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ABSTRACT
In this paper, we present Fastrack, a parameter-free algorithm
for dynamic resource provisioning that uses simple statistics to
promptly distill information about changes in workload bursti-
ness. This information, coupled with the application’s end-to-
end response times and system bottleneck characteristics, guide
resource allocation that shows to be very effective under a broad
variety of burstiness profiles and bottleneck scenarios.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Reliability, avail-
ability, and serviceability; H.3.4 [INFORMATION STOR-
AGE AND RETRIEVAL]: Systems and Software—Perfor-
mance evaluation (efficiency and effectiveness)

General Terms
Algorithms, Performance

Keywords
Resource Allocation, Burstiness, Multi-tiered Systems

1. INTRODUCTION
Resource allocation in a multi-tiered system is more challeng-

ing than in a single-tiered one. In a multi-tiered system, the
bottleneck tier regulates the request flow and dominates perfor-
mance. Alleviating the bottleneck tier by assigning more pro-
cessing power is straightforward but should be done with cau-
tion as the bottleneck may simply shift to another tier [5]. Tra-
ditional provisioning triggers resource reallocation when certain
thresholds are violated [5]. The effectiveness of such techniques
depend on astute selection of their parameters. What makes
resource allocation even more challenging in a multi-tiered sys-
tem is the phenomenon of bottleneck switch that further exac-
erbates the difficulty of the problem [3, 4]. Resource allocation
that requires saving power without compromising performance
becomes a conundrum for system designers. In this work, we
present a parameter-free algorithm called Fastrack that quickly
tracks achievable performance and workload burstiness to self-
adjust the allocation of available resources with the aim of op-
timizing performance while using minimal resources.

Fastrack uses online measurements to determine whether the
system experiences a true peak or simply variability in user ar-
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rivals and quickly determines the start of a burst, signaling the
need to assign more computing resources. Correspondingly, it
also detects the end of a burst, i.e., rapid returns to normal traf-
fic intensity, signaling the need to reduce computing resources
without any performance penalty.

2. ALLOCATION ALGORITHM: FASTRACK
Our focus is on effective resource allocation in multi-tiered

systems, and we assume an architecture such as the one used by
the TPC-W benchmark, a standard benchmark that is routinely
used for capacity planning of e-commerce systems and that con-
sists of a front server (hosting a web server and an application
server), and a back-end database. The TPC-W benchmark im-
plements a fixed number of emulated browsers (EBs) that send
requests to the system. Burstiness in request arrivals results
in the phenomenon of persistent “bottleneck switch”where per-
formance measures are counter-intuitive, e.g., user SLOs are
grossly violated while performance measures such as device uti-
lizations are moderate [3]. In [3], the authors proposed to incor-
porate the index of dispersion I [1] into new capacity planning
models of multi-tier enterprise systems. We use I to infer infor-
mation about the patterns of upcoming workloads, i.e., we use
statistical information for the bursts to strengthen the accuracy
of workload prediction. We show that I can provide a simple
yet powerful way for prompt identification of the start and the
end of a bursty period.

During a workload surge, the algorithm uses a “pro-active”
approach to quickly identify the surge, and tames its effects by
summoning new resources before performance starts to suffer.
On the other hand, after the algorithm detects a quiet period,
it releases resources with a slower pace such that jobs that are
accumulated during a burst are flushed and the operation of
the system reverts to normal. Timely identification of the start
and end of bursts is in the core of Fastrack and together with
the system’s SLOs guides when is best to expand or to contract
the number of resources to the application.

In addition to detecting bursty conditions, it is also important
to keep track of changes in the target performance measures and
continuously compare them with those of systems SLOs, which
are usually in the form of percentiles of user response times
(RTs). In the absence of a burst Fastrack employs reactive
mode and looks at the performance of the current request batch
to adjust provisioning. Fastrack monitor deviations of the user
performance measures from the target SLOs and quickly adjust
resources aiming at minimizing these deviations.

3. PERFORMANCE EVALUATION
We evaluate the effectiveness of Fastrack by simulating the

workload flows in a typical TPC-W 2-tier implementation (i.e.,
a front server and a database server). For our experiments, we
extend the basic model to include a pool of 8 front servers that
can be brought online/offline during the experiment. We focus
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Figure 1: 95th percentiles of response times and raw machine times under three transaction mixes and two burstiness
profiles. Each row shows performance numbers for a different transaction mix. The left column is response time percentiles
for the low burstiness case, the middle column is the high burstiness case, and the right column summarizes the power
usage of each configuration.

on the effectiveness of the algorithm under a wide variety of
workloads to investigate Fastrack’s effectiveness under different
burstiness levels in workload traffic, different loads, different
workloads demands (i.e., different bottlenecks), and also un-
der the case of bottleneck switch. Our purpose is to show the
robustness of the algorithm under all of the above conditions.

TPC-W defines three transaction mixes: browsing, shopping,
and ordering mixes. The think times of emulated browsers are
modeled by using two different MAPs [2], each with a different
burstiness profile. Consistent with the TPC-W specification,
both MAPs average user think time is equal to 7 seconds but
their SCV is equal to 20 (i.e., inter-arrival times are very vari-
able). Furthermore, the two MAPs have different burstiness
profiles: one results in the index of dispersion I = 41, i.e., very
low burstiness, and the other one with I = 1, 806 which consti-
tutes significant burstiness.

Figure 1 depicts the performance results for the various ex-
periments. The figure, organized as a three by three grid,
presents performance numbers in the form of 95th percentiles of
user response times for the three TPC-W mixes when the arrival
workload exhibits slight burstiness (leftmost column of graphs),
high burstiness (middle column of graphs), and raw machine
times units for the front tier (rightmost column). All results
are presented for various populations (emulated browsers) in
the system such that we show performance in low loads (low
populations) and high loads (high populations). The first row
of graphs corresponds to the browsing mix, the second one to
the ordering mix, and the last row to the shopping mix. Each
plot in Figure 1 shows the results for Fastrack, the two bound-
ary cases with a static number of front servers equal to 1 and
8, and the target SLOs. We set a different SLO for each mix.

This is a user defined input to the algorithm, and is depen-
dent on the performance level needed for the application. We
consider the three mixes to be representative of three different
application types, each with a different SLO. The last column
of graphs shows the machine times as a function of population
for the static 1 and 8 cases (the two parallel flat lines that corre-
spond to the two boundary static cases) as well as the machine
times for Fastrack. The power usage is measured in raw ma-
chine seconds, i.e., the sum of times that front servers are in
operation. Naturally, the closer the Fastrack machine times are
to the lower flat line, the lower the power consumption.

Our algorithm Fastrack is able to stay near the response time
SLO (or close to the response time with 8 servers, when SLO
can not be met) for all the mixes, and is able to save significant
power while doing so. Our results uniformly show that Fastrack
is a robust, parameter free algorithm that can opeate seemlessly
in a variety of settings.
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