is created:

OrdObjList = {(O1, Dur1), ..., (On, Durn)}

where Durj denotes the backup duration of object Oj , and

Dur1 ≥ Dur2 ≥ Dur3 ≥ ... ≥ Durn.

Let there be m tape drives: Tape1, ..., Tapem, and each

tape drive be configured with k disk agents. We observe the

following running counters per each tape drive Tapei:

• DiskAgenti – a counter of available disk agents for tape

drive Tapei; and
• TapeProcT imei – a counter of overall processing time

assigned to tape drive Tapei.



For each tape drive Tapei (1 ≤ i ≤ m) these counters are

initialized as follows:

DiskAgenti = k,

TapeProcT imei = 0.

Now, we describe the iteration step of the algorithm. Let
(Oj , Durj) be the top object in the OrdObjList, and let

TapeProcT imer = min
1≤i≤m&DiskAgenti>0

(TapeProcT imei),

i.e., the tape drive Taper has the smallest assigned processing

time, and it still has an available disk agent for processing the

object Oj .

Then object Oj is assigned for processing to the tape drive

Taper, and the running counters of this tape drive are updated

as follows:

TapeProcT imer ⇐ TapeProcT imer +Durj ,

DiskAgentr ⇐ DiskAgentr − 1.

Intuitively, under this algorithm, we assign the longest jobs

for processing first. In addition, we suggest the job assignment

to concurrent disk agents in such a way that it balances the

overall amount of processing time assigned to different tape

drives. Once the objects were assigned to the available disk

agents, the backup processing can start. When a disk agent

at a tape drive Taper completes the backup of the assigned

object, the running counter of this tape drive is updated as

follows:

DiskAgentr ⇐ DiskAgentr + 1.

Then the disk agent of this tape drive is assigned the next

available object from the OrdObjList, and the running coun-

ters are updated again, and the backup process continues.

Typically, under this schedule each tape drive concurrently

processes a constant number of k jobs independent on their

aggregate throughput.

IV. BIN-PACKING JOB SCHEDULE

In this section, we provide an integer programming formula-

tion of the multiple machines resource constrained scheduling

problem that aims to minimize the makespan (the overall

completion time) of a given set of backup jobs for processing

by multiple tape drives. The main challenge of this exercise

is to provide a compact problem formulation that can be

efficiently solved with traditional IP-solvers (e.g., CPLEX [9])

in a reasonable compute time for being useful in practice.

A. General Problem Formulation for Multiple Tape Drives

Throughout the paper we use the following basic notations:

• n – denotes the number of jobs in the backup set;

• m – denotes the number of tape drive in the backup tool

configuration;

The scheduling problem is defined by a given set of n backup

jobs that has to be processed by m tape drives with given

performance capacities as described below.

In this work, we investigate the backup tool architecture

where the tape drives’ configuration is specified by the fol-

lowing parameters:

• maxDA - the maximum number of concurrent disk

agents configured per tape drive;

• maxTput - the aggregate throughput of the tape drive

(each tape library is homogeneous, but there could be

different generation tape libraries in the overall set).

Each job j, 1 ≤ j ≤ n in a given backup set is defined by a

pair of attributes (dj , wj), where

• dj is the duration of job j, and
• wj is the job j throughput (i.e., required tape drive

throughput or the resource demand of job j).

At any time, each tape drive can process up to maxDA jobs

in parallel but the total “width” of these jobs cannot exceed the

capacity of the tape drive maxTput. The objective function

is to find a schedule that minimizes the processing makespan,

i.e., minimizes the overall completion time for a given set of

backup jobs.
We define the following variables:

• Rij : a 0/1 variable, indicating whether backup job i is

assigned to tape drive j at some point of time.

• Yit: a 0/1 variable, indicating whether job i starts its

processing at time t.
• Zijt: a continuous variable (acting as Rij ·Yit) indicating

whether job i is in processing on tape drive j at time t.
• S: the makespan of the entire backup session.

First of all, let us approximate the low bound on the makespan

S. The nature of a given backup workload and the backup

tool configuration parameters define the following three low

bounds on makespan S:

• D1 represents the duration of the longest backup job in

the given set:

D1 = max
1≤i≤n

di (1)

Makespan S (i.e., duration of the entire backup session)

cannot be smaller than the longest backup job in the set.

• D2 is the shortest possible time that would be required

to process the entire set of submitted backup jobs at

maximum tape drive throughput maxTput (multiplied

by the number of tape drives):

D2 =

∑

1≤i≤n di · wi

m ·maxTput
(2)

This time represents the ideal processing of “all the bytes”

in the given set of backup jobs at the maximum tape

drive rate without any other configuration constraints of

the backup server. Clearly, makespan S cannot be smaller

than the “ideal” processing time of the backup set.

• D3 is the shortest possible time that would be necessary

to process the entire set of submitted backup jobs while

using the maximum possible number maxDA of con-

current disk agents at all tape drives (this computation

approximates the processing time for the case when

maxDA parameter is a constraint that limits backup

processing):

D3 =

∑

1≤i≤n di

m ·maxDA
(3)

It is apparent that makespan S cannot be smaller than D3

that reflects the ideal processing time of the backup set

with maxDA of concurrent disk agents.



In the IP formulation, we use estimates for lower and upper

bounds of makespan S computed in the following way:

Mlow = ⌈max(D1, D2, D3)⌉ (4)

Mup = ⌈max(D1, D2, D3)/0.95⌉ (5)

Comment: Mlow is indeed a lower bound on makespan S since

it cannot be smaller than D1, D2 or D3. However, Mup is

a possible approximation of the upper bound on makespan

S, and our current “guess”-estimate might be incorrect. The

optimal solution does not depend on Mup in a direct way:

as long as S ≤ Mup it leads to a feasible solution. If

this guess makes the problem infeasible, we can always

repeat the computation for Mup = ⌈max(D1, D2, D3)/0.9⌉
or Mup = ⌈max(D1, D2, D3)/0.85⌉, etc, until the problem

is feasible. If we choose Mup too large, then we create a

higher complexity problem by introducing a higher number of

equations and variables. However, if we chooseMup too small,

then the problem could be made infeasible. Our computational

experience with multiple traces we have used in the case study,

indicates that Mup = ⌈max(D1, D2, D3)/0.95⌉ is a good

starting guess.

The integer programming formulation is defined as follows:

• A job is processed by exactly one tape drive (total n
equations):

m
∑

j=1

Rij = 1, ∀i (6)

• Each job must start backup processing at some period

before t = Mup − di + 1:

Mup−di+1
∑

t=1

Yit = 1, ∀i (7)

• The jobs that are processed concurrently by tape drive

j have to satisfy the tape drive capacity constraint (at

any point of time t), i.e., the jobs’ aggregate through-

put requirements cannot exceed tape drive maximum

throughput (total m ·Mup inequalities):

n
∑

i=1

wi ·

(

t
∑

t′=t−di+1

Zijt′

)

≤ maxTput, ∀j, t (8)

• Maximum of maxDA concurrent jobs can be assigned

to tape drive j at any point of time t:

n
∑

i=1

(

t
∑

t′=t−di+1

Zijt′

)

≤ maxDA, ∀j, t (9)

• Each job finishes the backup processing within time

duration S, i.e., formally defining S as a makespan

of the backup session. Below, we optimize the number

of inequalities by considering only jobs i that were in

processing at time t ≥ Mlow (total n · (Mup − Mlow)
inequalities):

t ·

(

t
∑

t′=t−di+1

Yi,t′

)

≤ S, ∀i, t : t ≥ Mlow (10)

• Linking Zijt to binary variables Rij and Yit (total n ·m ·
Mup inequalities):

Zijt ≥ Rij + Yit − 1, ∀i, j, t (11)

• Non-negativity requirements:

Rij = 0/1; Yit = 0/1; Zijt ≥ 0 (12)

One of the traditional integer programming solvers, e.g.

CPLEX [9], can be used for finding a feasible solution. Once

an optimized job scheduling is provided by the solver, the

backup jobs can be ordered by the assigned “start” timestamps,

and then the Data Protector tool can schedule these jobs in

the advised order. We will call this schedule as a bin-packing

schedule. Our goal for a performance study is to evaluate the

performance benefits of the bin-packing schedule compared

to the earlier proposed LBF schedule. The additional goal

is to understand the approach complexity and its runtime

performance as a function of workload properties and backup

tool configuration parameters.

B. Improved Formulation for a Single Tape Drive

Often, system administrators manually create the so-called

backup groups, which are assigned to different tape drives

for processing. This helps in controlling the number of tapes

that are used for different mount points of the same client

machine (i.e., avoiding that different filesystems of the client

machine might be written to different tapes). This situation

can be especially annoying for smaller client machines when

the backed up client data are spread across multiple tapes. In

case of a backup group, a given set of backup jobs (a specified

backup group) is assigned for processing to a particular tape

drive.

If we have n jobs (i = 1, 2, . . . , n) and a single tape

drive for backup processing then the IP formulation can be

significantly simplified as shown below.

We define the following variables:

• Yit: a 0/1 variable, indicating indicate whether job i starts
its run at time t.

• S: the makespan of the entire backup session.

In the formulation below, we use a lower and upper bounds of

makespan S (Mlow and Mup respectively) that are computed

similarly as in the previous section IV-A, see equations 4, 5.

Assuming that job i will need to finish by period t = Mup,

then job i will need to start no later than t = Mup − di + 1.
Now let us pick any period t: we will know whether job i is

running in period t if and only if
(

∑t

t′=t−di+1
Yi,t′

)

= 1.

We can reformulate the single tape drive scheduling problem

as follows:

• Each job must start backup processing at some time

period before t = Mup − di + 1:

Mup−di+1
∑

t=1

Yit = 1, ∀i (13)

• The jobs that are processed concurrently by the same tape

drive have to satisfy a given tape drive capacity constraint,



i.e. their combined bandwidth requirements should be less

or equal than maxTput (total Mup inequalities):

n
∑

i=1

wi ·

(

t
∑

t′=t−di+1

Yi,t′

)

≤ maxTput, ∀t (14)

• Maximum of maxDA concurrent jobs can be assigned

to the tape drive at any point of time t:

n
∑

i=1

(

t
∑

t′=t−di+1

Yi,t′

)

≤ maxDA, ∀t (15)

• Each job finishes the backup processing within time

duration S, i.e., formally defining S as a makespan of

the backup session:

t ·

(

t
∑

t′=t−di+1

Yi,t′

)

≤ S, ∀i, t : t ≥ Mlow (16)

Note, that the number of variables, equations and inequal-

ities is significantly reduced compared to the general case of

multiple tape drives.

V. PERFORMANCE STUDY

To evaluate performance benefits of the new bin-packing

schedule and compare its performance with already optimized

LBF scheduling, we use data from six backup servers in HP

Labs. While HP Labs represent the research organization, its

computing infrastructure is a typical instance of a medium-

size enterprise environment. The client machines include a

variety of Windows and Linux desktops. In addition, there

is a collection of large and powerful servers with significant

amount of stored data.

There were 665 objects2 in the overall backup set under

study. Figure 2 (a) shows the object duration distribution in the

overall set (sorted in increasing order) for three consecutive,

full weekly backups. First of all, there is a significant diversity

in durations: some object backups take only 1 min while other

objects take 10-17 hours. Second, there is a significant number

of “long” backup jobs. Figure 2 (a) shows that about 20% of

all the jobs performed by these backup servers are in the range

of 1-17 hours.

Figure 2 (b) presents historic snapshots of backup job

throughputs in the overall set from six backup servers (sorted

in increasing order). There is a significant diversity in observed

job throughputs from 0.1 MB/s to 40 MB/s.

The HP Labs backup servers have 4 tape drives (with

maximum data rate of 80 MB/s), each configured with 4

concurrent disk agents. As shown in Figure 2 (b) there is a

representative fraction of backup jobs with throughputs above

20 MB/s. This explains why the HP Labs backup configuration

is using 4 concurrent disk agents. However, at the same

time, there is a significant fraction of backup jobs with much

lower observed throughputs. Therefore a fixed number of

four concurrent disk agents used by the LBF scheduler and

the traditional backup tool would not make the best use of

available resources of the tape drive. This observation presents

2In this paper, we use the terms filesystem, mount point, and object,
interchangeably.
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Fig. 2. Workload profile of six HP Labs backup servers: a) backup job
duration distribution; b) backup job throughput distribution.

a perfect opportunity for a new bin-packing schedule that aims

to take the job throughput into account.

To set a base line for a performance comparison, we

first process given workloads using LBF scheduling in the

traditional tool architecture configured with a single tape drive

and a fixed number of four concurrent disk agents per tape.

Then we process the same workloads (from six backup

servers under study) with a new bin-packing schedule. The

backup servers are configured with a single tape drive and the

following parameters:

• maxDA = 10, i.e., no more than 10 concurrent disk

agents can be used per tape drive;

• maxTput = 80 MB/s, i.e., the aggregate throughput of

the assigned concurrent objects per tape drive should not

exceed 80 MB/s.

Table I shows the absolute and relative reduction in the

overall backup session times when the bin-packing schedule is

used instead of LBF. The bin-packing schedule is formed with

additional information on both job duration and its throughput

(observed from the past measurements). This additional infor-

mation on job throughput is used to schedule a higher number

of concurrent backup jobs (when it is appropriate) in order to

optimize the tape drive throughput.

Significant time savings are achieved across all the six

backup server under bin-packing job scheduling compared

to the LBF schedule. The absolute time savings range from

124 min to 928 min (we specially demonstrate the absolute

time savings to stress the significance of performance benefits).

These results are consistent for three consecutive weeks used

in the study, as shown in Table I. The relative performance

benefits and reduction in the backup time are 19%-52% and

depend on the specifics of workload: the size and throughput

distribution of objects the backup server is responsible for.



Backup Absolute and Relative Reduction
Server of the Overall Backup Time

week1 week2 week3

Server1 665 min (35%) 651 min (34%) 675 min (35%)
Server2 340 min (33%) 212 min (24%) 163 min (19%)
Server3 922 min (52%) 928 min (52%) 920 min (52%)
Server4 520 min (44%) 552 min (44%) 534 min (43%)
Server5 126 min (33%) 124 min (33%) 165 min (39%)
Server6 231 min (28%) 190 min (26%) 234 min (29%)

TABLE I

ABSOLUTE AND RELATIVE REDUCTION OF THE BACKUP TIME: LBF

SCHEDULING VS NEW bin-packing SCHEDULING.

The performance results of the proposed approach are very

promising. The CPLEX solver execution time had a wide

range across six servers: around 2 hours for generating a

solution for 1st, 3d, 4th and 6th servers, while only 5 sec-

1.5 min for generating a solution for 2nd and 5th servers. The

number of jobs in the backup sets under study was in the range

70-130. However, the solution time does not directly correlate

with the size of the backup sets. For example, the 2nd server

had 130 jobs in its backup set (i.e., it was the largest backup

set), but CPLEX produced the optimal solution in 1.5 min.

The demonstrated bin-packing schedule results are for a

single tape drive model which has been formulated in a

significantly more compact and efficient way compared to a

multi-tape drive IP formulation. We could not use the collected

HP Labs backup sets for performance comparison of the bin-

packing and LBF schedules in the original four tape drive

configuration because the proposed bin-packing schedule is

capable of processing given backup sets with a single tape

drive configuration in a nearly optimal time, e.g., the generated

job schedules for the 2nd and 5th servers are optimal and

cannot be improved.

In order to understand the performance benefits, efficiency,

and limitations of the designed IP approach for multi-tape

drive configurations, we have created a diverse spectrum of

realistic workloads in the following way. Using the overall

set of backup jobs from the six HP Labs backup servers as a

base (the set consisted of 665 jobs), we have created different

backup set “samples” of a given size. In such a way, we have

generated multiple different backup sets with 100, 200, 300,

and 400 jobs. In particular, we’ve created four “samples” of

each size. Thus we had 16 different backup sets of different

size but with representative characteristics of real workloads.

We used generated backup sets with 100 and 200 jobs for

evaluating 1 and 2 tape drive configurations (these workloads

are still relatively small and typically lead to optimal solutions

in a 2-tape drive configuration). We used the backup sets with

300 and 400 jobs for evaluating a full spectrum of 1-4 tape

drive configurations.

Figure 3 shows the relative reduction of the backup session

makespan under the generated bin-packing schedule compared

to backup processing under the LBF schedule. There are two

sets of results shown in the graph:

• the first set represents performance benefits of bin-

packing schedule over LBF schedule for a single tape

drive. These results are obtained from simulating the

backup processing of 16 different backup sets: 4 x

100 jobs, 4 x 200 jobs, 4 x 300 jobs, and 4 x 400

jobs. As Figure 3 shows performance savings are very

significant for all backup sets: the makespan reduction

with bin-packing schedule compared to LBF schedule is

consistently high: there is 40% to 59% decrease in the

backup processing time.

• the second set represents performance benefits of bin-

packing schedule over LBF schedule for multi-drive con-

figurations: we experimented with 2,3 and 4 tape drives in

the configuration. These results represent 32 experiments.

Again, the bin-packing schedule significantly outperforms

the LBF schedule, and only in a few cases, when the

makespan is explicitly bounded by the duration of the

longest job – both bin-packing and LBF schedule produce

similar outcome. Since the amount of makespan reduction

depends on the size of a backup set, the duration of the

longest job, and the backup tool configuration used in the

experiments, we decided to present consolidated results

for all the 32 experiments rather than splitting them for

different sub-cases.

The traditional challenge in applying the integer program-

ming technique is the solution time. The problem that we are

trying to solve is known to be NP-complete even for a single-

drive configuration. The models presented in Sections IV-

A, IV-B were the outcome of several iterations and parameter

tuning to achieve the most effective and compact problem

formulation that may produce good practical results. One of

the main questions we kept in mind was whether a good

solution can be found for larger backup sets and multi-drive

configurations in reasonable time. The solution time for integer

programming models is notoriously difficult to predict.
Figure 4 shows the solution time for finding an optimized

bin-packing schedule., Note, that Y-axes use logscale. The so-

lution time is very bimodal: either the optimal solution is found

very quickly (within 10 sec-1.5 min), or it takes a few hours

to produce the result. In spite that a single drive formulation

is simplified and more compact compared to the multi-drive

model, the solution time of almost all single drive experiments

(except two) is in the range of a few hours. To explain this

phenomena we’ve considered multiple characteristics of the

model generated for each experiment: the number of jobs, the

number of tape drives, the number of equations (constraints),

the number of variables (including binary and continuous), the

size of the time bucket (in minutes), the number of buckets in

the model, the duration of the longest job, etc.
As a result of this analysis, we observed a strong correlation

between the reported solution time and the relationship of

the two low bounds D1 and D2 for the makespan (see

equations 1, 2 in Section IV-A).
Let us revisit the definition of these bounds:

• D1 represents the duration of the longest backup job in

the given set (clearly, makespan S cannot be smaller than

the longest backup job in the set):

D1 = max
1≤i≤n

di

• D2 is the shortest possible time that would be required

to process the entire set of submitted backup jobs at

maximum tape drive throughput maxTput:

D2 =

∑

1≤i≤n di · wi

m ·maxTput
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Fig. 3. Relative reduction of makespan under new bin-packing scheduling
vs LBF scheduling for a variety of different backup tool configurations.
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Fig. 4. The solution time for finding an optimized bin-packing schedule.
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Fig. 5. Metric Rel(D1, D2) for different backup sets.

This time represents the ideal processing of “all the bytes”

in a given set of backup jobs at the maximum tape

drive rate (multiplied by the number of drives) without

any other configuration constraints of the backup server.

Clearly, makespan S cannot be smaller than the “ideal”

processing time of the backup set.

Comment: For the backup tool configuration considered in

this paper, the third low bound D3 was consistently smaller

than D2, i.e., the value of parameter maxDA = 10 was

not imposing the strong constraint and was not limiting the

backup tool performance, and therefore the larger of the other

two bounds D1 and D2 was defining the lower bound of the

makespan. This situation could change for a tool configuration

with a small number of concurrent disk agents, and in this case,

the relationship between D1 and D3 might become critical in

a correlation to the solution time.

The relationship between D1 and D2 are interesting for

intuitive understanding of the “complexity” of the backup job

scheduling problem.

When D1 ≥ D2 it means that D1 defines the lower bound

of the makespan and the ideal processing of all the jobs at

the maximum disk drive rate completes earlier than D1. In

this case, the duration of the longest job strongly impacts the

makespan. The difference between D1 and D2 determines the

size of the “extra room” for making different job scheduling

choices (but many of these choices will not increase the overall

makespan). Typically, this case means that the solver can

quickly find the near-optimal or optimal solution by scheduling

the longest job as one of the first jobs, and often the remaining

jobs might be scheduled in a flexible way without impacting

the schedule makespan.

When D1 ≤ D2 it means that D2 defines the lower bound

of the makespan, and potentially there are many more possible

schedules that have different makespan. The larger difference

between D2 and D1 creates more and more choices for

different schedule choices, and the problem becomes much

harder to solve.

Let us formally define the relationship between D1 and D2

in the following way:

Rel(D1, D2) = (D2 −D1)/D1

Figure 5 shows the computed values for Rel(D1, D2)
across all the experiments we performed. This new metric

Rel(D1, D2) has negative values when D1 ≥ D2. The larger

negative values are highly correlated with a fast solver runtime

and chances of finding the near-optimal solution (as shown

by the corresponding runtime values in Figure 4). The metric

Rel(D1, D2) has positive values when D1 ≤ D2. The positive

values of Rel(D1, D2) are strongly correlated with a high

runtime of the solver as can be seen in Figure 4.

The new Rel(D1, D2) metric correlates very well with the

solution time of the solver and therefore can be useful in

its prediction. An interesting question for a future work is

whether we can tune the backup tool configuration parameters

or change the workload profile to satisfy the identified metric

in order to benefit from the faster solution time.

VI. RELATED WORK

The current generation of commercial backup tools [10],

[13], [14], [17], [23] provides a variety of different means

to system administrators for scheduling designated collections

of client machines on a certain time table. Enterprises might

implement different backup policies that define how often the

backups are done, whether it is full or incremental backup,

and how long these backups are kept [21]. However, within

the created backup groups a random job scheduling is used

which can lead to inefficient backup processing and increased

backup time.

Scheduling of incoming jobs and the assignment of pro-

cessors to the scheduled jobs has been always an important

factor for optimizing the performance of parallel and dis-

tributed systems (see a variety of papers on the topic [1]-

[8], [18], [24]-[26]). Designing an efficient distributed server



system often assumes choosing the “best” task assignment

policy for the given model and user requirements. However,

the question of “best” job scheduling or task assignment

policy is still open for many models. Typically, the choice of

the scheduling/assignment algorithm is driven by performance

objectives. If the performance goal is to minimize mean

response time then the optimal algorithm is to schedule the

shortest job first [8], [15]. However, if there is a requirement of

fairness in jobs’ processing then processor-sharing or round-

robin scheduling [8], [25] might be preferable. For minimizing

the makespan, i.e., the schedule length, a promising approach

is to schedule the longest job first [12], [26]. In [12], an

interesting theoretical result is proved, it provides an upper

bound of makespan under the longest job first scheduler

compared to the time of the optimal strategy in multiprocessor

systems. There is a whole body of scheduling research which

focuses on minimizing makespan for jobs with precedence

constraints [11], [1], [4].

For large-scale heterogeneous distributed systems such as

the Grid, job scheduling is one of the main component of

resource management. Most work in the Grid-related job

scheduling space aims to empirically evaluate scheduling

heuristics. Here are a few policies used to improve system

utilization and throughput: backfilling [19], adaptive schedul-

ing [16], and task grouping [24].

Many scheduling problems can be formulated as a resource

constrained scheduling problem where a set of n jobs should

be scheduled on m machines with given capacities. However,

as shown in [22] this problem is NP-complete even for m = 1.
Recognizing the proven difficulty of solving such scheduling

problems, many studies have been undertaken using genetic

algorithms, simulated annealing, tabu search, and other integer

and linear programming related techniques. While these solu-

tions do not provide the optimal results, they typically identify

good feasible solutions that are useful in practice. Our work

is another example in this direction, showing that the integer

programming approach may indeed be very useful for building

the efficient backup scheduling in practice.

VII. CONCLUSION AND FUTURE WORK

While there is a growing variety of services and systems

that provide efficient filesystem backups over the Internet,

the traditional tape-based backup is still a preferred choice

in many enterprise environments and the best choice for

long-term data backup and data archival. Consequently, many

organizations have significant amounts of backup data stored

on tape, and are interested in improving performance of tape-

based data protection solution.

In this paper, we pursue a goal for automated design of

a backup schedule that minimizes the overall completion

time for a given set of backup jobs. We provide an inte-

ger programming (IP) formulation of this problem and use

available IP-solvers for finding an optimized schedule, called

bin-packing schedule. Performance benefits of the new bin-

packing schedule are evaluated via a broad variety of realistic

workloads: the new bin-packing job schedule provides 20%-

60% of backup time reduction. The same approach can be

applied to job scheduling in the incremental backups.

Moreover, we identified a metric which can be derived

from a given workload and the backup tool configuration

parameters. This metric correlates very well with the solution

time of the solver and therefore can be useful in its prediction.

An interesting question for a future work is whether we can

tune the backup tool configuration parameters or change the

workload profile to satisfy the identified metric in order to

benefit from the faster solution time for building an efficient

bin-packing job schedule.
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