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Abstract—We consider a self-managing, self-organizing pool
of virtualized computer servers that provides infrastructure
as a service (IaaS) for enterprise computing workloads. A
global controller automatically manages the pool in a top
down manner by periodically varying the number of servers
used and re-assigning workloads to different servers. It aims
to use as few servers as possible to minimize power usage
while satisfying per-workload service level requirements. Each
server is self-organizing. It has a local workload manager that
dynamically varies the capacity allocated to each workload
to satisfy per-workload service level objectives. This paper
evaluates the impact of four alternative workload manager
policies on the quality of service provided by the resource
pool. The policies include: i) a non-work-conserving feedback
controller, ii) a work-conserving feedback controller, iii) a
work-conserving feedback controller with fixed per-workload
scheduling weights to support differentiated service, and iv)
a work-conserving feedback controller with dynamic per-
workload weight to provide differentiated service while mini-
mizing penalties. A case study involving three months of data
for 138 SAP applications shows that the work-conserving policy
significantly outperforms the non-work-conserving policy. The
dynamic weight policy is better able to minimize penalties
than the other policies while treating workloads fairly. Our
study offers insights into the trade-offs between performance
isolation, efficient resource sharing, and quality of service.

Keywords-Resource Pool Management; Enterprise Workload
Analysis; Differentiated Service; Quality of Service

I. INTRODUCTION

Virtualization is gaining popularity in enterprise environ-

ments as a software-based solution for building shared hard-

ware infrastructures. Forrester Research estimates that busi-

nesses generally only end up using between 8 and 20 percent

of the server capacity they have purchased. Virtualization

technology helps to achieve greater system utilization while

lowering total cost of ownership and responding more effec-

tively to changing business conditions. For large enterprises,

virtualization offers a solution for server and application

consolidation in shared resource pools. The consolidation

of multiple servers and their workloads has an objective

of minimizing the number of resources, e. g., computer

servers, needed to support the workloads. In addition to

reducing costs, this can also lead to lower peak and average

power requirements. Lowering peak power usage may be

important in some data centres if peak power cannot easily

be increased.

Applications participating in consolidation scenarios can

make complex demands on servers. For example, many en-

terprise applications operate continuously, have unique time-

varying demands, and have performance-oriented Quality

of Service (QoS) objectives. To evaluate which workloads

can be consolidated to which servers, some preliminary

performance and workload analysis should be done. In the

simple naive case, a data centre operator may estimate

the peak resource requirements of each workload and then

evaluate the combined resource requirements of a group

of workloads by using the sum of their peak demands.

However, such an approach can lead to significant resource

over-provisioning since it does not take into account the

benefits of resource sharing for complementary workload

patterns. In this work, to evaluate which workloads can

be consolidated to which servers we employ a trace-based

approach [1] that assesses permutations and combinations

of workloads in order to determine a near optimal workload

placement that provides specific quality of service.

The general idea behind trace-based methods is that

historic traces offer a model of application demands that

are representative of future application behaviour. Traces are

used to decide how to consolidate workloads to servers. In

our past work, we assumed that the placement of workloads

would be adjusted infrequently, e. g., weekly or monthly [1].

However, by repeatedly applying the method at shorter

timescales we can achieve further reductions in required

capacity. In this work, we treat the trace-based approach

as a placement controller that periodically causes workloads

to migrate among servers to consolidate them while satisfy-

ing quality requirements. Such migrations [2] are possible

without interrupting the execution of the corresponding

applications. This approach provides a top-down form of

self-management for the resource pool. It keeps the number

of servers used in proportion to the time-varying demands

of the workloads and in this way minimizes power usage.

In our study the workloads are not equally important, cer-

tain workloads have higher quality of service requirements

than others. Each server must make best use of its resources

to satisfy the requirements of its workloads. To achieve

this, each server has a workload manager controller. The

workload manager controller implements different classes

of service (CoS). Higher CoS typically cost more for cus-

tomers and provide for greater revenue to service providers.



However, service providers also incur greater penalties if a

sufficient quality of service is not provided. Hence, work-

loads with a higher CoS can have a bigger impact on the

service provider’s profit than workloads with lower CoS. Of

course, this impact needs to be reflected in the allocation

of resources to maximize the service provider’s profit. For

quality of service we rely on a compliance ratio that is

defined as the percentage of measurement intervals where all

of a workload’s demands are satisfied. We define a service

level agreement where financial penalties are charged when

a workload does not satisfy its expected compliance ratio.

This paper leverages our recent work [3]. In particular,

we exploit the workload placement controller, simulation

system, and case study input data. This paper differs in that

we consider an integrated workload placement controller and

workload manager. The focus of this paper is on policies

that govern the workload manager. We consider non-work-

conserving policies where workloads have allocations that

are not shared with other workloads. We also consider work-

conserving policies where available resources are always

shared among workloads with pending demands.

The primary goal of this paper is to evaluate the impact

of four workload manager policies on the quality of ser-

vice provided by the resource pool. The policies include:

i) a non-work-conserving feedback controller, ii) a work-

conserving feedback controller, iii) a work-conserving feed-

back controller with fixed per-workload scheduling weights

to support differentiated service, and iv) a work-conserving

feedback controller with dynamic per-workload weights to

provide differentiated service and maximize revenue. The

fourth policy is self-organizing in that it dynamically adjusts

the scheduling weights of workloads to achieve sufficient

quality of service for each workload while minimizing

financial penalties to the resource provider.

To assess the long term impact of such policies we ex-

ploit a host load simulation environment. The environment:

models the placement of workloads on servers; simulates the

competition for resources on servers; causes the controllers

to execute according to a management policy; and dynami-

cally adjusts the placement of workloads on servers. During

this simulation process, the simulator collects metrics that

are used to compare the effectiveness of the policies. The

metrics include: the compliance ratio, which demonstrates

the ability of the policies to support differentiated service;

total financial penalties; and, additional metrics that compare

total capacity used and other aspects of quality of service

for the resource pool as a whole.

A case study involving three months of data for 138

SAP applications is used to evaluate the effectiveness of

scheduler policies. We found that the work conserving

policies significantly out-perform the non-work conserving

policy and that the self-organizing policy is best able to

minimize overall penalties while treating workloads fairly.

The remainder of this paper is organized as follows.

Section II describes the workload placement and workload

manager controllers, management policies, and metrics. The

host load simulation environment is described in Section III.

Section IV presents case study results. Section V describes

related work. Finally, conclusions are offered in Section VI.

II. CONTROLLERS, POLICIES, AND QUALITY METRICS

This section describes the workload placement and work-

load manager controllers, management policies, and quality

metrics that are used to assess the effectiveness of manage-

ment policies.

A. Workload Placement Controller

The workload placement controller has two components.

• A simulator component emulates the assignment of

several application workloads on a single server. It tra-

verses the per-workload time varying traces of historical

demand to determine the peak of the aggregate demand

for the combined workloads. If for each capacity at-

tribute, e. g., CPU and memory, the peak demand is less

than the capacity of the attribute for the server then the

workloads fit on the server.

• An optimizing search component examines many alter-

native placements of workloads on servers and reports

the best solution found. The optimizing search is based

on a genetic algorithm [4].

The workload placement controller is based on the Cap-

man tool that is described further in [1]. It supports both

consolidation and load levelling exercises. Load levelling

balances workloads across a set of resources to reduce the

likelihood of service level violations. Capman supports the

controlled overbooking of capacity that computes a required

capacity for workloads on a server that may be less than

the peak of aggregate demand. It is capable of supporting a

different quality of service for each workload [5]. Without

loss of generality, this paper considers the highest quality

of service, which corresponds to a required capacity for

workloads on a server that is the peak of their aggregate

demand. For this paper, the workload placement controller

operates at regular timed intervals, e.g., every four hours.

As will be shown, this is frequent enough to exploit time of

day variations in workload demands.

B. Workload Manager Controller

The purpose of a workload manager controller is to

periodically adjust the resource allocation for each workload

on a server. This is done at short timescales to adapt to short

term fluctuations in workload demands. Figure 1 illustrates

the relationship between virtual machines, a physical server,

and a workload management controller.

The left box of Figure 1 denotes a physical server, which

is hosting several virtual machines. We assume each work-

load is associated with its own virtual machine. The figure

shows that physical servers provide a monitoring service and
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Figure 1. Architecture of the Workload Management Service

a VM management interface. The VM management interface

enables the resource allocation of virtual machines to be

adjusted at runtime.

The right box of Figure 1 shows the architecture of

the workload management controller. Once per workload

manager control interval, the workload manager controller

communicates with VM monitors and the VM management

interface on the physical server. VM monitors provide access

to recent resource demands, utilization values, and service

level metrics. The resource allocation for VMs is adjusted

via the VM management interface.

We consider a VM management interface that supports the

Xen credit scheduler [6]. It manages a VM’s CPU weight,

CPU cap, and physical memory. A VM that is competing

for CPU resources receives a service rate in proportion to

its weight divided by the total weights of all workloads that

are competing for CPU resources. A CPU cap limits the

total allocation that a VM can receive per control interval.

The following subsections describe the workload manager

policies we use in more detail.

1) Policies i) and ii): Non-Work Conserving vs. Work-

Conserving: Policy i) nwc demand is non-work-conserving.

With policy i), the workload manager decides a CPU cap

for each workload for the next control interval based on

the workload’s recent CPU demands. The greater the recent

demands, the greater the CPU cap. The value of the CPU

caps are scaled to use all of the CPU capacity on a server.

The caps are scaled up when not all capacity is needed, and

scaled down if the server is oversubscribed. Weights are not

used. Each workload is entitled to receive up to its CPU cap

in CPU capacity during the control interval. If it doesn’t

use the capacity then the capacity is not available to any

other workload. Historically, non-work conserving policies

have been used to provide for better performance isolation

between workloads that share a server. For example, in some

cases it is important to make sure that one workload does

not become dependent on capacity that is being paid for by

other workloads.

Policy ii) wc demand is work-conserving. With policy ii)

the computed CPU caps are treated as weights and are not

enforced as hard capacity limits. In this way unused capacity

is always available to workloads that need it. The case study

evaluates the impact of non-work-conserving versus work-

conserving policies in shared resource pool environments.
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Figure 2. Dynamic Weights for Workloads

For policies i) and ii), classes of service are supported

in the following way. If a server is oversubscribed, then the

CPU caps are allocated to workloads of the highest CoS first,

then to the next CoS, and so forth. Lowest CoS workloads

suffer when a server is oversubscribed.

2) Policy iii) and Policy iv): CoS based Weights and

Dynamic Weights: Policy iii) wc static is work-conserving.

The workload management controller associates each CoS

with a different weight. The higher the CoS the greater

the weight. All workloads with the same CoS have the

same weight. Policy iii) is only considered in a work-

conserving mode. Workload management services based on

static weights for workloads tend to over-provision capacity

to high CoS workloads. Consequently, workloads with low

CoS suffer from resource deficits resulting in bad QoS and

accrued penalties for these workloads.

Policy iv) wc dynamic is work-conserving. It is an ap-

proach for dynamically adjusting workload weights for mul-

tiple workloads to better satisfy the needs of all workloads.

The approach relies on a Service Level Agreement (SLA) for

one or more CoS. Each CoS has a desired compliance ratio

cr and a step function that defines penalties that increase

as the compliance ratio achieved for a workload diminishes.

We refer to the steps of compliance ratio intervals as QoS

levels.

The dynamically calculated weight for a workload con-

siders two different economic aspects: imminent costs and

marginal gain. Imminent costs model the risk of missing the

current QoS level. The closer the resource compliance ratio

gets to the next lower QoS level, the higher the probability

that the workload quality will drop to the next lower QoS

level. The imminent cost function expresses this probability.

It is defined using a decreasing, convex polynomial function

of degree deg that is fit to equal the penalties ∆peni

for missing the current QoS level i at its lower boundary

and a penalty of 0 at its upper boundary. The marginal

gain function is modelling the chance to achieve the next

higher QoS level. If the next higher QoS level comes into

reach, the weight of the workload increases. The marginal

gain function and the imminent cost function are defined

similarly, but the marginal gain function uses an increasing,

convex polynomial function. The weight of a workload is

computed for each control interval as the maximum of



imminent costs and marginal gains. Each workload can have

its own distinct functions. The resulting weights are used to

prioritize the workloads.

Figure 2 illustrates the step function for an SLA with

one CoS, a desired compliance ratio of 98% and where

a penalty of $1000 is due for every 2 percentage points

below the desired satisfaction metric. The maximum penalty

is limited to $2000. No penalties are due if at the end of the

evaluation period more than 98% of all intervals have had

their demands satisfied. $1000 is due if between 96% and

98% of intervals had their demands satisfied, and $2000 is

due if less than 96% of intervals had their demands satisfied.

Figure 2 shows a current service level compliance cr′ =
0.965. Consequently, the workload currently just fulfills

QoS level 2. The imminent costs are indicated by the

decreasing polynomial functions. Given a compliance ratio

cr′ = 0.965 and utility functions with polynomial degree

2, the imminent costs of the workload are approximately

560. In the figure, the current compliance ratio cr′ of the

workload is comparatively far away from the next higher

boundary cr1 resulting in a low marginal gain of about

60. The current weight of the workload is computed as

max{560, 60} = 560.

The degrees of the imminent costs and the marginal gain

functions constitute the dynamic and static influence on

weight. A high degree strengthens the dynamic influence

and a low degree weakens it. In case of a very high degree,

the compliance ratios of all workloads tend to approach

the next lower QoS threshold closely. Hence, the risk of

falling into the next lower QoS level is rather high for all

workloads, including the important ones. If the polynomial

degree deg is small, high priority workloads tend to keep

some distance to their next lower compliance thresholds and

if deg even approximates zero, the dynamic weight approach

approximates the static weight approach.

C. Efficiency and Quality Metrics

To compare the long term impact of management policies

we consider several additional metrics. These include:

• total server CPU hours used and total server CPU hours

idle;

• normalized server CPU hours used and normalized

server CPU hours idle;

• minimum and maximum number of servers;

• CPU resource access quality per hour; and

• the number of migrations per hour.

The total server CPU hours used corresponds to the

sum of the per workload demands. Total server CPU hours

idle is the sum of idle CPU hours for servers that have

workloads assigned to them. The server CPU hours idle

shows how much CPU capacity is not used on the active

servers. Normalized values are defined with respect to the

total demand of the workloads as specified in the workload

demand traces. Note that if normalized server CPU hours

used is equal to 1 and normalized server CPU hours idle

are equal to 1.5 then this corresponds to an average CPU

utilization of 40%.

The minimum and maximum number of servers for a

policy are used to compare the overall impact of a man-

agement policy on capacity needed for server infrastructure.

This determines the cost of the infrastructure.

We define a quality metric named violation penalty that

is based on the number of successive intervals where a

workload’s demands are not fully satisfied and the expected

impact on the customer. Longer epochs of unsatisfied de-

mand incur greater penalty values, as they are more likely to

be perceived by those using applications. For example, if ser-

vice performance is degraded for up to 5 minutes customers

would start to notice. If the service is degraded for more

than 5 minutes then customers may start to call the service

provider and complain. Furthermore, larger degradations in

service must cause greater penalties.

The quality of the delivered service depends on how

much the service is degraded. If demands greatly exceed

allocated resources then the utility of the service suffers

more than if demands are almost satisfied. Thus, for each

violation a penalty weight wpen is defined that is based on

the expected impact of the degraded quality on the customer.

The violation penalty value pen for a violation with I
successive overloaded measurement intervals is defined as

pen = I2 maxI
i=1

(wpen,i), where wpen,i is the penalty in

the ith interval. Thus longer violations tend to have greater

penalties than shorter violations1. The weight function used

for CPU is given below. The sum of penalty values over all

workloads over all violations defines the violation penalty

for the metric.

For CPU allocations, we estimate the impact of degraded

service on a customer using a heuristic that compares the

actual and desired utilization of allocation for the customer.

An estimate is needed because we do not have measurements

that reflect the actual impact on a customer. Let ua and ud <
1 be the actual and desired CPU utilization of allocation

for an interval. If ua ≤ ud then we define the weight for

the CPU penalty wCPU
pen as wCPU

pen = 0 since there is no

violation. If ua > ud then response times will be higher than

planned so we must estimate the impact of the degradation

on the customer. We define:

wCPU
pen = 1 −

1 − uk
a

1 − uk
d

.

The penalty has a value between 0 and 1 and is larger for

bigger differences and higher utilizations. The superscript k
denotes the number of CPUs on the server. This formula

is motivated by a formula that estimates the mean response

time for the M/M/k queue [7], namely r = 1/(1 − uk)

1We note that such penalties may be translated to monetary penalties
in financially driven systems and that monetary penalties are likely to be
bounded in such systems.
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estimates the mean response time for a queue with k
processors and unit service demand [8]. The power term k
reflects the fact that a server with more processors can sus-

tain higher utilizations without impacting customer response

times. Similarly, a customer that has a higher than desired

utilization of allocation will be less impacted on a system

with more processors than one with fewer processors.

To summarize, the CPU penalty reflects two factors. These

are the length of the violation and the severity of the

violation which is captured by a weight function.

III. HOST LOAD EMULATOR

Predicting the long term impact of integrated manage-

ment policies for realistic workloads is a challenging task.

We employ a flexible host load emulation environment to

evaluate many management policies for resource pools in a

time effective manner.

The architecture of the host load emulation environment is

illustrated in Figure 3. The emulator takes as input historical

workload demand traces, an initial workload placement,

server resource capacity descriptions, and a management

policy. The server descriptions include numbers of pro-

cessors, processor speeds, real memory size, and network

bandwidth. A routing table directs each workload’s historical

time varying resource requirement data to the appropriate

simulated server. Each simulated server has a workload

manager that maintains the local resource allocation. Using

one of the four workload manager policies, the simulated

server determines how much of the workload demand is and

is not satisfied. The central pool sensor makes time varying

information about satisfied demands available to resource

pool management controllers via an open interface. The

interface also is used to integrate different controllers with

the emulator without recompiling its code.

Controllers periodically gather accumulated metrics and

make decisions about whether to cause workloads to migrate

from one server to another. Migration is initiated by a

call from a controller to the central pool actuator. In our

emulation environment this causes a change to the routing

table that reflects the impact of the migration in the next

simulated time interval. Furthermore, for each workload

that migrates, a CPU overhead is added to the source and

destination servers. The overhead is proportional to the

estimated transfer time based on the memory size of the

virtual machine and the network interface card bandwidth.

The migration overhead is described in detail in [3].

During the emulation process the metrics defined in

Section II-C are gathered. Different controller policies cause

different behaviours that we observe through these metrics.

IV. CASE STUDY

This section evaluates the effectiveness of the proposed

management policies using three months of real-world work-

load demand traces for 138 SAP enterprise applications.

The traces are obtained from a data centre that specializes

in hosting enterprise applications such as customer rela-

tionship management applications for small and medium

sized businesses. Each workload was hosted on its own

server so we use resource demand measurements for a

server to characterize the workload’s demand trace. The

measurements were originally recorded using vmstat [9].

Traces capture average CPU and memory usage as recorded

every 5 minutes.

As many of the workloads are interactive enterprise

workloads, a maximum utilization of 0.66 is desired to

ensure interactive responsiveness. Hence, CPU demands in

the historical workload traces are scaled with a factor of

1.5 to achieve a target utilization of 0.66. The resource pool

simulator operates on this data walking forward in successive

5 minute intervals. In addition to the three months of the

real-world demand traces we used data from the previous

month to initialize the demand buffers of the central pool

sensor. This enables the integrated management services to

access prior demand values at the start of a simulation run.

We consider the following resource pool configuration 2:

each server consists of 8 x 2.93-GHz processor cores, 128

GB of memory, and two dual 10 Gb/s Ethernet network inter-

face cards for network traffic and virtualization management

traffic, respectively.

Section IV-A gives a workload characterization for the

SAP workloads considered in the study. Section IV-B con-

siders the question: how much capacity and hence power

can be saved by periodically consolidating workloads? The

section assumes perfect knowledge about future workload

demands and its results give a baseline for capacity savings

that is used for the rest of the case study. Sections IV-C

and IV-D do not assume perfect knowledge of future de-

mands. They consider the integration of the workload place-

ment controller and per server workload manager controllers

and their effectiveness at supporting QoS.

2Service providers can use the proposed approach for evaluating differ-
ent hardware platforms. For example, in [3] we made recommendations
regarding server and blade based resource pool configurations.
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A. Workload Characteristics

The use of virtualization technology enables the creation

of shared server pools where multiple application workloads

share each server in the pool. Understanding the nature

of enterprise workloads is crucial to properly design and

provision current and future services in such pools.

Existing studies of Internet and media workloads [10],

[11] indicate that client demands are highly variable (“peak-

to-mean” ratios may be an order of magnitude or more),

and that it is not economical to overprovision the system

using “peak” demands. We present results that illustrate

the peak-to-mean behaviour for 138 enterprise application

workloads. Figure 4 gives the percentiles of CPU demand

for the 138 applications over the period of four months.

The illustrated demands are normalized as a percentage with

respect to their peak values. Several curves are shown that

illustrate the 99th, 97th, and 95th percentile of demand as

well as the mean demand. The workloads are ordered by

the 99th percentile for clarity. The figure shows that more

than half of all studied workloads have a small percentage

of points that are very large with respect to their remaining

demands. The left-most 60 workloads have their top 3%

of demand values between 10 and 2 times higher than the

remaining demands in the trace. Furthermore, more than half

of the workloads observe a mean demand less than 30%

of the peak demand. These curves show the bursty nature

of demands for most of the enterprise applications under

study. Consolidating such bursty workloads onto a smaller

number of more powerful servers is likely to reduce the CPU

capacity needed to support the workloads.

B. Performance, Quality, and Power Assuming Perfect

Knowledge

In this section, we consider an ideal workload placement

strategy. This approach assumes that we have perfect knowl-

edge of future resource demands. It gives an upper bound for

the potential capacity savings from consolidating workloads

at different time scales. We use this bound later in the paper

to determine how well our policies, that do not have perfect

knowledge, perform compared to the ideal case.

Figure 5 shows the results of an emulation where we use

the workload placement controller to periodically consol-
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idate the 138 workloads to a small number of servers in

the resource pool. For this scenario, for a given time period,

the workload placement controller chooses a placement such

that each server is able to satisfy the peak of its workload

CPU and memory demands. We note however that the

workload placement controller does not take into account

migration overheads. Migration overheads can cause CPU

violation penalties. The workload manager implements pol-

icy iii), i. e., wc static with equal weights for the workloads.

The figure shows the impact on capacity requirements of

using the workload placement controller once at the start of

the three months, and for cases with a control interval of

4 weeks, 1 week, 1 day, 4 hours, 1 hour, and 15 minutes.

The figure shows that re-allocating workloads every 4 hours

captures most of the capacity savings that can be achieved,

i. e., with respect to reallocation every 15 minutes. The 4

hour and 15 minute scenarios required a peak of 19 servers.

All the other scenarios also had peaks between 19 and 21

servers. The minimum number of servers for the 4 hour

scenario was 9. All the other scenarios with longer intervals

had minimums between 16 and 21. For the 4 hour scenario,

we note that the total server CPU hours used were 149114,

which is more than twice of the idle CPU hours (67750),

giving an average utilization close to 69% over the three

month period with a negligible hourly CPU violation penalty

value of 0.4.

The figure also shows that as expected as the control inter-

val drops to the hourly, fifteen minute, and five minute levels

the number of migrations per hour increases proportionally

as most workloads are likely to be reassigned. The resulting

migration overheads increase the CPU quality violations.

Table I gives a more detailed breakdown of the violations

for the 4 hour control interval case.

Interval Duration Total Number Average Number

5 Minute 1090 13 per Day
10 Minute 161 1.9 per Day
15 Minute 14 1.2 per Week
20 Minute 3 1 per Month

Table I
CPU QUALITY VIOLATIONS ASSUMING PERFECT KNOWLEDGE

FOR THE 4 HOUR CONTROL INTERVAL.



In later subsections, we treat the results from the 4 hour

ideal case as the baseline for capacity and quality and

evaluate how much of these ideal advantages we are able

to achieve in practice without assuming perfect knowledge.

The workload placement controller control interval is chosen

as four hours.

C. Workload Management

We now consider the effectiveness of integrating a global

workload placement controller and per server workload man-

ager controllers in real scenarios. For workload placement,

we employ a Historical policy. This policy uses historical

data from the previous three weeks as a predictor of the

future workload demands. It performed best in a previous

comprehensive study on workload placement controller poli-

cies [3]. Using this policy, the workload placement controller

required only 18 percent more capacity than the ideal case.

The workload placement controller determines the re-

quired capacity and calculates a workload placement. Within

the 4 hour control intervals workload managers allocate

the available per server capacity to their workloads. Of

course, from time to time the workload placement controller

underestimates capacity resulting in resource bottlenecks.

During these shortages, the workload manager needs to

allocate resources to the workloads in such a way that

provides the best quality of service.

Our study evaluates the effectiveness of the four policies

described in Section 2.2. For policy iv) we employ dynamic

utility functions with polynomial degree 2 and 6, referred

to as wc dynamic degree 2 and wc dynamic degree 6,

respectively.

Finally, to illustrate the trade-off between capacity and

quality, we introduce a per server headroom during the

workload placement process. The headroom leaves a cer-

tain fraction of the server unallocated during the workload

placement controllers placement exercises. The greater the

headroom the less likely that aggregate demands will exceed

the capacity of the server. In our experiments, the headroom

is varied from 0% to 20% in 5% steps. For our study, the

minimum and maximum numbers of required servers is de-

termined by the workload placement controller. However, the

non-work-conserving policy impacts the maximum number

of required servers as it flattens peak demands as seen as

inputs for the workload placement controller. Depending on

the headroom, the minimum number of servers was either

14 or 15 and the maximum ranged from 19 to 24.

Figure 6 shows the quality and the total required capacity

for the different experiments assuming one Class of Service

(CoS). Note that the y-axis of the figure has a logarithmic

scale. The figure shows that the work-conserving policies

achieve much better overall quality. When using a similar

amount of capacity the incurred quality penalties are about

10 times less. Hence, we strongly encourage to use work-

conserving policies in shared resource pools. The overall
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Figure 6. Integrated WP and WM Assuming 1 CoS
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Figure 7. Integrated WP and WM Assuming 3 CoS

quality and required capacity were very similar for all the

work-conserving policies.

Figure 7 shows the corresponding results for a scenario

with three CoS that have 30 gold workloads, 40 silver

workloads, and 68 bronze workloads. A comparison of

the figures shows that providing differentiated QoS does

not impact overall quality as measured with respect to the

resource pool. In the next section, we evaluate how well the

different workload manager policies provide differentiated

quality of service to the workloads.

D. Providing Differentiated QoS

The previous section evaluated the impact of the different

workload manager policies on overall capacity and quality.

Now, we consider per-workload quality for the different

policies. We consider the experiments from the previous

section where the workload placement controller did not

employ a headroom, i. e., the headroom was 0%. These

experiments challenge the local workload managers most.

We consider one and three CoS scenarios using the SLA

definition from Section II-B.

For the one CoS scenario, the SLA is defined by a

compliance ratio of 99% and a penalty of $100 per per-

centage of missed compliance. Figure 8 shows the achieved

per-workload compliance ratios for the different policies.

Figure 8(a) shows that policy i), i. e., nwc demand, offers

the worst quality. For more than half of the workloads the

resource demands are not fully satisfied in more than 10%
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Figure 8. Achieved Compliance Ratio cr for Each Workload when
Allocating Server to 100%

of the simulation intervals. In a real production system this

would be not acceptable and the service provider would need

to provide more capacity to meet its service level objectives.

All the other policies offer a compliance ratio greater than

97% for all workloads.

The work-conserving policy, policy ii), i. e., wc de-

mand, shown in Figure 8(b) dramatically improves the per-

workload quality even though it does not consider the

compliance ratio. With the SLA we defined, the sum of the

per-workload penalties is $5100.

The results of the static policy, policy iii), i. e., wc static,

are shown in (Figure 8(c)). It further reduces the sum of

penalties to $2100. Penalties are reduced because the weight

based policy favours smaller workloads as compared to the
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Figure 9. CPU Violation Penalties per Workload With Regard to
Average Demand

demand based policy.

The results of policy iv), i.e., wc dynamic degree 2 and

wc dynamic degree 6, are shown in Figure 8(d) and 8(e),

respectively. Policy iv) considers the workloads’ current

compliance ratios and allocates capacity in a manner that

aims to minimize penalties. The degree of the policy func-

tion determines the aggressiveness of the dynamic aspect,

i. e., how close the workload manager lets the workloads

get to their next lower threshold. The quadratic polynomial

function incurred in total $3700 in penalties. Policy dynamic

wc degree 6 is more aggressive than the degree 2 approach

and reduces penalties to $1900. wc dynamic degree 6 has

the smallest penalties for one class of service scenario.

Figure 9 shows the CPU violation penalties per workload

with regard to the average demand for policy ii), iii), and iv).

Policy iii), i. e., wc static, degrades a few large workloads.

This frees enough capacity to fully satisfy demands of many

smaller workloads. But this behaviour is not desirable in

shared resource pools. The figure shows that the demand

based and the dynamic policies both allocate resources fairly

to workloads regardless of their size.

Next, we consider three classes of service: gold, silver and

bronze. All three CoS have compliance ratio requirements

of 99% but with penalties of $400, $200, and $100 per

percentage missed, respectively.

Figure 10 shows the corresponding results. As in the one

CoS case, Policy i) nwc demand resulted in unacceptable

quality. Policy ii), wc demand, as shown in Figure 10(b)

chooses weights such that each workload gets the same

fraction of its demand satisfied but does not consider CoS

and compliance ratios. As expected, the per-workload com-

pliance ratios are similarly for each class of workloads,

leading to total penalties of $5000. The gold class alone

incurred penalties of $2000.

wc static supports differentiated service by offering each

workload a weight that is in proportion to the penalty of its

CoS. In this study the weights for gold, silver and bronze

are 4, 2, and 1, respectively. Figure 10(c) shows that wc

static improves compliance ratios for the higher CoS. No

gold workloads fall below the desired 99% level. However,

the improved quality of gold workloads is achieved through
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Figure 10. Achieved Compliance Ratio cr for Each Workload when
Allocating Server to 100%

the degradation of many lower prioritized workloads. The

figure shows that 2 bronze workloads only achieved the

97% compliance ratio and 13 more only a 98% level.

Bronze workloads alone incurred penalty costs of $1700.

Also one silver workload even missed the 98% ratio. The

total penalties for all workloads sum up to $2500. This is a

reduction of 50% to compared to wc demand.

wc dynamic degree 2 and wc dynamic degree 6 dy-

namically alter the weights associated with each workload

to minimize penalties. Figure 10(d) shows the achieved

compliance ratios for the quadratic polynomial function,

which incurred total penalties of $5200. However, workloads

do not overachieve their SLA levels compared to the static

prioritization scenario. This helps to improve the resource

access quality for bronze workloads. Now all except two

bronze workloads obtain the 98% level but 16 bronze

workloads still fall below a 99% compliance ratio.

Figure 10(e) shows the results for wc dynamic degree 6,

i.e., a degree 6 polynomial. The gold and silver workloads

less overachieve the 99% compliance ratio. This helps low

priority workloads to improve their quality. Now, only one

gold, one silver and 8 bronze workloads miss the desired

99% compliance ratio level. The total penalties for all

workloads are $1600, which is 68% less than policy ii) wc

demand and 36% less than policy iii) wc static.

To summarize, policy iv), i.e., wc dynamic degree 6,

provides for the lowest penalties for both the one and three

CoS cases. The next best policy was policy iii) wc static

but we note that it favours smaller workloads, which is not

desirable in real production environments.

V. RELATED WORK

Server consolidation is becoming an increasingly popular

approach in enterprise environments to better utilize and

manage systems. The problem of efficient workload place-

ment and workload management in such environments is in

a centre of attention for many research and product groups.

In our work, we chose to represent application behaviour

via workload demand traces. Many research groups have

used a similar approach to characterize application behaviour

and applied trace-based methods to support what-if analysis

in the assignment of workloads to consolidated servers [12],

[5], [13], [14], [15], [1], [16]. A consolidation analysis pre-

sented in [12] packs existing server workloads onto a smaller

number of servers using an Integer Linear Programming

based bin-packing method. Unfortunately, the bin-packing

method is NP-complete for this problem. This makes the

method impractical for larger consolidation exercises and

on-going capacity management. There are now commercial

tools [17], [18], [19], [20] that employ trace-based methods

to support server consolidation exercises, load balancing,

ongoing capacity planning, and simulating placement of

application workloads to help IT administrators improve

server utilization. We believe the workload placement ser-

vice we employ has advantages over other workload place-

ment services described above. It addresses issues including

classes of service and placement constraints. The approach

is also able to minimize migrations over successive control

intervals. Some researchers propose to limit the capacity

requirement of an application workload to a percentile of

its demand [14]. This does not take into account the impact

of sustained performance degradation over time on user

experience as our required capacity definition does. Others

look only at objectives for resources as a whole [16] rather

than making it possible for each workload to have an

independently specified objective.



Earlier work at HP Labs focussed on capacity planning

and workload placement [1], [12], [21]. This work has as-

sumed the presence of allocation and arbitration mechanisms

of the kind that exist in industrial products [22], [23], [24],

[25]. These products implement control loops and are moti-

vated by methods from control theory. Such products support

demand based allocations, allocations based on workload

response times or throughputs, priorities, entitlements, and

other features. However the workload managers typically

have control parameters that must be specified or configured

in an off-line manner on a per-workload basis. More recently,

adaptive controller technologies have been applied to allo-

cation and arbitration [26], [27] for such control loops. For

example, Wang et. al. [27] use an adaptive controller to dy-

namically adjust the gain parameters of an integral controller

based workload manager to better meet application level

response time objectives. All these papers mentioned above

assume non-work conserving CPU scheduler and deal with

the capped mode. However, there are significant benefits for

application performance when a work-conserving mode is

used instead as shown in [28]. In our work, we compare

achievable performance QoS when using work-conserving

versus non-work-conserving schedulers as well as different

share allocation strategies.

Recently, virtualization platforms such as VMware and

Xen [2], [29] provide the ability to dynamically migrate

VMs from one physical machine to another without in-

terrupting application execution. Wood et al. [30] present

Sandpiper, a system that automates the task of monitor-

ing virtual machine performance, detecting hotspots, and

initiating any necessary migrations. Sandpiper implements

heuristic algorithms to determine which virtual machine to

migrate from an overloaded server, where to migrate it,

and a resource allocation for the virtual machine on the

target server. Sandpiper implements a black-box approach

that is fully OS- and application-agnostic and a gray-box

approach that exploits OS- and application-level statistics.

In our work, we use virtual machine migration as instructed

by a workload placement controller to optimize the global

workload placement according to the observed load patterns.

1000 Islands Project [31] aims to provide an integrated

capacity and workload management for the next generation

data centres. In the paper, the authors evaluate one loose

integration policy for different controllers, while our paper

provides a detailed performance study evaluating outcome

of the integration policies at the resource pool and the

node level and uses a set of novel QoS metrics. Our

paper also considers the integration of a per-server workload

manager and uses real system traces for this purpose whereas

paper [31] does not.

There are many related works on policy-based manage-

ment. For example, in [32], the authors statically derive and

then dynamically refine low-level service level specifications

to meet given SLAs while maximizing business profit.

VI. CONCLUSIONS AND FUTURE WORK

This paper evaluates the impact of different policies for

managing a shared resource pool providing infrastructure

as a service to enterprise applications. The resource man-

agement system has two levels of controllers. The first

level is a workload placement controller that periodically

consolidates workloads to an appropriate number of servers

in the pool. Its role is to keep the number of servers used

in line with the aggregate demands of workloads and in that

way minimize power usage. The second level of controllers

are per-server workload manager controllers. A server’s

workload manager controller dynamically allocates capacity

to workloads assigned the server.

We consider the impact of four different policies for

the workload manager. First we compare the effectiveness

of a non-work conserving policy with a work conserving

policy and find that the work-conserving policy significantly

out performs the non-work conserving policy. This is an

important result given that much of the recent literature pro-

motes the use of non-work conserving controllers. Next, we

consider policies that either statically or dynamically assign

weights to different workloads. We found that the dynamic

approach performed best. It was able to reduce the penalties

incurred in our study the most while treating workloads

fairly. However, it is important to use an appropriate function

to guide the choice of weights.

Our future work includes evaluating other instances of

controllers and management policies, and to develop man-

agement policies that react well to more kinds of workloads

and different kinds of simulated failures. Our compliance

ratio could be enhanced to take into account bursts of

degraded service. We also plan to consider the impact of

service agreement windows, where utility and quality of

service are assessed at regular intervals. Further, we plan

to improve the utility functions by exploiting expected

workload behaviour. Finally, we also plan to consider a

greater variety of workloads.
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