
Modeling A Scalable High-Speed Interconnect

with Stochastic Petri Nets

Gianfranco Ciardo
�

Lucy Cherkasova, Vadim Kotov, Tom Rokicki
Department of Computer Science Hewlett-Packard Laboratories

College of William and Mary, 1501 Page Mill Road
Williamsburg, VA 23187-8795, USA Palo Alto, CA 94303, USA

ciardo@cs.wm.edu
�
cherkasova,kotov,rokicki � @hpl.hp.com

Abstract
This paper presents an approach to using Stochastic

Petri nets to model large-scale concurrent systems, in our
case, a scalable computer interconnect. We show how
Stochastic Petri net models can exploit the symmetry of the
system to construct a tractable, but approximate, analytic
model, and that they can yield results very close to those of
a detailed simulation model, with much less computational
effort.

1 Introduction
In this paper, we present techniques for the modeling

and analysis of large-scale concurrent systems using Petri
nets. There are two important but conflicting requirements
in this sort of analysis. First, the model should be detailed
enough to include those system features that have a signifi-
cant impact on performance. Second, the model should be
simple enough to be tractable. Constructing a single model
of a complex system does not lead to completely trustwor-
thy results; modeling is subject to the same sorts of errors
and inaccuracies as programming in general, yet the results
are often not as easy to check. We therefore use different
types of models to deal with different aspects and stages of
the system analysis. The common feature of these models
is that they are based on Petri nets.

We present as a case study the net modeling of a scalable
interconnect for its performance evaluation and analysis.
Our goal was to analyze the performance of the interconnect
as a function of various parameters, including network size
(which can scale up to hundreds of nodes) and the number
of internal buffers on each node.

We have built and analyzed two net models of the in-
terconnect. We used SPNP [6], based on Stochastic Petri
Nets (SPNs), to build an approximate model for a quick nu-
merical analysis of performance. We used Design/CPNTM�

This research was initiated while G. Ciardo was visiting Hewlett-

Packard Labs.

[7] based on Hierarchical Colored Petri Nets to develop
a detailed simulation model to help refine the design and
identify performance bottlenecks. This model was also
used to verify the accuracy and correctness of the approxi-
mate SPN model.

The original Petri net formalism is inadequate for the
specification of complex large-scale systems, especially
systems for which the number of interacting components
depends on the input parameters. We instead use two
higher-level formalisms based on Petri nets.

High level Petri nets, in particular Colored Petri nets,
provide for the specification of large-scale systems with
colored tokens, that allow the folding of the system descrip-
tion into a very compact form. The Colored Petri nets used
in Design/CPN are a graphical programming language with
rich specification and simulation possibilities. The colored
tokens and arc expressions allow easy parameterization of
the system size. Through the use of hierarchy and refine-
ment, a series of models with different levels of detail can
be easily constructed, enabling rapid prototyping and anal-
ysis. The main difficulty when modeling complex systems
with high level Petri nets is that the simulation time of these
nets does not remain constant with increasing system size.
For a very large number of components, simulation time
becomes prohibitive.

SPNs allow the quick construction of a simplified ab-
stract model that is then numerically solved for different
model parameters. This analysis is based on the explo-
ration of all reachable states in the model, and is thus even
more dependent on the system size. A straightforward
SPN model of the interconnect generates exceedingly large
stochastic processes for even the smallest network sizes.

The solution to this problem is to construct an approxi-
mate model that takes into the consideration some specific
features of the modeled system. In our case, we exploit the
fact that the interconnect has a very regular structure. We
were primarily concerned with two different issues:

1) how performance scales with network size, and

2) how internal design alternatives affect performance.

These tasks are not independent of one another.
Nonetheless, it is possible to split the problem into two
stages. First, a simplified but scalable model to predict
bottom-line performance and identify possible bottlenecks
is quickly constructed. Next, a detailed model is con-
structed to evaluate and analyze particular design alterna-
tives. These two stages may be iterated to verify the results
and refine the analysis.

In this paper, we show how SPNs can exploit the sym-
metry of the system to construct a tractable approximate
model. We present this model to support our conclusion
that SPNs can be successfully used for modeling industrial
size systems. Sections 2 and 3 present the interconnect
structure and its exact SPN model. Section 4 presents our
approach to build a tractable approximate SPN model. Sec-
tion 5 presents the numerical results. Section 6 compares
the numerical results of SPN model with simulation results
of the interconnect model based on Colored Petri nets. In
the conclusion, we discuss a few missing features of SPNP
which might further improve the applicability of such a
tool.

We assume that the reader is familiar with the basic
definitions and behavior of SPNs. For a complete treatment
of the class of SPNs used in this paper, see [3].

2 System
The interconnect topology is a continuous hexagonal

mesh which permits each node to communicate with its six
immediate neighbors. We refer to a mesh having � nodes
on each edge as an ��� mesh. The resulting total number
of nodes is �
	 3 ������ 1 ��� 1. Figure 1 shows the mesh
structure for � 2, � 3, and � 4. Physically, nodes on the
edge are actually connected to nodes on other edges in a
wraparound fashion, so that their virtual connectivity is the
same as that of internal nodes.

The distance of a node from a particular node � in an� � mesh is at most ��� 1 “hops”. Furthermore, of the�
� 1 	 3 ������� 1 � nodes other than � , 6 are at distance
1, 12 are at distance 2, and so on, up to the 6 ����� 1 � at
distance ��� 1.

Each node is attached to a processor connected via a
local bidirectional port. In addition, each node � has six
ports, numbered 0 through 5, each of them connecting it
to a different neighbor, ������ 0 � through ������� 5 � , respectively
(see Figure 2). Each of these ports is full-duplex.

The node has a total of ��� buffers to store the packets
in transit. The processor injects packets to the interconnect
through the local ports when both 1) the local port is avail-
able and 2) there is an available buffer to store the packet.
Otherwise, the packet waits in a queue until the required

E4

1

2

3

9

8

6

5

104

7

11

12

27

26

25

24

23

22

21

20

37

36

35

34

33

32

31

30

29

28

14

15

16

17

18

19

13

E2

1

2

3

6

5

4

7

E3

1

2

3

9

8

6

5

104

7

11

12

14

15

16

17

18

19

13

Figure 1: System structure, for ��	 2 � 3 � and 4.

i
4

3

5

2
1

n(i,1)

n(i,2)

n(i,3)

n(i,4)

n(i,5)

0

n(i,0)

Figure 2: Neighbor nodes.

resources are freed. In-transit packets follow the same
procedure. Packets are always routed through a minimal-
length path towards their destination. Each time the packet

local
processor

switch

Nb buffers

Toward n(i,1)

Toward n(i,2)

Toward n(i,3)

Toward n(i,4)

Toward n(i,5)

Toward n(i,0)

Figure 3: Node structure.

arrives at a new node, the next node on a minimal path to
destination is computed and the router attempts to forward
the packet through it. If either the port is busy or no buffers
in the next node are available, the packet waits. When the
packet finally arrives to a destination node, it is ejected
from the interconnect through the local processor port.

We assume packet transfer, injection, or ejection takes
720 �! (time units). A main parameter of the model is the
number of buffers inside each node; we use a default of ten.

3 Detailed model
A detailed SPN model for node � is shown in Figure

4. Transition "$#%��#%&(')�!#(* generates the packet tokens at
a given rate and puts them into place +,')���* . Place �.-/*
contains tokens corresponding to empty buffers inside node� . The number of tokens � � initially in this place is the total
number of buffers in node � .

Generatei

GetBufiSendingi

GB0
i I0

i FB0
i

Sendi

EBi

EBi

GB1
i I1

i FB1
i

EBi

GB2
i I2

i FB2
i

EBi

GB3
i I3

i FB3
i

EBi

GB4
i I4

i FB4
i

EBi

GB5
i I5

i FB5
i

EBi

O0
i

O1
i

O2
i

O3
i

O4
i

O5
i

Waiti

Receivei

Receivingi

O0
n(i,3)

O1
n(i,4)

O2
n(i,5)

O3
n(i,0)

O4
n(i,1)

O5
n(i,2)

Nb

EBn(i,0)

EBn(i,1)

EBn(i,2)

EBn(i,3)

EBn(i,4)

EBn(i,5)

Figure 4: Detailed SPN model.

Firing of the immediate transition "$#%�!-0 �12* reserves
a buffer inside node � (if there is a token in place �.-/*)
for the new packet and moves a token to place 3�#4�25)��768* .
The packet injection to node � is represented by transition3�#%��59* .

The output places :.*0 �<;=;=;(�>:.*5 of node � are the input
places for the six neighbor nodes: for example, place :.*3 is
the input place for node ������� 3 � from node � .

For simplicity of illustration, a “probabilistic arc” is used
from transition 3?#%��58* to places :.*0 through :@*5. A proba-

bilistic arc is a shorthand to denote that the token deposited
by a transition, say 3?#%��58* , can end up in exactly one of
the destination places. Formally, this behavior is obtained
with one extra place and a set of immediate transitions. For
the branches from 3�#%��59* to :.*0 through :.*5, we specify a
probability of 1 A 6, since we assume that the destination
node for a packet generated at node � is uniformly chosen
among the remaining nodes.

The packets arrive to each node from the local processor
(through the local port) and from the six neighbor nodes
(through neighbor ports). Places with a superscript ������ 0 �
through ������ 5 � are in the individual SPNs representing the
six neighbor nodes. They are drawn smaller for clarity.
For example, place : �CB *�D 0 E3 is the place in the SPN for the
neighbor ������ 0 � of � .

The packet transfer from the neighbor nodes is the same
as from the local processor. First of all, for each packet
arriving at node � , a buffer must be reserved. Firing of im-
mediate transition "$-/*F �G�IH/	 0 �<;=;=;%� 5 � reserves the buffer
inside node � if there is one available, represented by a token
in place �.- * . The firing of transition J.-/*F corresponds to
the packet transfer by the input port H to a node � . When
the packet transfer is complete, the buffer occupied by this
packet in the previous node �����K�!H)� is released by returning
a token to place �@- �CB *�D F E .

A probabilistic arc is used from transitions J.-/*0 throughJ.-/*5 to places L�#%M=#%�N)��768* and :@*0 through :.*5; these are
expanded into extra places and immediate transitions as
described before. There are two possibilities:

1. If the packet is destined for node � then it is put in placeLO#%M=#%�NP��Q6Q* , and ejected from the node by the local
processor port (represented by transition LO#%M=#%�N)# *).
When the packet ejection is complete, one buffer is
released by returning a token to place �.-/* .

2. If the packet is intended for a neighbor node H then it
is put into place :.*F .

Assuming that packets are always routed through one of the
shortest paths, a packet arriving from port H can only be sent
to the current node (place LO#%M=#%�N)�R�Q6 *) or to another node
to be reached through ports �SHT� 2 � mod 6, �SHU� 3 � mod 6,
or �SHV� 4 � mod 6. That is, a packet never reverses direction.
The routing probabilities depend on both the source and the
destination of the packet. For � 2, external packets arriving
at node � always have their destination as node � , since the
maximum distance between any two nodes is one. When
modeling ��� , �XW 2, we can associate the identity of
the source and destination with each token representing a
packet, resulting in a colored SPN with a huge state space.

Alternatively, we can remain in the uncolored domain
and obtain considerable state space reduction by assigning
probabilities to the four possible destinations for a packet
arriving through port H :

Y the local node, � , with probability Z\[^]K_!`<[,Y an external node reachable through port �SH7� 2 � mod 6,
with probability Z\a *cbed ,Y an external node reachable through port �SH7� 3 � mod 6,
with probability Z _ d �%f dhg ,Y an external node reachable through port �SH7� 4 � mod 6,
with probability Z a *cb>d again, since, by symmetry, this
case has the same probability as in the second case
above.

This probabilistic view involves an approximation, since it
is now possible to have packets follow arbitrarily long paths
through the mesh. On the other hand, it is nevertheless
possible to set the parameter Z\[^]i_!`=[so that the average load
on the network is correctly matched, and each port on each
node has the same load. We define a “hop” to be the
movement of a packet from a node to one of its neighbors,
and compute the average number of hops required to send a
packet from source to destination. For � � , if node � sends
to every other node with equal probability, then 6 j potential
destinations out of 3 ������� 1 � are j hops away, hence the
average number of hops iskml 1n o p 1

q�r 6
q

3 s2tuswv 1 xzy 2 swv 1
3

In particular, the average number of hops is 1 for � 2, as
expected. Each incoming packet corresponds to one hop,
hence a fraction{)|^}!~R�h| y�� 2 s@v 1

3 � l 1 y 3
2 swv 1

of the incoming packets is directed to the local node � .
We stress that this choice for ZV[^]i_!`=[ensures that the ex-

pected number of hops per packet and the average rate of
hops over the entire mesh, ����AKZV[�]K_!`=[, or to an individual
node, �7AiZV[^]i_!`=[, or even to an individual port, 1 A 6 ����AKZV[�]K_!`=[,
is the same for the exact colored model and for the approxi-
mate probabilistic model, where � is the injection rate from
each node. The only approximation lies in the probability
mass function (pmf) of the number of hops for a packet. In
the exact model,

Pr � number of hops is
qQ� y 6

q
3 s2tuswv 1 xC�

while, in the approximate model,

Pr � number of hops is
q8� y 3

2 swv 1 � 1 v 3
2 s@v 1 �

o l 1 �
which describes a geometric distribution. The quality of
approximation increases with the size � of the mesh, since

the number of nodes increases quadratically in � , while the
expected number of hops increases linearly in � .

Clearly, Z [^]i_!`=[��Z _ d �%f d�g � 2ZVa *cb>d 	 1, but Z _ d �%f d�g andZ a *cb>d still need to be determined. Observing Fig. 1 again,
this corresponds to determining the proportion of hops of
type “ � ”, “ M ”, and “ � ”, defined as the first hop (i.e., a packet
from the local processor on node 1 exits on the port from 1
to 2), a hop going to the center port (i.e., a packet entered
on the port from 1 to 2 exits on the port from 2 to 8), and a
hop going to a side port (i.e., a packet entered on the port
from 1 to 2 exits on the port from 2 to 9), respectively.

Define � � to be the expected number of hops of the
three types for a packet transmitted in ��� , starting from
node 1 (because of the symmetric nature of the network,
the choice of node 1 is arbitrary). For � 2, each packet
takes exactly one hop of type � , hence � 2 	�� . For � 3,
each packet can take the following combinations of hops:Y From 1 to � 2 � 3 �=;=;=; 7 � : one hop of type � .Y From 1 to � 8 � 10 �=;<;=; 18 � : one hop of type � and one

hop of type M .Y From 1 to � 9 � 11 �=;<;=; 19 � : one hop of type � and one
hop of type � .

Assuming that each node other than 1 is a potential desti-
nation with equal probability, � 3 	��7� 1

3 M�� 1
3 � .

For larger size networks, the analysis becomes more
complex. For example, in � 4, a packet with source node
1 and destination node 21 can choose among three paths:

1
[� 2

_� 8
a� 21, 1

[� 2
a� 9

a� 21, and 1
[� 3

a� 9
_� 21. For the

analysis, we assume that, whenever a hop to either one
of two neighbors would still achieve the shortest path for
the packet, the choice is performed with uniform probabil-

ity (e.g., 1
[� 2 and 1

[� 3 have probability 1/2, and, given

that 1
[� 2 is chosen, 2

_� 8 and 2
_� 9 have probability 1/2).

Hence, the probability of the above three paths is 1/4, 1/4,
and 1/2, respectively, not simply 1/3 for each of them. By
enumerating these paths and computing their probabilities,
we can then obtain � 4 	��P� 11

12 M�� 5
12 � . For � 5, we obtain� 5 	��Q� 29

20 M�� 11
20 � . This implies that the value of ZV_ d �%f d�g

and ZVa *cb>d depends on the size of the network. However,
their relative value will not affect the average load on the
mesh, hence, we could, for simplicity, use the values{ ~� kG� �� y 1 v {)|�}!~�h|

2 y swv 2
2 s.v 1{9�u�c��� y 1 v {m|�}!~��|

4 y swv 2
2 t 2 swv 1 x �

which coincide with the exact values for ��	 2 � 3.

4 Approximate model
By assuming that the firing times of the timed transitions

for the SPN in Fig. 4 are exponentially distributed, the re-
sulting underlying stochastic process is a continuous-time
Markov chain (CTMC). In principle, we could study this
CTMC to compute the performance measures of interest
using software tools such as SPNP [6], but its size is too
large for an exact numerical solution, even for the � 2 inter-
connect having only 7 nodes. In this section, we describe
an approximate model based on the idea of SPN decom-
position and fixed-point iteration [5]. This approximate
model exploits the large amount of symmetry possessed by
the interconnect and essentially describes the behavior of
one node under a workload that is generated by the whole
interconnect fabric. Thus the basic idea is to approximate
and generate a proper amount of traffic going through one
node in a network of a particular size.

We will construct the approximate SPN model from
the following four SPN subnets representing different node
activities from the perspective of a single “current” node:

1. Injection into the node by the local processor port.

2. Transfer from the current node to a neighbor node.

3. Transfer from the neighbor node to a current node.

4. Ejection from the current node to a processor by the
local processor port.

SPN subnet � 1 is shown in Figure 5. Transition � [gen-
erates the packets at a given rate � and puts them in place+,-w[. An inhibitor arc with cardinality ��[from +,-w[to� [is needed to ensure that the population of packets wait-
ing to enter the node from the current node is finite. If ��[
is smaller than the actual theoretical maximum number of
packets waiting to enter the node from the local node, the
inhibitor arc introduces an approximation through trunca-
tion of the state space.

Al
WBl

Kl

Nb
GBl Il IBlFB C1

Figure 5: SPN subnet � 1: packet injection into a node by
the local processor port.

Place J@- contains tokens corresponding to free buffers
inside the current node. The initial number of tokens �0� is
the total number of buffers in a node. The immediate tran-
sition "$- [reserves a buffer, if one is available (indicated
by a token in place J.-). An inhibitor arc from place [to
transition "$-w[insures that the local processor port is not
already busy (indicated by a token waiting in G[). After C-w[

fires, the token is put into place ¡ 1 which is shared with
subnet � 2.

Tokens in place ¡ 1 represent packets stored in the current
node buffers and which must be transferred to neighbor
nodes.

SPN subnet � 2 is shown in Figure 6. Place J0:w¢
contains tokens corresponding to free output ports of the
current node to its neighbor nodes. The initial number of
tokens in J0:$¢ is six, since there are six neighbor nodes.
When a token arrives in place ¡ 1, eitherY the required output port is available, immediate tran-

sition :$¢.£ 1 fires, and the token is moved to place : d ,
orY the required output port is busy, immediate transition:$¢.� 1 fires, and the token is moved to place +¤:w¢ .
An inhibitor arc with cardinality six from J0:w¢ to:$¢.� 1 prevents transition :$¢.� 1 from firing when
place J0:$¢ contains all six tokens.

Let # �¥Z\� denote the number of tokens in place Z . Then,
the probability that a particular output port is free is
�J0:$¢w��A 6, and is assigned to transition :$¢.£ 1, while tran-
sition :$¢.� 1 is assigned a probability of 1 � # �J0:$¢w��A 6.

Nb
FB Oe

6

OPY1

OPN1

OBe

C2

C1

OPN2

OPY2

FOP

WOP

6

Figure 6: SPN subnet � 2: packet transfer from the current
node to its neighbor nodes.

Tokens in place : d represent packets being transferred
through output ports, and transition :$- d represents the
completion of the packet transfer. Its rate is proportional
to # �!: d � , an “infinite server” behavior. When the packet
transfer to a neighbor node is completed, a buffer is released
by returning a token to place J@- . Place ¡ 2 represents the
state when the busy output port has just been released.
There are two possibilities at this point. EitherY place +¤:$¢ has a packet waiting for this particular

output port, in which case transition :$¢@£ 2 will fire,
removing a token from +¤:$¢ , orY there is no waiting packet for this output port, in which
case immediate transition :$¢@� 2 will fire, adding a
token to J0:w¢ .

Let us calculate the probability that there is no waiting
packet for this particular output port, and thus the prob-
ability that :$¢.� 2 will fire. We know the packets are
waiting for ports that are busy, and thus all packets are for
either this output port, or one of the other output ports
that are free. The probability that a single packet can
use this particular output is thus 1 A9� 6 � # ��J�:$¢��K� . The
probability that that packet cannot use this output port is� 5 � # ��J0:w¢O���iA9� 6 � # ��J0:w¢O��� . If we have # �!+¤:$¢w� wait-
ing packets, then the probability that none of them can use
the newly freed output port is¦

5 v # tI§©¨«ª©x
6 v # tI§©¨«ª©x=¬ # ¯®w°7±Q²

This, then, is the probability we assign to :$¢@� 2; we assign
the complementary probability to :$¢.£ 2.

IPY2
IPN2

Nb

Ae

C3
IPY1

FB

6FIP

WIP

C5

C4

WBe

GBe

Ie IBe

IPN1

6

Ke

Figure 7: SPN subnet � 3: packet transfer from a neighbor
node to the current node.

SPN subnet � 3 is shown in Figure 7. Transition � d
generates the packets ready to be sent by neighbor nodes
to the current node. This rate is simply the product of
the processor injection rate � and the average path length,
2 �P³ 1

3 , since the packet is injected into a new neighbor node
for each hop it takes. The structure and internal arrange-
ment of the third SPN subnet is similar to the second SPN
subnet described above. Place J. m¢ (analogous to J0:w¢)
contains tokens corresponding to free input ports of the cur-
rent node (with an initial marking of six tokens). For each
waiting packet in place ¡ 3 (analogous to ¡ 1), there are two
possibilities.Y If the required input port is available, immediate tran-

sition C¢.£ 1 (analogous to :w¢.£ 1) fires and moves a
token to place +,- d . Transition "$- d then reserves a
buffer in the current node, if there is a buffer available.
Transition m- d completes the packet transfer, and the
packet ends up in place ¡ 5 which is a place shared
between the third and the fourth SPN subnets.

Y If the required input port is busy, immediate transition C¢.� 1 (analogous to :$¢@� 1) fires and moves a to-
ken to place +, m¢ (analogous to +¤:w¢) representing
waiting packets. An inhibitor arc with cardinality six
from J@ C¢ to C¢.� 1 prevents transition m¢.� 1 from
firing when place J. m¢ contains all six tokens.

A token in place ¡ 4 (analogous to ¡ 2) represents the state
when a busy input port has just been released. As before,
there are two possibilities:Y If there are no waiting requests for this input port, the

immediate transition C¢@� 2 will fire and return a token
to place J. m¢ .Y If place +, m¢ has a packet waiting for this particular
input port, the immediate transition C¢@£ 2 will fire and
move a token in place +,- d .

The probabilities assigned to these cases are similar to those
for � 2, since the situation is analogous. An inhibitor arc
with cardinality � d from +, C¢ to � d is needed to ensure
that the population of packets waiting to enter the current
node from the neighbor nodes is finite. This introduces an
approximation in our model, by truncating the state space.

Nb
FB TeTlOl C5OBl C1

Figure 8: SPN subnet � 4: packet ejection from the current
node through the local processor port.

SPN subnet � 4 is shown in Figure 8. A token in place¡ 5, representing a packet received by the current node from
its neighbors, is either destined to the current node, or must
be transferred further.Y If the packet must be forwarded, then immediate tran-

sition ´ d moves the token to place ¡ 1, the input place
of the second SPN subnet � 2.Y If the packet must be ejected toward the local node,
immediate transition ´\[moves the token to place :O[.
Transition :$- [represents the completion of the ejec-
tion, after which one buffer in the current node is
released by returning a token to place J@- . Note that
the rate of transition :$- [is constant, not proportional
to the number of tokens in place : [, since the activity
modeled corresponds to a “single server”.

The composite SPN net � shown in Figure 9 is obtained
as a superposition of � 1 �� 2 �� 3 �K')�25%� 4 by merging their
shared places, J.- , ¡ 1 and ¡ 5. The meaning of the places
and transitions in this SPN is summarized in Table 1 and

IPY2
IPN2

Al
WBl

Kl

Nb

GBl Il

Ae

C3

IPY1

IBl

FB

Te

Tl

Oe

Ol

6FIP

WIP

C5

C4

WBe

GBe

Ie IBe

IPN1

OBl

6

OPY1

OPN1

OBe

C2

C1

OPN2

OPY2

FOP

WOP

6

6

Keµ ªU¶ 2 is disabled if # tI§ µ ª©x y 5 · # tu¸ µ ª©x?¹ 0.¨«ªU¶ 2 is disabled if # tI§©¨«ª©x y 5 · # tu¸º¨«ª�x�¹ 0.» � is present only if s/¹ 2.

Figure 9: Approximate SPN model � .

the firing rate and probabilities of the transitions are given
in Table 2. Note that places ¡ 1 �=;=;=;%�>¡ 5 are always empty in
a tangible marking. Moreover, transition "$- d has priority
over transition "$-w[, to ensure that the delivery of packets
in transit takes precedence over the injection of new packets
into the network. A priority to local packets or an equal
priority to local and external packets could also be easily
modeled.

The inhibitor arcs with cardinality � [and � d from +,- [
and +, C¢ to �$[and � d , respectively, introduce an approx-
imation corresponding to a truncation of the state space.
With exponentially distributed firing times, it is possible to
have any number of packets waiting, but the probability of
having many packets waiting decreases quickly unless the
system is saturated. The introduced approximation does not
influence the system behavior in the following two cases:Y If the system is lightly loaded, the probability of hav-

ing more than a few waiting packets in places +,-w[
and +, m¢ is close to zero. Hence, the effect of the

Transition Firing rate¼ | ½ (an input parameter to be varied)µ%¾ | 1 ¿ 720 ÀhÁ l 1¨ ¾ | 1 ¿ 720 ÀhÁ l 1¼ � t 2 s$v 1 x!¿ 3 r ½µ%¾ � # t µ � x!¿ 720 ÀhÁ l 1¨ ¾ � # tu¨ � x!¿<Â (Â is the iteration parameter)

Transition Priority Firing probabilityµ ªUÃ 1 1 Ä y # cÅ9ÆK±9²
6µ ªU¶ 1 1 1 v�Äµ ªUÃ 2 2 Ç y 1 v � 5 l # cÅ9Æi±)²

6 l # cÅ9Æi±)² � # c®OÆi±9²µ ªU¶ 2 2 1 v�Ç» | 3 È y 3
2 kCl 1» � 3 1 v�È¨«ªUÃ 1 4 É y # cÅQ°7±9²

6¨«ªU¶ 1 4 1 v�É¨«ªUÃ 2 5 Ê y 1 v � 5 l # cÅQ°�±P²
6 l # cÅQ°�±P² � # c®$°�±P²¨«ªU¶ 2 5 1 v�ÊË ¾ | 6 1Ë ¾ � 7 1

Table 2: Firing rates and probabilities of the transitions in
the SPN � .

introduced inhibitor arcs becomes negligible.Y If the system is saturated, even with the inhibitor arcs
reducing the effective arrival rate, the probability of+,-$[or +, C¢ being nonempty is close to one. In-
creasing �Ì[or � d only increases the state space and
the solution cost, without changing in any appreciable
way the numerical value computed for the throughput
of packets.

The only undefined parameter in Table 2 is Í , the average
time required by an outgoing packet to obtain and fill a
buffer in the next node on its path. Only after this time
elapses can the buffer for node � be released (through the
arc from :$- d to J.-). By symmetry, this time has the
same average as the time that a packet in place +,- d must
wait before it can obtain a local buffer slot and enter place d , plus the time to fill the slot, 720 �! .

Hence, we set up the following fixed-point iteration
scheme:Y Choose an initial guess Í B 0 E for Í .Y Compute the successive values for Í as Í B * E 	ÏÎÐ�

720 �! , where Î is the average waiting time and is

Place Meaning§ ¾ Free buffers.¸ ¾ | Locally generated packets, waiting for a buffer.µ | Locally generated packets, being copied into a buffer.¨ | Packets destined to the local node, being copied out of a buffer.¸ ¾ � Externally generated packets, waiting for a buffer.µ � Externally generated packets, being copied into a buffer.¨ � Packets destined to and external node, being copied out of a buffer.§ µ ª Free input ports.§©¨«ª Free output ports.¸ µ ª Externally generated packets, waiting for an input port.¸º¨«ª Packets to external node, waiting for an output port.Ñ
1 Choice: is the required output port available for the packet?Ñ
2 Choice: is there a packet waiting for the output port just released?Ñ
3 Choice: is the required input port available for an incoming packet?Ñ
4 Choice: is there a packet waiting for the input port just released?Ñ
5 Choice: is the local node the final destination for the packet?

Transition Meaning¼ | Locally generated packet is ready to be transmitted.Ë ¾ | Locally generated packet gets a buffer.µ%¾ | Locally generated packet is put into a buffer.¨ ¾ | Packet directed to local node is read out of its buffer.¼ � Externally generated packet is ready to enter the node.Ë ¾ � Externally generated packet gets a buffer.µ%¾ � Externally generated packet is put into a buffer.¨ ¾ � Packet is transferred to an external node and frees its buffer.µ ªUÃ 1 Required input port is available.µ ªU¶ 1 Required input port is not available.µ ªUÃ 2 Input port just released is required by a packet waiting in ¸ µ ª .µ ªU¶ 2 Input port just released is not required by any packet waiting in ¸ µ ª .» | Local node is the final destination for the packet.» � Local node is not the final destination for the packet.¨«ªUÃ 1 Required output port is available.¨«ªU¶ 1 Required output port is not available.¨«ªUÃ 1 Output port just released is required by a packet waiting in ¸º¨«ª .¨«ªU¶ 2 Output port just released is not required by any packet waiting in ¸º¨«ª .

Table 1: Meaning of places and transitions in the SPN � .

obtained using Little’s law:Ò y,ÓwÔ number of packets waitingÕÓwÔ throughput of packetsÕy ÓwÔ # tu¸ µ ª©xQÖ # tu¸ ¾ � xIÕÓwÔ rate t ¼ � xuÕY Stop the iterations when Í B * E and Í B *�× 1 E are sufficiently
close.

We conclude this section with an observation regarding
the interaction between truncation and decomposition. If
truncation were not required, we would expect that � [and� d (and the corresponding downstream transitions for the
two, if the system is not saturated) would have throughputs

equal to their firing rates, � and � 2 �©� 1 �iA 3 �R� , respectively.
However, truncation causes the throughputs of �$[and � d
to be reduced. Since two parameters are needed, �Ì[and� d , this requires some care.

The values of � [and � d affect the relative values of the
two throughputs. We then ensure that the truncation does
not force an incorrect behavior, by checking that, upon
convergence of the fixed-point iteration, the ratio of the
throughputs of �w[and � d is “very close” to 3 A8� 2 ��� 1 � .
If the ratio were smaller (larger) we could then increase
(decrease) the value of � [with respect to � d . We did
not experience this problem in practice, but it is important
to be aware of the potential for error when applying both
truncation of the state space and fixed-point iteration to the

same model.

5 Numerical results
In the numerical experiments, we considered systems

of size � 3 �=;=;<;e� 8, with �0�U	 10 or 12, interarrival packet
time 1 AC��	 1000 �! \� 1100 �! V�=;<;=; 2000 �! , and truncation
parameters ��[�	�� d 	 3. In most cases, the fixed-point
scheme converged in just a few iterations. For example, for� 5, � � 	 12, 1 AC��	 1200 �! , four iterations are needed,
starting from the initial guess Í B 0 E 	 1000 �! , to obtain
four significant digits: Í B 1 E 	 744 ; 9 �! , Í B 2 E 	 729 ; 3 �! ,
and Í B 3 E 	ØÍ B 4 E 	 728 ; 8 �! .

We discovered that the number of iterations increases
as the the system is stressed, that is, as the mesh size in-
creases, the number of buffers decreases, or the interarrival
packet time decreases. The maximum number of itera-
tions, thirteen, was observed for � 8, when �0�@	 10, and
1 AC�Ù	 1000 �! , resulting in Í B 13 E 	 912 ; 7 �! . Interest-
ingly, this happens even if our initial guess, Í B 0 E 	 1000 �! ,
turned out to be always an overestimate of the value ob-
tained for Í through the iterations, hence it is closest to the
value Í B 13 E 	 912 ; 7 �! than to the final value of Í obtained
for any other combination of input parameters studied.

For our study, we focus on the average total packet
latency time Ú , defined as the average time elapsing from
the instant a packet is generated by its source local proces-
sor (firing of transition �$[), to the instant it is read by its
destination local processor (firing of transition :$-w[). In
the model of Fig. 9, this is obtained as the sum of three
components:Y The “injection time”: the average time a packet waits

before it is put into a buffer in the source node, com-
puted using Little’s law:

ÓwÔ # tu¸ ¾ | xQÖ # t µ | xuÕÓwÔ rate t µ%¾ | xuÕY The “ejection time”: the average time a packet waits
before it is removed from the buffer in the destination
node, computed using Little’s law:

Ó$Ô # tu¨ | xuÕÓ$Ô rate tu¨ ¾ | xuÕY The “transit time”: the average time a packet spends in
transit, computed as the product of the time to perform
a hop times the expected number of hops:Â r 2 swv 1

3

Fig. 10 shows the value of Ú as a function of the aver-
age interarrival time � ³ 1, for various system sizes (�) and
number of buffers (���).

Û)Ü(ÝCÝÞCÝmÝCÝÞ)Ü(ÝCÝÜßÝmÝCÝÜCÜ(ÝCÝàCÝmÝCÝà)Ü(ÝCÝá ÝmÝCÝá Ü(ÝCÝâCÝmÝCÝâ)Ü(ÝCÝ

ã<ÝmÝCÝ ã4äßÝmÝ ãGÞCÝmÝ ã<àmÝCÝ ã<âCÝmÝ ä(ÝCÝCÝ äCä(ÝCÝ

s y 3 � ¶�å y 10 æ

æ æ æ æ æ æ æ æ æ æ æ

s y 4 � ¶�å y 10 �

� � � � � � � � � � �

s y 5 � ¶�å y 10 ç

ç ç ç ç ç ç ç ç ç ç ç

s y 6 � ¶�å y 10 è
è è è è è è è è è è è

s y 7 � ¶�å y 10 éé é é é é é é é é é é

s y 8 � ¶�å y 10 ê
ê
ê ê ê ê ê ê ê ê ê ê

s y 3 � ¶�å y 12 ë

ë ë ë ë ë ë ë ë ë ë ë

s y 4 � ¶�å y 12 ì

ì ì ì ì ì ì ì ì ì ì ì

s y 5 � ¶�å y 12 í
í í í í í í í í í í í

s y 6 � ¶�å y 12 î
î î î î î î î î î î î

s y 7 � ¶�å y 12 ïï ï ï ï ï ï ï ï ï ï ï
s y 8 � ¶�å y 12 ð

ð ð ð ð ð ð ð ð ð ð ð

Figure 10: Latency Ú (in �!) as a function of � ³ 1, for
different values of � and ��� .
6 Comparison with simulation results

In the real system, the time required to perform most
activities is far from being exponentially distributed. With
simulation, we can accurately portray any distribution, in-
cluding exponential, uniform, or constant. For example,
packet transfers into or out of buffers are constants of 720 �!
in the simulation model.

In a Markovian SPN, all time delay distributions are ap-
proximated with exponential distributions. By using Erlang
distributions with the same mean,we better approximate the
constant, or almost constant, nature of the random variables
involved. Higher values of j result in better approximation,
but they also increase the size of the state space.

With exponential distributions and �0��	 10, the un-
derlying CTMC contains 32,797 nodes and 308,267 arcs.
Increasing �0� to 12 results in 49,259 nodes and 476,838
arcs. Hence, we limited ourselves to check the effect of
using Erlang � 2 � distributions. When using the Erlang � 2 �
distribution for the � � 	 10 case, the underlying CTMC
contains 749,795 nodes and 6,829,308 arcs.

We constructed a simulation model capturing the essen-
tial architectural features of the interconnect. This simu-

lation model was built using the Design/CPN tool based
on Hierarchical Colored Petri nets. All simulation runs
involved over 500,000 packets, and the 95% confidence in-
tervals using the batch means approach were tighter thanñ

1 ; 1%. For low traffic, the confidence intervals were sig-
nificantly better than this.

The comparison of SPN model results (using either ex-
ponentially or Erlang(2) distributed times) against the sim-
ulation results is shown in Fig. 11 for the case of networks� 3 and � 6, with � � 	 10. The percent workload, defined
as ��� 720 � 100% is on horizontal axis. In general, the re-
sults are off by only a few percent. As we would expect, the
results with Erlang distributions agree with the simulation
results much more closely. Interestingly, the results for a
larger network show closer agreement than those for a small
network. This is probably due to the fact that, under heavy
load, the shape of the distribution of the interarrival times
to the transitions is less important, since all transitions are
more likely to be busy most of the time anyway.

ämÜßÝCÝÛmÝCÝCÝÛPÜßÝCÝÞmÝCÝCÝÞPÜßÝCÝÜ(ÝCÝCÝÜmÜßÝCÝàmÝCÝCÝ

Ý ã<Ý äßÝ ÛmÝ ÞCÝ Ü(Ý àCÝ á Ý âCÝ

simulation, s y 3 æ

æ æ æ æ æ æ æ æ æ æ
æ

SPN (Exp), s y 3 �

�
� � � � � � �

� � � �SPN (Erl), s y 3 ç

ç ç ç ç ç ç ç ç
çsimulation, s y 6 è

è è è è è è è è è
SPN (Exp), s y 6 é
é é é é é é é é é é é é é é

é é é
SPN (Erl), s y 6 ê
ê ê ê ê ê ê ê ê ê ê

Figure 11: Comparison with simulation results: latency Ú
(in �!) vs. percent workload, for � 3 and � 6 (� � 	 10).

7 Conclusion
We presented our experience in using SPNs to model an

industrial size application. The paper has shown that SPN
models can exploit the symmetry of the system to construct
a tractable, but approximate, analytic model, and that they
can yield results very close to those of a detailed simulation
model, with much less computational effort.

One of the difficulties in using the SPNs is that all
time delays are approximated with exponential distribu-
tions, while, in the real system, many time delays are con-
stants. By using Erlang ��j�� distributions with a given mean
in the SPN model, we can better approximate the constant

distribution. However, as we have seen, this can lead to a
sharp increase in the size of the state space. To solve this
problem, we are investigating the use of SPN having under-
lying discrete-time Markov chains [8, 2]. We are currently
working on the design of a software package that will allow
us to solve SPNs with continuous-time phase-type distribu-
tions, as those used in this paper, their discrete equivalent
(where any distribution over the integers can be used, such
as constant, discrete uniform, geometric or modified geo-
metric), and even, under certain restrictions, with a mixture
of the two (see the “deterministic and stochastic Petri nets”
[1] and recent extensions [4]).

References
[1] M. Ajmone Marsan and G. Chiola. On Petri nets with

deterministic and exponentially distributed firing times.
In G. Rozenberg, editor, Adv. in Petri Nets 1987, Lec-
ture Notes in Computer Science 266, pages 132–145.
Springer-Verlag, 1987.

[2] G. Ciardo. Discrete-time Markovian stochastic Petri
nets. In W. J. Stewart, editor, Numerical Solution of
Markov Chains ’95, pages 339–358, Raleigh, NC, Jan.
1995.

[3] G. Ciardo, A. Blakemore, P. F. J. Chimento, J. K. Mup-
pala, and K. S. Trivedi. Automated generation and
analysis of Markov reward models using Stochastic
Reward Nets. In C. Meyer and R. J. Plemmons, ed-
itors, Linear Algebra, Markov Chains, and Queueing
Models, volume 48 of IMA Volumes in Mathematics
and its Applications, pages 145–191. Springer-Verlag,
1993.

[4] G. Ciardo, R. German, and C. Lindemann. A character-
ization of the stochastic process underlying a stochastic
Petri net. IEEE Trans. Softw. Eng., 20(7):506–515, July
1994.

[5] G. Ciardo and K. S. Trivedi. A decomposition approach
for stochastic reward net models. Perf. Eval., 18(1):37–
59, 1993.

[6] G. Ciardo, K. S. Trivedi, and J. Muppala. SPNP:
stochastic Petri net package. In Proc. 3rd Int. Workshop
on Petri Nets and Performance Models (PNPM’89),
pages 142–151, Kyoto, Japan, Dec. 1989. IEEE Com-
puter Society Press.

[7] K. Jensen. Coloured Petri nets. In Petri Nets: Central
Models and Their Properties LNCS, vol. 254, pages
248–299. Springer-Verlag, 1987.

[8] M. K. Molloy. Discrete time stochastic Petri nets. IEEE
Trans. Softw. Eng., 11(4):417–423, Apr. 1985.

