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ABSTRACT
The primary motivation for enterprises to adopt virtualization tech-
nologies is to create a more agile and dynamic IT infrastructure —
with server consolidation, high resource utilization, the ability to
quickly add and adjust capacity on demand — while lowering to-
tal cost of ownership and responding more effectively to changing
business conditions. However, effective management of virtualized
IT environments introduces new and unique requirements, such as
dynamically resizing and migrating virtual machines (VMs) in re-
sponse to changing application demands. Such capacity manage-
ment methods should work in conjunction with the underlying re-
source management mechanisms. In general, resource multiplexing
and scheduling among virtual machines is poorly understood. CPU
scheduling for virtual machines, for instance, has largely been bor-
rowed from the process scheduling research in operating systems.
However, it is not clear whether a straight-forward port of process
schedulers to VM schedulers would perform just as well. We use the
open source Xen virtual machine monitor to perform a comparative
evaluation of three different CPU schedulers for virtual machines.
We analyze the impact of the choice of scheduler and its parameters
on application performance, and discuss challenges in estimating the
application resource requirements in virtualized environments.

1. INTRODUCTION
Virtualization is emerging as a key mechanism of scaling the IT

infrastructure and enabling enterprises to move from vertical silos of
servers to horizontal pools of resources. Server virtualization pro-
vides the ability to slice larger, underutilized physical servers into
smaller, virtual ones. Although virtualization has been around for
more than three decades, it has found its way into the mainstream
only recently, as a consequence of the recent developments in vir-
tualization software and improved hardware support. A variety of
solutions — both commercial and open source — are now available
for commodity systems.

The motivations for enterprises to adopt virtualization technolo-
gies include increased flexibility, the ability to quickly re-purpose
server capacity to better meet the needs of application workload
owners, and to reduce overall costs of ownership. Virtualization ser-
vices offer interfaces that support the life cycle management (e.g.,
create, destroy, move, size capacity) of VMs that are provided with
access to shares of resource capacity (e.g., cpu, memory, input-output).
Furthermore, some virtualization platforms provide the ability to dy-
namically migrate VMs from one physical machine to another with-
out interrupting application execution. For large enterprises it offers
an ideal solution for server and application consolidation.

Unfortunately, the complexity of these virtualized environments
presents additional management challenges. Garfunkel and Rosen-
blum discussed security challenges in virtualized environments [12].
In this work, we address resource allocation and capacity manage-

ment problems in VM-based environments. In such environments
there are many different workloads, and a finite number can be hosted
by each server. Each workload has capacity requirements that may
frequently change based on business needs. VMs currently provide
ideal fault isolation. In an enterprise environment, however, they
must also provide performance and resource isolation; meaning that
rogue services should not impact the performance of other applica-
tions that share the same infrastructure[14]. Cost effective capacity
management methods are not yet available. Moreover, such capacity
management methods critically depend on the characteristics of the
resource allocation mechanisms of the underlying VM platform.

While our broader premise is that resource allocation for VMs is,
in general, a hard problem, in this paper we focus our attention on
CPU scheduling. As a concrete example of the types of challenges
involved, we analyze and compare the CPU schedulers in the Xen
VMM [6] in the context of traditional workload managers. Work-
load managers [4, 2] and similar tools were, until a few years ago,
known only to mainframers and users of large Unix environments.
These technologies have their own requirements from the underlying
resource management mechanisms (e.g., CPU scheduling of VMs).
Using Xen and its evolution with three different CPU schedulers,
we demonstrate the challenges in choosing the appropriate sched-
uler features and parameters to support desirable application per-
formance, as well as demonstrate the performance impact of these
different choices. We find that, at least for the popular Xen envi-
ronment, much work remains to be done in CPU scheduling before
effective resource isolation guarantees can be delivered in large-scale
deployments.

The rest of this paper is organized as follows: Section 2 intro-
duces some useful concepts and terminology for CPU schedulers;
followed by a brief overview of workload managers that are used
for resource allocation in traditional enterprise environments in Sec-
tion 3. We also discuss the requirements these workload managers
impose on the underlying CPU schedulers. Section 4 introduces the
three CPU schedulers in Xen. Section 5 introduces the I/O model in
Xen and presents some CPU allocation challenges directly related to
this model. Then using a small suite of I/O intensive applications,
we analyze the impact of the choice of scheduler and its parameters
on application performance.

2. CPU SCHEDULERS FOR VIRTUAL MA-
CHINES

Before describing Xen’s CPU schedulers, we first establish some
terminology and classical ways of classifying CPU schedulers. A
large fraction of CPU schedulers belong to a popular class of sched-
ulers called Proportional Share (PS) schedulers. There are com-
pelling reasons to use proportional share (PS) scheduling for CPU
scheduling in VMs. PS scheduling allocates CPU in proportion to
the number of shares (weights) that VMs have been assigned. This



gives end users a very natural way of thinking about CPU alloca-
tions, and scales well to large number of VMs and processors.

Typically, PS schedulers are evaluated based on fairness, i.e., the
time interval over which the scheduler provides fair CPU allocation,
and the allocation error which typically depends on the scheduler
algorithm and its quantum size. An important distinction between
fair-share schedulers and PS schedulers is the time granularity at
which they operate. Proportional share schedulers aim to provide
an instantaneous form of sharing among the active clients according
to their weights. In contrast, fair-share schedulers attempt to provide
a time-averaged form of proportional sharing based on the actual use
measured over long time periods.

For example, consider a simple situation where two clients C1

and C2 share a system with equal CPU shares. Suppose C1 is ac-
tively computing for some time, while C2 is temporarily inactive
(e.g., blocked). When C2 becomes active, a fair-share scheduler will
allocate a large CPU share to C2 to “catch up” with C1. In contrary,
a proportional CPU scheduler will treat C1 and C2 equally because
it is “unfair” to penalize C1 for consuming otherwise idle resources.

CPU schedulers can be further distinguished as supporting work-
conserving (WC-mode) and/or non work-conserving (NWC-mode)
modes. In the WC-mode, the shares are merely guarantees, and the
CPU is idle if and only if there is no runnable client. It means that in
a case of two clients with equal weights and a situation when one of
these clients is blocked, the other client can consume the entire CPU.
With the NWC-mode, the shares are caps, i.e., each client owns its
fraction of the CPU. It means that in a case of two clients with equal
weights, each client will get up to 50% of CPU, but the client will
not be able to get more than 50% even if the rest of the CPU is idle.

We also distinguish preemptive and non-preemptive CPU sched-
ulers. Preemptive schedulers rerun the scheduling decision when-
ever a new client becomes ready. If the new client has “priority”
over the running client, the CPU preempts the running client and
executes the new client. Non-preemptive schedulers only make de-
cisions when the running client gives up the CPU. Non-preemptive
schedulers allow every running client to finish its CPU slice. Having
a preemptive scheduler is important for achieving good performance
of I/O intensive workloads in shared environment. These workloads
are often blocked waiting for I/O events, and their performance could
suffer when competing with CPU intensive jobs if the CPU sched-
uler is non-preemptive. However, choosing a right quantum size may
alleviate this problem.

3. WORKLOAD MANAGERS
A core requirement for effective virtualization is workload man-

agement, i.e., the ability to assign resources such as CPU, memory,
and I/O to applications as precisely as possible. Workload manage-
ment enables applications to provide service levels based on policies
driven by time, price, and performance.

One simple approach for assigning CPU resources to VMs is static
allocation. However, static allocation becomes inefficient under vary-
ing load: each VM must be sized to support the application’s peak
capacity requirements. Yet, most applications rarely need their peak
amount. Workload managers aim to dynamically allocate resources
to match application requirements.

A workload manager 1 is typically layered upon a PS scheduler
used in the NWC-mode. This mode provides performance isolation
among competing services. Each VM receives its particular service
rate regardless of whether any of the other VMs are using resources.

1While the authors are closely familiar with HP workload manage-
ment products and refer to features and parameters related to HP’s
products (such as NWC-mode, usage-based management policy, and
small allocation error), IBM’s workload managers have similar char-
acteristics as well.

Such isolation can be desirable in a shared environment for enter-
prise applications as it gives the appearance of dedicated access to
resources. Adding new workloads to the pool (if available resources
allow) has little impact on the performance behavior of workloads
already in the pool.

Each virtual machine is pre-allocated specific shares of capacity
for short time periods (e.g. 5 seconds). Then, based on the demands
of the VM and the availability of resources, the allocations may be
adjusted to ensure that each VM gets the capacity it needs. Since the
decision of the workload manager controller is based on a difference
between assigned and consumed CPU allocation, a scheduler with
significant error in CPU allocation may cause unstable controller be-
havior. Thus, a prerequisite of the underlying CPU scheduler is a
small allocation error (typically, 1–2%).

4. CPU SCHEDULERS IN XEN
Xen is unique among VM platforms because it allows users to

choose among different CPU schedulers. But this choice comes with
the burden of choosing the right scheduler and configuring it. Over
the course of last three years, three different CPU schedulers were
introduced, all allowing users to specify CPU allocation via CPU
shares (weights). Below, we briefly characterize their main features
that motivated their inclusion in Xen at the time.

Borrowed Virtual Time (BVT) [9] is a fair-share scheduler based
on the concept of virtual time, dispatching the runnable VM with the
smallest virtual time first. Additionally, BVT provides low-latency
support for real-time and interactive applications by allowing latency-
sensitive clients to “warp” back in virtual time to gain scheduling
priority. The client effectively “borrows” virtual time from its future
CPU allocation.

The scheduler accounts for running time in terms of a minimum
charging unit (mcu), typically the frequency of clock interrupts. The
scheduler is configured with a context switch allowance C, which
is the real time by which the current VM is allowed to advance be-
yond another runnable VM with equal claim on the CPU ( the basic
time slice or time quantum of the algorithm). C is typically some
multiple of mcu. Each runnable domain 2 receives a share of CPU
in proportion to its weight weighti. To achieve this, the virtual time
of the currently running Domi is incremented by its running time
divided by weighti.

In summary, BVT has the following features:

• preemptive (if warp is used), WC-mode only;
• optimally-fair: the error between fair share and actual alloca-

tion is never greater than context switch allowance C plus one
mcu ;

• low-overhead implementation on multiprocessors as well as
uni-processors.

The lack of NWC-mode in BVT severely limited its usage in a num-
ber of environments, and led to the introduction of the next scheduler
in Xen.

Simple Earliest Deadline First (SEDF) [20] uses real-time algo-
rithms to deliver guarantees. Each domain Domi specifies its CPU
requirements with a tuple (si, pi, xi), where the slice si and the pe-
riod pi together represent the CPU share that Domi requests: Domi

will receive at least si units of time in each period of length pi. The
boolean flag xi indicates whether Domi is eligible to receive ex-
tra CPU time (WC-mode). SEDF distributes this slack time fairly
manner after all runnable domains receive their CPU share. One can
allocate 30% CPU to a domain by assigning either (3 ms, 10 ms, 0)
or (30 ms, 100 ms, 0). The time granularity in the definition of the
period impacts scheduler fairness.

2We use words domain and virtual machine interchangeably.



(a) Initial I/O Model (b) Current I/O Model in Xen

Figure 1: Two popular I/O models for VMs.

For each domain Domi, the scheduler tracks two additional val-
ues (di, ri):

• di - time at which Domi’s current period ends, also called
the deadline. The runnable domain with earliest deadline is
picked to be scheduled next;

• ri - remaining CPU time of Domi in the current period.

In summary, SEDF has the following features:

• preemptive, WC and NWC modes;
• fairness depends on a value of the period.
• implements per CPU queue: this implementation lacks global

load balancing on multiprocessors.

Credit Scheduler [1] is Xen’s latest PS scheduler featuring auto-
matic load balancing of virtual CPUs across physical CPUs on an
SMP host. Before a CPU goes idle, it will consider other CPUs in
order to find any runnable VCPU. This approach guarantees that no
CPU idles when there is runnable work in the system.

Each VM is assigned a weight and a cap. If the cap is 0, then
the VM can receive any extra CPU (WC-mode). A non-zero cap
(expressed as a percentage) limits the amount of CPU a VM receives
(NWC-mode). The Credit scheduler uses 30 ms time slices for CPU
allocation. A VM (VCPU) receives 30 ms before being preempted
to run another VM. Once every 30 ms, the priorities (credits) of all
runnable VMs are recalculated. The scheduler monitors resource
usage every 10 ms. To some degree, Credit’s computation of credits
resembles virtual time computation in BVT. However, BVT has a
context switch allowance C for defining a different size of the basic
time slice (time quantum), and an additional low-latency support (via
warp) for real-time applications.

In summary, Credit has the following features:

• non-preemptive, WC and NWC modes;
• global load balancing on multiprocessors.

In the next section, we present results of a performance study com-
paring these schedulers and their features in more detail.

5. CASE STUDY
There are two popular I/O models for VMs, as demonstrated in the

evolution of the I/O architecture of Xen. In its original design [6],
the Xen VMM itself contained device driver code and provided safe,
shared access for I/O hardware (see Figure 1 a). Later, the Xen
team proposed a new architecture [11] that allows unmodified de-
vice drivers to be hosted and executed in isolated “driver domains”
(see Figure 1 b). Typically, the management domain Dom0 hosts
unmodified Linux device drivers and plays the role of the driver do-
main. This new I/O model results in a more complex CPU usage

model. For I/O intensive applications, CPU usage has two compo-
nents: CPU consumed by the guest virtual machine (VM) and CPU
consumed by Dom0 which hosts the device drivers and performs
I/O processing on behalf of the guest domain.

Finding a satisfactory solution to the CPU allocation problem for
applications executing in VMs requires answering several questions.
How does one estimate the application CPU requirements and project
them into two components: Dom0 and guest domain’s shares? How
sensitive are I/O intensive applications to the amount of CPU allo-
cated to Dom0? Does allocation of a higher CPU share to Dom0

mean a better performance for I/O intensive applications? How sig-
nificant is the impact of scheduler parameters on application perfor-
mance, e.g., context switch allowance C in BVT and period Pi in
SEDF?

Further, additional functionality was the main motivation behind
introducing new Xen schedulers. For example, SEDF added the
NWC-mode missing in BVT, and Credit added automatic, transparent
global load balancing of VCPUs, missing in both BVT and SEDF.
To the best of our knowledge, a thorough comparative performance
evaluation of the different schedulers does not exist, so it is not im-
mediately clear if configuring different schedulers with the same
CPU allocation would result in similar application performance. While
scheduling of virtual machines might rely on the CPU schedulers
proposed for process scheduling in general purpose OSes, the pa-
rameter setting and scheduler tuning can be different for VMs.

Our performance study aims to answer some of these questions.
We performed experiments with three applications:

• web server: We measure web server throughput. In our work-
load, we request fixed size (10 KB) files 3 using httperf [3].

• iperf: We measure maximum achievable network throughput
using iperf [5].

• disk read: Finally, we benchmark disk read throughput with
the dd utility for reading 1000 1-KB blocks.

Note our choice of simple, focused benchmarks (instead of extensive
suites like the SPEC benchmarks) for two reasons: first, if we are
able to demonstrate scheduling issues even with these benchmarks,
then one can conclude that the problems would be just as visible,
if not worse, in more complex setups; second, these benchmarks
are much more predictable and easier to debug than more extensive
benchmarking suites.

Our testbed consists of dual CPU HP workstations LP200R, with
1-GHz PIII processors, 2-GB RAM and 1-Gbit/s NICs running Xen

3We had limited our study to a web server with 10 KB files. We
refer a reader to the earlier case study [7] where the CPU overhead
in Dom0 is measured for different file sizes retrieved from a web
server.



3.0.3. In this work, we first present the results for single CPU con-
figurations to separate comparison of the basic CPU scheduler prop-
erties from the load balancing issues for SMP configurations. We
will present results for SMP-configuration in Section 5.3.

We consider 5 different configurations where we varied the CPU
allocated to Dom0 relative to Dom1, e.g., in Conf 0.25, Dom0 is
allocated 0.25 of the CPU allocated to Dom1.

5.1 Impact of Different Scheduler Parameters
and Dom0 Weight

In this section, we aim to answer the following questions:

• How sensitive are I/O intensive applications to the amount of
CPU allocated to Dom0? Does allocation of a higher CPU
share to Dom0 mean a better performance for I/O intensive
applications?

• How significant is the impact of scheduler parameters on ap-
plication performance, e.g., context switch allowance C in
BVT and period Pi in SEDF?

Figure 2(a) shows web server throughput for BVT with context al-
lowance C set to 1 ms, 5 ms, and 50 ms. The X-axis presents the
results of experiments for 5 different configurations where the CPU
weights allocated to Dom0 relative to Dom1 are 0.25, 0.5, 1, 2,
and 4.

We first note that the web server throughput is quite sensitive to
Dom0 weight for all three schedulers. Second, BVT with larger
values for C supports higher web server throughput. The difference
in performance is significant: when Dom0 and Dom1 have equal
weights (Conf 1) web server throughput with context allowance C =
50 ms is 85% higher than for C = 1 ms. With a larger context al-
lowance, the currently running domain executes longer before it is
preempted by another runnable domain. When Dom0 is assigned
a higher weight, it gets a higher priority when it unblocks. Intu-
itively, it leads to a situation where Dom0 preempts the running
guest domain on each incoming interrupt and ends up processing
fewer I/O events per execution period at a higher cost (due to con-
text switch overhead). Increasing C alleviates this problem because
it lets the guest VM execute slightly longer before being preempted
by Dom0, and as a result, Dom0 can more efficiently process mul-
tiple I/O events accumulated over time.

Figures 2(b) and 2(c) show web server throughput for SEDF in
WC and NWC-mode respectively with different granularity for peri-
ods Pi of 10 ms, 100 ms, and 1000 ms. SEDF with a smaller time
period makes a fair share allocation at smaller time granularity, while
with a larger time period the algorithm may result in “burstier” CPU
allocation. When Dom0 and Dom1 have equal weights (Conf 1)
SEDF scheduler in WC-mode with 10 ms period supports almost
40% higher web server throughput compared to 1000 ms period
(50% throughput improvement in the NWC-mode).

To obtain additional system performance metrics and to gain some
insight into the schedulers’ behavior we analyzed monitoring results
from XenMon [15] that reports resource usage of different domains
and some scheduling information such as how often a domain has
been scheduled, its average waiting time for CPU allocation (i.e.,
being in the run queue), etc.

Figures 3 and 4 show CPU usage by Dom0 and Dom1 for web
server experiments reported in Figure 2.

First, we see that Dom0 (which performs I/O processing on behalf
of the guest domains) consumes a significant share of CPU. Second,
while the Dom0 weight varies across a significant range (from 0.5
to 4 relative to Dom1 weight) the CPU usage by Dom0 varies in
a rather limited range between 33% to 45% for BVT and SEDF in
WC-mode. Third, the limited variation in CPU usage might lead to a
drastic difference in application performance.

Since we observe the most significant difference in web server
performance under BVT and SEDF schedulers with different pa-
rameters for the configuration where Dom0 and Dom1 have equal
weights (Conf 1), we first analyze and compare resource usage by
Dom0 and Dom1 in this configuration. The results are shown in
Table 1 below.

CPU Scheduler Type Dom0 Dom1 Tput
Util (%) Util (%) req/sec

BVT, context allow.= 50 ms 35 64 934
BVT, context allow.= 5 ms 38 61 817
BVT, context allow.= 1 ms 43 56 510
SEDF, wc, period=10 ms 35 59 696
SEDF, wc, period=100 ms 41 59 632
SEDF, wc, period=1000 ms 43 53 499
SEDF, nwc, period=10 ms 27 50 615
SEDF, nwc, period=100 ms 35 50 504
SEDF, nwc, period=1000 ms 40 50 419

Table 1: CPU usage by Dom0 and Dom1 and web server
throughput.

Table 1 shows that different scheduler parameters such as de-
creased context switch allowance C in BVT and increased period
in SEDF lead to a relatively small increase in CPU usage by Dom0

while causing a drastic change in the application performance. In
case of WC-mode, one can say that, additionally, there is also a small
decrease in CPU usage by Dom1, and this smaller CPU allocation
to the application can explain worse web server performance and its
lower throughput.

However, in the case of SEDF in NWC-mode, it is not true. For
all the three values of period (10 ms, 100 ms, and 1000 ms) the CPU
usage by Dom1 is the same: it is at its maximum value of 50% (note
that in NWC-mode, when Dom0 and Dom1 have equal weights they
are entitled to the maximum of 50% CPU usage).

As for CPU usage by Dom0, we observe that with larger time
periods, SEDF allocates higher CPU share to Dom0. For example, a
period of 10 ms results in 27% of CPU allocation to Dom0, and with
period of 1000 ms, the CPU allocation to Dom0 is increased to 40%,
while in contrast, web server throughput, drops from 615 req/sec to
419 req/sec, causing the 33% decrease in web server throughput.

At first glance, the lower web server throughput achieved by the
configuration with higher CPU share to Dom0 seems like a contra-
diction. To clarify and explain this phenomenon, we analyze some
additional, low level scheduling and system metrics. XenMon re-
ports an execution count metric that reflects how often a domain has
been scheduled on a CPU during the measurement period (e.g., 1
second). XenMon also provides I/O count metric that is a rough
measure of I/O requested by the domain.

Table 2 below shows the number of execution periods per second
and the I/O count per execution period for BVT and SEDF as dis-
cussed above and the configuration with Dom0 and Dom1 having
equal weights (Conf 1).

CPU Scheduler Type ex/sec i/o count/ex
BVT, context allow.= 50 ms 1127 27.3
BVT, context allow.= 5 ms 3080 8.6
BVT, context allow.= 1 ms 6409 2.6
SEDF, wc, period=10 ms 2478 6.9
SEDF, wc, period=100 ms 5124 3
SEDF, wc, period=1000 ms 6859 1.9
SEDF, nwc, period=10 ms 451 34.6
SEDF, nwc, period=100 ms 4635 2.8
SEDF, nwc, period=1000 ms 7292 1.5

Table 2: The number of execution periods per second of Dom0

and I/O count per execution period in Dom0.
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Figure 2: Impact of schedulers’ parameters on web server performance
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Figure 3: Dom0’s CPU usage under different schedulers’ parameters
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Figure 4: Dom1’s CPU usage under different schedulers’ parameters
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Figure 5: Evaluating the three schedulers (WC-mode) for different workloads.
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Figure 6: Evaluating the three schedulers (NWC-mode) for different workloads.

Indeed, in case of a smaller context switch allowance C in BVT
or a larger time period in SEDF, both schedulers exhibit a simi-
lar behavior: they schedule Dom0 much more often (see the in-
creased number of execution periods). However, frequently sched-
uled Dom0 is processing fewer I/O events that are accumulated in
between the Dom0 execution periods. This type of scheduling leads
to a higher context switch overhead and to a worse web server per-
formance. In such a way, while the observed CPU usage by Dom0

is higher, in fact, it performs less useful work which manifests itself
as degraded application performance.

Figures 5 and 6 show the performance of the three workloads for
the three schedulers in the WC and NWC modes respectively. For
brevity, we omit detailed analysis of these experiments and summa-
rize below:

• I/O intensive applications are highly sensitive to the amount of
CPU allocated to Dom0. The problem of adequate CPU allo-
cation to Dom0 and efficient CPU scheduling becomes even
harder when multiple VMs with diverse set of applications are
competing for I/O processing in Dom0;

• Application performance varies significantly under different
schedulers even when the schedulers are configured with the
same CPU allocation shares;

• Application performance is significantly worse under NWC-
mode when compared to WC-mode (when using similar shares).
NWC-mode is an operational requirement for workload man-
agers (it is used to support performance isolation and to deliver
resource guarantees between applications). Optimizing CPU
schedulers to support a more efficient CPU allocation under
NWC-mode is an often overlooked problem.

Thus, the choice of the CPU scheduler and its configuration can sig-
nificantly impact application performance despite supporting simi-
lar resource allocation models. In an environment where different

servers may potentially run different CPU schedulers with varying
configurations, the job of the workload manager becomes even more
complex: migrating a VM to a different node with more resources
does not necessarily result in better application performance. Hence,
one interesting open question is whether virtualization environments
must employ a single CPU scheduler with fixed parameters to suc-
cessfully manage heterogeneous workloads.

5.2 Scheduler CPU Allocation Accuracy
A traditional metric used in scheduler’s analysis and comparison

is the error of CPU allocation.
This metric is also important in practice as we discussed in Sec-

tion 3. Since the decision of workload manager’s controller is based
on a difference between assigned and consumed CPU allocation, a
scheduler with significant error in CPU allocation may cause unsta-
ble controller behavior and as a corollary, lead to a poor application
performance.

To evaluate the CPU allocation error in NWC-mode for SEDF and
Credit schedulers, we designed a simple benchmark, called ALERT
(ALlocation ERror Test):

• Dom0 is allocated a fixed, 6% CPU share during the all bench-
mark experiments; it is more than sufficient to run XenMon
monitoring tool;

• the guest domain Dom1 executes a cpu-hungry loop;
• for each benchmark point i the CPU allocation to Dom1 is

fixed to Ai, and each experiment i continues for 3 min;
• the experiments are performed with Ai = 1%, 2%, 3%, ...,

10%, 20%, ... , 90%.

Note that under this benchmark there are no any contention for re-
sources, i.e., there are always enough CPU resources for Dom1 to
receive its CPU share. ALERT is truly the simplest test to verify
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Figure 7: Benchmarking with ALERT: CPU allocation error under SEDF versus Credit schedulers in Xen.

the accuracy of a scheduling algorithm. While it does not guarantee
the same CPU allocation accuracy when there are competing VM’s,
one can easily extend ALERT to test the CPU allocation error for
multiple VMs, as well as for a case with multiple VCPUs per VM.

Let Uk
i denote CPU usage of Dom1 measured during the k-th

time interval in benchmark experiment i, e.g., we sample CPU usage
of Dom1 at the second time scale in the ALERT experiments.

If a CPU scheduler works accurately we should see that for X%
of CPU allocation to Dom1 it should consume X % of CPU, i.e.,
ideally, Uk

i = Ai for any k-th time interval in benchmark experi-
ment i.

Let Erk
i denote a normalized relative error of CPU allocation

defined as follows:

Erk
i = (Ai − Uk

i )/Ai

We execute ALERT benchmark under SEDF and Credit sched-
ulers in Xen. The Credit scheduler uses 30 ms as a time slice for
CPU allocation as described in Section 4. To match the CPU alloca-
tion time granularity we use 10 ms period in SEDF in our compari-
son experiments.

Figures 7 a) and b) show the normalized relative errors of CPU al-
location with ALERT for SEDF and Credit schedulers respectively
at one second time granularity, i.e., we compare the CPU usage Uk

i

of Dom1 measured at each second during experiment i with the as-
signed CPU allocation value Ai. X-axes represent the targeted CPU
allocation, Y-axes show the normalized relative error.

Each experiment is represented by 180 measurements (3 min =
180 sec); thus, each “stack” in Figures 7 a) and b) has 180 points
and the stack’s density reflects the error distribution. As Figure 7 a)
shows the CPU allocation errors under SEDF are consistent and rel-
atively small across all of the tested CPU allocation values. The
Credit scheduler has overall much higher allocation error as shown
in Figure 7 b). The errors are especially high for smaller CPU allo-
cation targets, i.e., below 30%. 4

Figure 8 presents the distribution of all the errors measured during
the ALERT’s experiments for SEDF and Credit respectively. We plot
the normalized relative errors measured at 1 second time scale for
all the performed experiments in ALERT (18 × 180 = 3240 data
points). It is a special version of the CDF (cumulative distribution
function), where we plot the CDF of the negative errors (with errors
ordered in decreasing order) normalized with respect to all the errors,

4We had to limit the shown error in Figure 7 b) to the range of
[−50%, 100%] for visibility: the actual range of the observed errors
is [−100%, 370%].

as well as the complementary CDF of positive errors (with errors
ordered in increasing order). We call it CDF+

− .
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Figure 8: CDF+
− of CPU allocation errors.

Figure 8 presents CDF+
− of both positive and negative errors

with respect to all the errors. This way, we can see that the Credit
scheduler is over-allocating the CPU share more often than under-
allocating, while for SEDF the under-allocation is a more typical
error. As apparent from Figure 8 the Credit scheduler has a much
higher CPU allocation error compared to SEDF scheduler:

• for Credit, 10% of the points have the negative errors worse
than -9.9% while for SEDF only 0.03% of points have the er-
ror in this range;

• for Credit, 10% of the points have the positive errors larger
than 36.3%, while for SEDF there are no error in this range:
the maximum positive error is 9.52%.

Figure 9 shows the normalized relative errors of CPU allocation at
three minute time scale, i.e., we compare the targeted CPU allocation
with average CPU utilization measured at the end of each ALERT
experiment (each experiment runs for 3 min).

Overall, SEDF and Credit show comparable CPU allocation aver-
ages over longer time scale. However, the Credit scheduler’s errors
are still significantly higher than SEDF’s errors for CPU allocation
in the range [1%, 30%] as shown in Figure 9.
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Since many advanced management tools like workload manager
controllers (see Section 3) rely and depend on accurate CPU alloca-
tion at a fine time granularity, it is important to optimize the CPU
scheduler behavior and minimize the allocation error, as well as to
augment the provided CPU schedulers with measured allocation er-
ror results.

5.3 SMP Case
To efficiently use CPU resources in the SMP configuration a spe-

cial support is required from the underlying CPU scheduler. Typi-
cally, a virtual machine can be assigned multiple virtual CPUs (VC-
PUs) and an application with multiple processes or threads can have
significant performance improvements when multiple VCPUs are
executed on different physical CPUs. To further improve the CPU
usage efficiency in the SMP configuration, the CPU scheduler might
implement a global load balancing functionality that quickly reas-
signs VCPUs among available physical CPUs. Both BVT and SEDF
schedulers do not support global load balancing. It limits their CPU
usage efficiency and somewhat might mislead the intended resource
allocation. Let us consider the 2-CPU machine. By assigning equal
weights and a single VCPU to each of the three VMs, one would
expect to get around 66.6% of CPU allocation per VM (200% / 3 =
66.6%). However, this is only achievable when the CPU scheduler
implements global load balancing that dynamically balances VCPUs
among the physical CPUs. For example, the Credit scheduler in Xen
is equipped with global load balancing functionality, it support the
expected behavior and provides the expected resource allocation. As
for BVT and SEDF, they assign one VCPU to the CPU 1 and the re-
maining two VCPUs to the CPU 2, in random order, unless the user
additionally specifies some affinity rules for VCPUs. Thus, if for ex-
ample, VCPU 1 was assigned to CPU 1, and VCPU 2 and VCPU 3
are assigned to CPU 2, then under the original equal weight condi-
tion, VCPU 1 receives 100% of CPU 1 capacity, while VCPU 2 and
VCPU 3 share CPU 2 and each VM receives around 50% of CPU 2
capacity.

In this section, we analyze how the additional load balancing ca-
pabilities in the Xen CPU schedulers impact their accuracy and the
application behavior. Our testbed consists of dual CPU HP worksta-
tions LP200R.

Figures 10 a) and b) show web server throughput for BVT, SEDF
and Credit for a dual CPU machine, where both Dom0 and Dom1

are assigned 2 VCPUs (VCPU stands for virtual CPU). Since the
web server application (Apache 2) uses multiple processes for pro-
cessing different requests, it should be able to benefit of increased
capacity of 2-CPU machine and 2 VCPUs assigned to this applica-

tion. Similarly to a 1-CPU case study, we designed 5 different con-
figurations, where we varied the CPU allocated to Dom0 relative
to Dom1, e.g., in Conf 0.25, Dom0 is allocated 0.25 of the CPU
allocated to Dom1.

Figure 10 a) shows web server throughput for BVT, SEDF and
Credit schedulers under WC-mode. Similarly to 1-CPU case, we can
observe

• a high sensitivity of application performance to the amount of
CPU allocated to Dom0;

• a significant difference in web server throughput under dif-
ferent schedulers, especially, for a configuration when Dom0

and Dom1 have equal weights.

If we compare web server maximum throughput achieved for 1-CPU
machine and 2-CPU machine (i.e., with doubled CPU capacity), then
performance improvements are lower when one would expect. For
BVT, the web server throughput increases by 45%, for SEDF it in-
creases by 30%, and for Credit it increases by 24%. In these ex-
periments, we are not limited by network bandwidth, therefore these
numbers indicate some inefficiency in the underlying resource allo-
cation.

Figure 10 b) shows web server throughput for the SEDF and Credit
schedulers under NWC-mode. While maximum web server through-
put achieved for SEDF is still higher than for Credit, the marginal
improvement with Credit is higher than with SEDF when compared
to the single CPU case: there is 42% improvement under Credit,
while only 15% improvement under SEDF.

Figure 10 c) presents the results of a simple scaling exercise. X-
axes show the number of VMs created on the system: each VM is
configured with 2 VCPUs, it runs a web server, and all the domains,
including Dom0, are assigned equal weights under WC-mode. The
httperf tool has a matching number of instances: each one issues the
same workload rate to the corresponding web server. Figure 10 c) re-
ports the maximum overall (combined) web server throughput deliv-
ered by one VM, two VMs, three VMs, and four VMs respectively.
We speculated that with multiple domains the overall throughput
might be higher because multiple domains might better utilize the
CPU capacity in the SMP configuration. While all the three sched-
ulers show 10% drop in web server throughput when switching from
one guest domain to two guest domains, the Credit scheduler shows
an improved throughput for the three and four guest domains (due to
its global load balancing capabilities); while BVT and SEDF sched-
ulers show “flat” web server throughput for the increased number of
guest domains.

We omit graphs showing iperf and disk read performance because
they are very similar to the results presented in Section 5.1, with only
a small increase in throughput.

In Section 5.2, we designed the ALERT benchmark for evaluat-
ing the CPU allocation error in 1-CPU configuration. As we noted
earlier, the Credit scheduler is capable of doing transparent load bal-
ancing across multiple CPUs. We therefore evaluate it on a dual
CPU system to quantify the CPU allocation error. By understanding
the CPU allocation errors in a single CPU case and SMP configura-
tion, one can make an intelligent choice on VM management policy
design.

Figure 11 a) presents CDF+
− o the CPU allocation error for three

domains each running a cpu-hungry loop, and each one is allocated
66% of CPU in 2-CPU configuration. We use Dom0, Dom1, and
Dom2 in these experiments. Each experiment is performed for 10
min, and the CPU allocation error is reported at 1 second granularity.

The CPU allocation error introduced by the global load balanc-
ing schema is relatively high when observed at a fine time granu-
larity. Since the decision of workload manager’s controller is based
on a difference between assigned and consumed CPU allocation, the



 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 0  0.5  1  1.5  2  2.5  3  3.5  4

T
hr

ou
gh

pu
t (

re
q/

se
c)

Dom0 Weight relative to Dom1 Weight

Web Server, SMP 

SEDF
CREDIT

BVT

(a) Web server, WC-mode

 300

 400

 500

 600

 700

 800

 900

 1000

 0  0.5  1  1.5  2  2.5  3  3.5  4

T
hr

ou
gh

pu
t (

re
q/

se
c)

Dom0 Weight relative to Dom1 Weight

Web Server, SMP 

SEDF
CREDIT

(b) Web server, NWC-mode

 800

 900

 1000

 1100

 1200

 1300

 1400

 1  2  3  4

O
ve

ra
ll 

S
ys

te
m

 T
hr

ou
gh

pu
t (

re
q/

se
c)

Number of VMs

Web Server, SMP 

SEDF
CREDIT

BVT

(c) Web server, WC-mode, 1 to 4 VMs.

Figure 10: Web Server Performance under Different Schedulers in Xen (SMP case).
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management solution may be tuned to use for stability a coarser time
granularity where the CPU allocation exhibits a higher accuracy.

6. RELATED WORK
Conventional operating systems typically employ a simple notion

of priority for process scheduling. A task with a higher priority is
scheduled prior to a task with a lower priority. Priorities may be
static or they can be dynamically recalculated. While there are many
sophisticated priority schemas, the meaning of the assigned process
priorities is not intuitive and often the performance characteristics of
such schedulers are difficult to understand [8]. For example, decay
usage scheduling [16] is a priority and usage based mechanism for
CPU scheduling employed by BSD [19] Unix and a few other op-
erating systems. Decay usage scheduling is motivated by two con-
cerns: fairness and performance. Fairness is achieved by allocating
the CPU slice to processes that have received fewer slices in the re-
cent past. In such a way, the I/O-bound process will be dispatched
to receive CPU before the compute-bounded processes, which im-
proves throughput by overlapping CPU and disk/network activities.

While decay usage and other priority schedulers can provide fair-
ness and performance, achieving service rate objectives or quantita-
tive objectives for CPU consumption, for example to ensure that a
particular application receives 50% of the CPU usage, remains dif-
ficult. To overcome this shortcoming, different scheduling mecha-
nisms were introduced, for example, fair-share schedulers [10, 17,
18]. The fair-share schedulers were introduced to provide propor-

tional sharing among processes and users in a way compatible with
a UNIX-style time sharing framework. Each client has a priority
which is adjusted as it executes. The fair-share scheduler will pro-
vide proportional-share among the clients by adjusting the priorities
of clients in the appropriate way. However, the algorithms used by
these systems are complex, requiring periodic usage updates, com-
plicated dynamic priority adjustment and correct parameter setting to
ensure fairness at a time scale of minutes. Empirical measurements
show that most fair-share schedulers provide reasonable proportional
fairness over relatively large time intervals [10]. It is almost certainly
the case that the CPU allocation errors can be very high.

Lottery scheduling [24] provides a more disciplined proportional
sharing approach than fair-share schedulers. Each client receives a
number of tickets proportional to its share. A lottery scheduler then
randomly picks a ticket and schedules the client that owns this ticket
to receive a CPU slice.

Several previous systems [24, 13, 23, 21] use the same virtual time
basis as BVT [9] for measuring and controlling long-term sharing of
the CPU. However, most do not provide control over low-latency
dispatch, but some of them that have such a control do introduce
extra mechanisms such as deadlines.

In a deadline-based scheduling system, such as Atropos [20], the
processes declare future CPU needs to the system: the process can
express a required CPU reservation and CPU needs per time period.
Thus the scheduler uses real time-algorithms to ensure time guaran-
tees. The problem of scheduling periodic tasks with hard deadlines
was well researched in the literature for real-time applications.

The literature contains a variety of techniques for scheduling pro-
cesses and tasks. However, resource multiplexing and scheduling
among virtual machines is not well understood. Additional com-
plexity in scheduling and CPU allocation of virtual machines is in-
troduced by a variety of I/O models used by different virtualization
platforms. We use the open source Xen virtual machine monitor to
perform a comparative evaluation of three different CPU schedulers
for virtual machines and analyze the impact of the CPU scheduler
and resource allocation on application performance.

7. CONCLUSION
In this work, we analyze and compare three proportional-share

CPU schedulers for virtual machines. We present a sensitivity study
showing how both the CPU scheduling algorithm and the scheduler
parameters can drastically impact the performance of I/O intensive
applications running on virtual machines. To demonstrate perfor-
mance sensitivity, we use three relatively simple system benchmarks
that approximate disk and network intensive workloads, and inter-



rupt driven applications like a web server. We also introduce a sim-
ple benchmark, called ALERT, for measuring the CPU allocation
errors in these schedulers. In the process, we hope to have motivated
the larger problem: resource allocation among VMs is poorly un-
derstood, and we have taken a first step towards understanding CPU
scheduling issues in this paper.

As VM technologies evolve, their I/O model will certainly un-
dergo some changes. However, it is unlikely that resource allocation
problems (such as those described in this paper) will disappear any-
time soon. For instance, for fully virtualized guests, Xen employs a
per-VM user space process running in Domain-0 to perform I/O em-
ulation. Since Domain-0 is indirectly involved in servicing I/O for
the VMs, resource allocation for Domain-0 and its impact on VM
performance remains an issue.

In fact, Domain-0’s involvement is not a prerequisite to these prob-
lems. The deeper issue is the impact of cross-system interactions on
application performance in VMs. Consider that Xen is considering
moving the I/O emulation from Dom0 into per-VM “stub domains”
[22]. While this might alleviate some of the problems found in our
work (for instance, resource accounting will become easier), we still
need to understand resource contention between stub domains and
its impact on performance. The scheduler allocation inaccuracies
noted in this paper would also continue to be an issue.

Similarly, virtualization-aware I/O devices (with multiplexing ca-
pabilities in hardware) will ease the problem somewhat, however the
CPU might still remain on the critical path for most I/O operations.
It is conceivable, however, that a combination of better I/O hard-
ware and multi-core processors will alleviate the problem in the case
where the number of available cores exceeds the inherent parallelism
in the workload.

Thus far, all our experiments have focused on one particular vir-
tualization platform: Xen. Our motivation for using Xen, among
others, was source code availability and the freedom to modify it.
However, we stress that as long as the I/O model involves services
being provided by an entity external to the VM, resource allocation
problems will remain. The only difference is that, in the case of Xen
(where we have a split device driver model and a choice of CPU
schedulers), the problems are exposed to the end user whereas in
platforms where the device drivers are in the hypervisor and there is
no choice in CPU schedulers, the end user is not directly concerned
with these issues. However, the developers of the hypervisor will
most certainly need to address the problem of allocating resources to
the hypervisor for providing services, while making decisions on the
choice of scheduler and scheduler parameters.

At first glance, it may seem that the choice of VM scheduler and
parameter configuration is not relevant to most users because they
are often shielded from such decisions. However, our experience
suggests that “reasonable defaults” (e.g., equal weights that are typi-
cally used in WC-mode) are not very useful beyond toy experiments.
For any serious VM deployment, the platform will need to give users
control over the scheduling parameters and provide flexible mecha-
nisms that allow a wide variety of resource allocation policies. Our
experiences with Xen’s CPU schedulers suggests that our under-
standing of VM resource allocation issues is far from complete, and
opens several interesting avenues for future research.
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