
Applying Syntactic Similarity Algorithms for Enterprise
Information Management

Ludmila Cherkasova, Kave Eshghi, Charles B. Morrey III, Joseph Tucek, Alistair Veitch
Hewlett-Packard Labs

1501 Page Mill Rd,Palo Alto, CA 94304, USA
email: {lucy.cherkasova, kave.eshghi, brad.morrey, joseph.tucek, alistair.veitch}@hp.com

ABSTRACT
For implementing content management solutions and en-
abling new applications associated with data retention, reg-
ulatory compliance, and litigation issues, enterprises need to
develop advanced analytics to uncover relationships among
the documents, e.g., content similarity, provenance, and clus-
tering. In this paper, we evaluate the performance of four
syntactic similarity algorithms. Three algorithms are based
on Broder’s “shingling” technique while the fourth algorithm
employs a more recent approach, “content-based chunking”.
For our experiments, we use a specially designed corpus of
documents that includes a set of “similar” documents with a
controlled number of modifications. Our performance study
reveals that the similarity metric of all four algorithms is
highly sensitive to settings of the algorithms’ parameters:
sliding window size and fingerprint sampling frequency. We
identify a useful range of these parameters for achieving good
practical results, and compare the performance of the four
algorithms in a controlled environment. We validate our re-
sults by applying these algorithms to finding near-duplicates
in two large collections of HP technical support documents.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.4 [Systems and Software]:
Performance evaluation (efficiency and effectiveness)

General Terms
Algorithms, Documentation, Management, Performance

Keywords
Syntactic similarity, document management, performance.

1. INTRODUCTION
The explosion of electronic documents, along with new

regulations and new trends in litigation discovery, require
enterprises to rethink their information management strate-
gies. Managing the enterprise’s unstructured information
presents many challenges. There is increasing pressure to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-564-2/09/06 ...$5.00.

provide greater visibility into enterprise information for en-
abling different new applications, e.g., e-discovery or de-
creasing corporate risk from regulatory non-compliance. In
particular, when compliance rules say you can (have to)
delete some files, how do you identify all the users who
might have a copy of these files? Often, this problem is
further complicated due to the possibility that there could
be many different versions of the same files (earlier or later
drafts, edits of the final documents) and the same files could
be (slightly) modified/altered/edited by the users over time.
So, the problem transforms into one of identifying all the
users who have files that are “similar” to a given one.

The focus during the e-discovery process is on identifying
relevant data with high precision and recall. In many cases,
once a critical document is found then the next stage is to
identify and retrieve a complete set of related documents:
all earlier or later versions of the same document. Often
the research prototype of a successful commercial product
is developed under some project “code” name. Therefore,
in the enterprise archives, there could be different sets of
versioned (similar) documents that reflect such project name
changes and evolution of details during the project lifecycle.
Failure to include a set of documents because they used a
different code name could be disastrous during litigation,
again making robust discovery of similar documents critical
to the enterprise.

Another issue in enterprise information management is
keeping document repositories with up-to-date information.
Many enterprises have large collections of technical support
documents, manuals, white papers and knowledge briefs on
different topics. It is essential to have such knowledge stored
in electronic form so that it can be searched and shared by
professionals who need it. Yet inevitably these collections
start suffering from different versions added over time, with
older documents describing the obsolete solutions, or refer-
encing discontinued products. Furthermore, duplicates may
occur when a newly created document includes large por-
tions from existing documents. As a part of enterprise con-
tent management, it is important to identify and filter out
the documents that are largely duplicates of newer versions
in order to improve the quality of the collection. Solving
these information management problems requires establish-
ing the relationships that exist within the unstructured in-
formation and techniques to exploit these relationships, e.g.,
content similarity, provenance, and clustering.

The problem of document similarity is not a new problem.
The question is which of the already existing approaches and
algorithms might be appropriate for solving document sim-
ilarity in the enterprise environment? The problem of find-
ing near-duplicate web pages was an area of active research
in the recent past. Since near-duplicate web pages create



problems for web search engines, a variety of algorithms for
detecting these pages was proposed in the literature [15, 10,
19, 2, 3, 8]. A similar problem was addressed in the context
of Digital Libraries [18]. The similarity method is called
syntactical similarity if it is entirely based on the syntactic
properties of the documents rather than on their semantics.
A familiar method in this group is the diff utility in UNIX.
For designing an efficient solution, Broder et al. [4] used a
shingling technique, which characterizes a document via a
set of k-words sequences of adjacent words. Instead of using
a full set of fingerprinted shingles for document compari-
son, an unbiased deterministic sampling technique is used
to select a subset of shingles for creating a small, yet repre-
sentative file signature.

Another popular technique for identifying similar files is
called“compare-by-hash”[20] or content-based chunking [16,
9]. Originally it was proposed to take advantage of the fact
that applications frequently read or write data that is iden-
tical to already existing data. To exploit these inter-file sim-
ilarities, the file is divided into variable-size chunks, which
are indexed by their hash value. This way, one can quickly
and with high probability determine whether the contents
of two files are similar by comparing only their chunk hashes
and not their contents. This technique can be also classified
as a syntactic similarity approach since it is entirely defined
by the syntactic properties of the document.

In this paper, we compare four popular syntactic simi-
larity algorithms: three algorithms are based on the “shin-
gling” technique [2, 3], and the fourth algorithm is defined
via “content-based chunking” [16, 9]. We define these algo-
rithms in a unified manner using two parameters: a sliding
window - that represents a contiguous sequence of bytes, and
a sampling frequency - that defines which of these windows
are included in the compact representation of a file, called
a file signature. We observe that often these algorithms are
used with very different parameter settings [4, 7, 8, 12]. The
question is how important the choice of sliding window size
and sampling frequency for the algorithm efficiency? How
sensitive is the similarity metric to the different values of
these parameters?

For our experiments, we use a specially designed corpus of
documents that includes a set of “similar” documents with a
controlled number of modifications. Our performance study
reveals that a similarity metric and performance of all four
algorithms is highly sensitive to different values of the sliding
window size and sampling frequency parameters. We iden-
tify a useful range of these parameters for achieving good
practical results. We discuss potential strengths and weak-
nesses of each algorithm in the enterprise environment, and
conclude our study by applying these algorithms to finding
similar documents in two large collections of HP technical
support documents. The remainder of the paper presents
our results in more detail.

2. BACKGROUND AND ALGORITHMS
◦ Document Similarity Definition
Two documents are considered to be similar if they are
“roughly the same”, i.e., they have the same content except
for minor modifications, edits, or formatting. In the same
way, we can define that one document is “roughly contained”
within another one. To capture the intuitive definition of
“roughly the same” and “roughly contained” A. Broder [2]
suggested the mathematical concepts of resemblance and
containment based on the shingling technique. Under this
approach each document is represented by the set of con-
tiguous terms (where each term is a word) or shingles, and

then two documents are compared by the number of match-
ing shingles. For a given document D its w-shingling Sw(D)
is defined as the subset of all unique shingles of size w con-
tained in D (if w is fixed we use denotation S(D) instead of
Sw(D)). Then for a given shingle size, the resemblance or
similarity of two documents A and B is defined as

sim(A, B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)|

The containment of A in B is defined as

cont(A, B) =
|S(A) ∩ S(B)|

|S(A)|
◦ Shingling-Based Approach

Rather than comparing shingles directly, it is more conve-
nient to deal with fingerprints of shingles. Typically, 64-bit
Rabin fingerprints [17] are used for this purpose since they
have a very fast software implementation.

Furthermore, in order to reduce the number of compar-
isons that are needed for computing the document’s sim-
ilarity and containment as defined above, a few optimiza-
tion techniques were proposed to approximate sim(A,B)
and cont(A, B). They sample the set of all the shingles
and build a relatively small document signature, and then
compare these signatures. There are different ways one can
sample the set of all documents shingles that result in the
following three alternative similarity algorithms:

• Algorithm Minn

The Minn method [4] selects the n numerically small-
est fingerprinted shingles (or all the fingerprints if the
number in the document is less than n). In such a way,
each document (except very short ones) is represented
by an ordered, fixed n-size signature.

• Algorithm Modn

The Modn technique [4] selects all fingerprinted shin-
gles whose value modulo n is zero. This method pro-
duces a variable length document signature (as op-
posed to an ordered, fixed-size signature), where the
number of fingerprints in the signature is proportional
to the document length.

• Algorithm Sketchn

Under the Sketchn approach [3] every shingle is fin-
gerprinted with a family of n hash functions f1, ..., fn.
For each fi (1 ≤ i ≤ n), the fingerprint of the shin-
gle with the smallest numerical value is retained, and
these values are stored in the sketch. This way, each
document is represented by a fixed n-size feature vec-
tor. Given the feature vectors of two documents, to
estimate their similarity it suffices to determine the
percentage of agreeing entries in these feature vectors.

For this approach, there is an elegant theoretical jus-
tification [3] that the expected percentage of common
entries of feature vectors of two documents A and B
is equal to the percentage of common shingles in all
unique shingles of documents A and B.

◦ Content-Based Chunking Approach
Recently, a new approach to define file similarity using content-
based chunking has appeared. Content-based chunking, as
introduced in [16, 15], is a way of breaking a file into a se-
quence of chunks so that chunk boundaries are determined
by the local content of the file.

The Basic Sliding Window (BSW) algorithm [16] is one
of the initial content-based chunking algorithms. This algo-
rithm works as follows. A sliding window of fixed width w
is moved across the file, and at every position k in the file,



the fingerprint, Fk, of the contents of this window is com-
puted using 64-bit Rabin’s fingerprints [17]. k is a chunk
boundary if Fk mod n = 0. The value of n determines the
average size of the chunk, e.g., for n = 100 the algorithm
produces variable-size chunks with an average chunk size of
around 100 bytes. After that the“compare-by-hash”method
is used to compare the chunks occurring in different files [11].
Typically, the MD5 algorithm that produces a 64 bit hash
is sufficient in practice. The rationale for using the content-
based chunking algorithm is that a small, local modification
impacts at most two chunks surrounding the modification,
and the remaining chunks would stay the same.

However, from the definition above it is apparent that
it might work poorly when there are small distributed ed-
its/modifications in a file. The issue is that a simple hash of
the chunk is not resilient to small changes within the chunk
like the addition or deletion of the word“the”, a stem change
to the term, etc. For a relatively small file, say 2 KB, even
if we use ∼100-byte chunking (i.e., n = 100) we would have
∼20 chunks. If there are 10 tiny edits to the document,
they potentially may impact more than 50% of the existing
chunks (and their corresponding hashes). To avoid this po-
tential drawback, we introduce a slightly modified version of
the basic sliding window algorithm below.

• Algorithm BSWn

A sliding window of fixed width w is moved across the
file, and at every position k in the file, the fingerprint
of its content is computed. Let k be a chunk bound-
ary (i.e., Fk mod n = 0). Instead of taking the hash
of the entire chunk, we choose the numerically small-
est fingerprint of a sliding window within this chunk.
Then we compute a hash of this randomly chosen win-
dow within the chunk. Intuitively, this approach would
permit small edits within the chunks to have less im-
pact on the similarity computation.

This method produces a variable length document sig-
nature, where the number of fingerprints in the signa-
ture is proportional to the document length.

Summary: While all the four algorithms are applicable
for solving a similarity problem, not all the algorithms can
approximate the containment of two documents. When doc-
ument B is contained in A (say, B is the first section of a
4-section document A) then the n smallest fingerprints over
sub-document B (algorithm Minn) might have nothing in
common with the n smallest fingerprints of the entire docu-
ment A. The same applies to the Sketchn algorithm.

Table 1 summarizes the properties of the four algorithms.

Modn Minn Sketchn BSWn

File signature variable fixed fixed variable
size size n-size n-size size
Similarity yes yes yes yes
Containment yes no no yes

Table 1: Summary of the algorithm properties.

Our intent is to compare the performance of the four al-
gorithms described above. The original Minn, Modn and
Sketchn algorithms are defined using w-shingles, i.e., the set
of w contiguous terms (words), while the BSWn algorithm
uses as a unit a sliding window of w-bytes. To allow a fair
comparison among all the algorithms, we use a sliding win-
dow of w-bytes in place of the w-shingle for the remainder
of the paper.

◦ Overall Process of Finding Similar Files
There are two essential steps in the process of finding similar
files in a file collection.

The first step is to compute a file signature (according to
any of the four similarity algorithms described above).

The second step is to compare file signatures for common
entries and report only clusters of those files whose signature
intersection is above a given similarity threshold. This step
can be done in the same fashion for different file signatures
and is well described in literature [4, 15, 9]. We skip a
detailed description of this step due to lack of space.

3. METHODOLOGY
In order to fairly compare the four algorithms introduced

in the previous section, we created a special environment for
our experiments.

First, we selected 100 different HPLabs technical reports
from 2007 (http://www.hpl.hp.com/techreports/2007/) and
converted them to a text format. This collection, called
Research Corpus (abbreviation RCorig), has documents of
different length as shown in Figure 1. We ordered the doc-
uments by their length: a higher Document ID represents a
longer document. As shown in Figure 1, our collection has
documents ranging from 9 KB to 540 KB.

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90  100

S
iz

e 
in

 B
yt

es
 (

lo
gs

ca
le

)

Document ID

Document Size

Figure 1: The document size distribution in RCorig.

Second, we wrote a program that can introduce modifica-
tions to the documents from our collection in a controlled
way. For example, it can either add or remove words to/from
the document a predefined number of times. These modi-
fications can be done in a random fashion or be uniformly
spread through the document. The intent is to compare the
four selected algorithms by using a document collection for
which we have full knowledge about a number and type of
modifications present in the documents.

We started with the simplest modification type: our pro-
gram creates near-duplicates for each original document from
RCorig by inserting “a ” 1 into the document 1, 2, ..., 50
times following a random distribution. Thus, the created
collection RCi

a (1 ≤ i ≤ 50) denotes the collection where for
each original document there is a near-duplicate with i-times
randomly inserted “a ” into the original document. For this
modification type we know the “edit distance” 2 between the
original and the modified document.

Let Dk and D′
k ((1 ≤ k ≤ 100) be the original document

and its near-duplicate with a controlled number of modifica-
tions i in the collection RCi

a. We will compute the average
similarity metric for RCi

a as follows (remember, that there
are 100 documents in the original collection RCorig):

aver sim(RCi
a) =

1

100

100�

k=1

sim(Dk , D′
k)

1Insertion of “a ” does not have any particular meaning in our
framework except that it is a clearly understood tiny modification
distributed in a controlled way in the original text.
2The edit distance between two strings of characters is the num-
ber of operations required to transform one of them into the other.



Our goal is to compare the average similarity metric re-
ported by the four algorithms for the created collections of
near-duplicates as a function of the algorithm’s parameters
and the introduced modifications. In addition, we would
like to understand the correlation of the reported similarity
metric and the document size, i.e., whether these algorithms
perform equally well on short and long documents.

4. SENSITIVITY ANALYSIS AND COMPAR-
ISON OF SIMILARITY ALGORITHMS

The four algorithms introduced in Section 2 have two ex-
plicit parameters:

• w - sliding window size (in bytes);
• n - sampling frequency that is used to define/impact a

number of the fingerprints included in the document
signature.3

For the algorithms Minn and Sketchn the document signa-
ture is a fixed-size feature vector with n entries.

For the algorithms Modn and BSWn the parameter n
defines the frequency of fingerprint sampling, and therefore
the number of entries in the document signature. The Modn

technique selects the fingerprints whose value modulo n is
zero. For BSWn n works in a similar way: first, it iden-
tifies the fingerprints whose value modulo n is zero as a
chunk boundary, and then the numerically smallest finger-
print within this chunk is selected for inclusion into the doc-
ument signature.

There are performance studies that use these algorithms
with widely different parameter settings. For example, in
[4], 10-word shingles are used: this is approximately equiv-
alent to an 80-100 byte sliding window. In other studies [7,
8], the authors use 5-word shingles which is approximately
equivalent to a 40-50 bytes sliding window, while in [12],
6-word shingles are used.

There is a similar situation with respect to sampling fre-
quency n that defines the number of entries that constitute
a document signature. In [4], the authors use n = 25 for
the Modn algorithm. In [7, 8, 12], the authors use n = 84
for the Sketchn algorithm, where each function fi is a 64-
bit Rabin fingerprinting function. The 84 fingerprinters use
different primitive polynomials of degree 64. Therefore for
this implementation of Sketchn the parameter n ≤ 84. In
our implementation of Sketchn, we use Bob Jenkins’ family
of hash functions [14] for speed and ease of parametrization
of n to any positive value.

Question: How important is the choice of sliding window
size w and sampling frequency n? How sensitive is the sim-
ilarity metric to different values used for these parameters?

The next two sub-sections aim to answer these and related
questions.

4.1 Impact of the Sliding Window Size
The sliding window size defines the granularity for ob-

serving and sampling the contiguous terms (bytes) in the
document. Intuitively, a smaller window introduces docu-
ment sampling at the level of words, while a larger window
produces sampling with a size closer to the sentence level.
To understand the impact of the sliding window size in the
four similarity algorithms under study, we use the document
collections RCi

a, 1 ≤ i ≤ 50 as described in Section 3.
We compute the average similarity metric aver sim(RCi

a)
(1 ≤ i ≤ 50) under the four algorithms with different values
for the sliding window: window = 5, 10, 20, 40, ..., 100 bytes.

3In this paper, we use the terms“document signature” or “feature
vector” interchangeably.

Figure 2 shows these results for the Modn and BSWn

algorithms. (Since all the algorithms are very sensitive to
the sliding window size and the sensitivity trends are similar,
we omit graphs for Minn and Sketchn due to lack of space).

(a)

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0  5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 S
im

ila
rit

y 
(%

)

Number of  Changes

Modn

Window=5
Window=10
Window=20
Window=40
Window=60
Window=80

Window=100

(b)

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0  5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 S
im

ila
rit

y 
(%

)

Number of Changes

BSWn

Window=5
Window=10
Window=20
Window=40
Window=60
Window=80

Window=100

Figure 2: Impact of window size on aver sim(RCi
a) for

algorithms: (a) Mod100; and (b) BSW400.

The x-axis reflects the number of changes i (1 ≤ i ≤ 50)
in the document collection under test, i.e., RCi

a. The y-axis
shows the average similarity metric aver sim(RCi

a) (see a
formal definition in Section 3). Multiple lines in the figure
show aver sim(RCi

a) with different values of sliding window.
First of all, the average similarity metric for a collection

RCi
a decreases as a higher number of modifications are intro-

duced in each document. Moreover, for a larger sliding win-
dow and increasing number of modifications in the created
near-duplicates, the similarity metric is much smaller than
under a smaller sliding window. For example, for Mod100 al-
gorithm and window = 100 bytes, aver sim(RC50

a ) = 66%,
while under window = 5 bytes, the average similarity metric
is much higher: aver sim(RC50

a ) = 97%. The trends for the
BSW400 algorithm are the same.

Does this mean that window = 5 bytes is a good parameter
for using in the similarity algorithms?

To make a definite conclusion, we investigate the impact
of a window size on the similarity metric for the original
research corpus RCorig, where all the 100 documents are
truly different. How much overlap or “false positive” sim-
ilarity information is observed in these distinct documents
while varying the sliding window size?

Figure 3 show these results for the Modn and BSWn al-
gorithms. This figure shows the CDF (Cumulative Distribu-
tion Function) of the similarity metric for all the document
pairs in the RCorig under different window sizes (it only
shows the CDF of pairs with non-zero, positive similarity
metric). We can see that algorithm Modn with window =
5 bytes identified more than 5% of the pairs having similar-
ity above 20%, with some documents exhibiting nearly 30%
similarity. Moreover, practically any pair of distinct docu-
ments does exhibit some overlap under window = 5, 10 bytes
as shown in Figure 3. Increasing sliding window size helps
to reduce the amount of overlap measured in distinct doc-
uments. In summary, if the window size is too small then
there are too many “similar” fingerprints in different (dis-



tinct) documents. We can see that window = 10 bytes is
also a bad parameter. The same observations are valid for
BSWn algorithm shown in Figure 3(b). We omit figures for
algorithms Minn and Sketchn because they show the same
trend.

(a)

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

C
D

F
 (

%
) 

Similarity (%)

Original Research Corpus: Mod100

Window=5
Window=10
Window=20
Window=40

Window=100

(b)

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25

C
D

F
 (

%
)

Similarity (%)

Original Research Corpus: BSW400

Window=5
Window=10
Widown=20
Window=40

Window=100

Figure 3: CDF of the similarity metric for all the doc-
ument pairs in the RCorig: (a) Mod100; and (b) BSW400.

We choose window = 20 bytes as a good trade-off for
achieving high similarity metric for near-duplicates (Fig-
ure 2) while having a low amount of “false positive” simi-
larity information for truly distinct documents (Figure 3).

Finally, Figure 4 shows CDF of the similarity metric for
all the document pairs in the RCorig under window=20 and
the four similarity algorithms Minn, Modn, Sketchn, and
BSWn.

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

C
D

F
 (

%
)

Similarity (%)

Original Research Corpus, Window=20 bytes

Mod100   
Min100    

Sketch100
BSW100   

Figure 4: CDF of similarity metric in RCorig with win-
dow=20 bytes for the four algorithms under study.

An interesting observation is that while algorithms Modn

and BSWn operate under a similar sampling frequency in
this example, and both algorithms produce a variable-size
document signature, algorithm Mod100 has “identified” a
significantly higher number of “slightly-similar” documents:
28% of pairs are less that 4% similar under Mod100 while
only 10% of such pairs are similar under BSW100. These
numbers are important for the second stage of the similarity
algorithms when the clusters of similar documents are built.
High percentages of “slightly-similar” documents lead to a
higher computational complexity at this step.

4.2 Impact of the Sampling Frequency
The sampling frequency parameter n has a different def-

inition in the similarity algorithms Minn, Modn, Sketchn,
and BSWn. For example, the algorithms Minn and Sketchn

define a fixed, n-size signature for document characteriza-
tion (see Section 2 for details). The algorithms Modn and
BSWn produce a variable length document signature, where
the number of fingerprints in the signature is proportional
to the document length and dependent on n. The question
is whether the choice of a sampling frequency n has a sig-
nificant impact on the similarity results.

Intuitively, having only a few samples to represent the
entire document might be dangerous for two (opposite) rea-
sons. Let documents A and B have quite a few similar por-
tions but overall be quite different. If there are only a few
fingerprint samples to represent A and B, then these sam-
ples might easily “land” on the similar portions of the doc-
uments, and hence, report a high similarity for these docu-
ments while missing their difference. For the same reason,
the opposite might happen: if these few fingerprint samples
land on the modified portions of A and B then the same pair
of documents A and B might be reported as having almost
no similarity while missing that these documents do have
similar portions.

Figure 5 shows aver sim(RCi
a), 1 ≤ i ≤ 50, for Sketchn

and BSWn algorithms with different sampling frequency.
Sketch10 represents the document by using 10-feature vec-
tor, while Sketch100 by using 100-feature vector. At first
glance, the sampling frequency does not have much impact
on the average similarity metric shown in Figure 5 (a).

(a)

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0  5  10  15  20  25  30  35  40  45  50

A
ve

r 
S

im
ila

rit
y 

Number of Changes

Sketch100
Sketch10 

(b)

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0  5  10  15  20  25  30  35  40  45  50

S
im

ila
rit

y 
(%

)

Number of Changes

BSW100 
BSW1000

Figure 5: Impact of sampling frequency on average sim-
ilarity metric: (a) Sketchn, (b) BSWn.

BSW1000 algorithm produces variable-size chunks (with
the average chunk size around 1000 bytes), while BSW100

defines a finer granularity chunking with the average chunk
size around 100 bytes. Given a 10 KB document, BSW1000

will produce a document signature with approximately 10 en-
tries, while BSW100 will have ∼100 entries. Again, at first
glance, this difference does not seem to have much impact
on the average similarity metric shown in Figure 5 (b).

Now, let us have a closer look at the similarity of the orig-
inal and near-duplicate documents in the collection RC50

a

under different sampling frequency parameters. Remember,
the original document and its near-duplicate in RC50

a are
differentiated by the random insertion of “a ” in 50 places
in the document. Figure 6 shows these results. The simi-
larity metric reported by Sketch100 is much more consistent



(a)

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90  100

S
im

ila
rit

y 
(%

) 

Document ID

Sketch100
Sketch10 

(b)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  10  20  30  40  50  60  70  80  90  100

S
im

ila
rit

y 
(%

)

Document ID

BSW100 
BSW1000

Figure 6: Similarity of the original and near-duplicate
documents in RC50

a under different sampling frequency:

(a) Sketch10 vs Sketch100, (b) BSW1000 vs BSW100.

than the similarity metric reported by Sketch10 for the same
pairs of documents. In many cases, Sketch10 misses all dif-
ferences in the pairs of near-duplicates and reports 100%
similarity values as shown in Figure 6 (a). At the same
time, we can see that there are situations when Sketch10 re-
ports much lower similarity metric compared to Sketch100,
because these few sampled fingerprints “land” on the modi-
fied portions of the near-duplicate documents. Figure 6 (b)
shows the same trend for BSW1000 and BSW100. Using
a coarser chunking leads to the same high variance in the
similarity results.

Note that for shorter documents (remember, that docu-
ments with smaller ID represent shorter documents) the im-
pact of the sampling frequency in the presence of significant
number of “small” modifications is especially pronounced.
Due to lack of space we omit graphs for Minn and Modn

which exhibit similar trends.

4.3 Comparison of the Similarity Algorithms
In this section, we compare the performance and accu-

racy of the four similarity algorithms. Using guidance from
Sections 4.1 and 4.2 on the sensitivity of the algorithms to
sliding window size and frequency sampling, we choose win-
dow = 20 bytes, and n=100 for Minn and Sketchn.

Note, that Min100 and Sketch100 produce a fixed 100-
feature vector for any document in the set, while Modn and
BSWn generate a feature vector that is proportional to the
document size: the rule of thumb is that if document D is
SD bytes long then its feature vector has on average SD/n
entries. Since the average file size in the research corpus
is ∼50 KB, we choose n=500 for Modn and BSWn. This
way the average feature vectors of different algorithms under
study are approximately the same (for the Research Corpus
used in our experiments).

Figure 7(a) shows the average similarity metric for RCi
a

(1 ≤ i ≤ 50) under the four algorithms Mod500, Min100 ,
Sketch100, and BSW500. For a small number of changes
in the near-duplicate documents (less than 10) the average
similarity metric reported by all four algorithms is nearly

the same. Then with an increasing number of changes in
the near-duplicate documents the reported average similar-
ity metrics under different algorithms start to diverge as
shown in Figure 7(a). In order to verify the validity of
these trends, we performed additional experiments where
the near-duplicates are generated according to different mod-
ifications of the original documents.

(a)

 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 100

 0  5  10  15  20  25  30  35  40  45  50

A
ve

ra
ge

 S
im

ila
rit

y 
(%

)

Number of  Changes

Research Corpus with Modifications: a-random

Mod500    
Min100     
Sketch100
BSW500   

(b)

 80
 82
 84
 86
 88
 90
 92
 94
 96
 98

 100

 0  5  10  15  20  25  30  35  40  45  50
A

ve
ra

ge
 S

im
ila

rit
y 

(%
)

Number of  Changes

Research Corpus with Modifications: words-random

Mod500    
Min100     
Sketch100
BSW500   

Figure 7: Average similarity metric under the four sim-
ilarity algorithms: (a) using RCi

a and (b) using RCi
words.

Figure 7(b) shows the average similarity metric computed
for a case when near-duplicates are generated by a random
removal of a word from the original document (1 to 50 times
accordingly). While the values of average similarity metric
are slightly lower (due to a higher “edit”-distance between
the original and the modified documents), the trends of Fig-
ures 7(a) and (b) are the same. (In fact, we performed other
experiments with a different distribution of changes. Uni-
formly distributed changes have a stronger negative impact
on the similarity metric, while we still observe similar trends
between the algorithms).

The summary of Figure 7 is that for the same set of near-
duplicate documents Modn and Minn report on average
a higher (more accurate) similarity metric than algorithms
Sketchn and BSWn.

To analyze the divergence of similarity metrics under dif-
ferent algorithms in more detail, we plotted a similarity met-
ric for pairs of original and modified documents under dif-
ferent number of modifications as shown in Figure 8. While
unfortunately these graphs are “very busy” they convey well
the overall trend. When the modified document has a rel-
atively small number of changes (less than 10), the perfor-
mance of all the algorithms is alike across different document
sizes as shown in Figures 8 (a). However, under a higher
number of changes in modified documents, the algorithms
Sketchn and BSWn “reflect” more of such changes in their
feature vectors, especially for shorter documents as shown
in Figures 8 (b).

An interesting observation is that Sketchn and BSWn

are the representatives of somewhat different approaches:
Sketchn produces a fixed-size feature vector while BSWn

generates a feature vector that is proportional to the doc-
ument size. However, they both are more sensitive to the
document modifications than Modn and Minn.



(a)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 S
im

ila
rit

y 
(%

)

Document ID

RC10
words

Mod500    
Min100     
Sketch100
BSW500   

(b)

 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

 0  10  20  30  40  50  60  70  80  90  100

A
ve

ra
ge

 S
im

ila
rit

y 
(%

)

Document ID

RC50
words

Mod500    
Min100     
Sketch100
BSW500   

Figure 8: Similarity of the original and modified documents under the four similarity algorithms: (a) using RC10
words

and (b) using RC50
words.

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 40  50  60  70  80  90

P
ai

rs
 o

f D
oc

um
en

ts
 

Similarity (%)

Mod100    
Min100     
Sketch100
BSW100  

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 40  50  60  70  80  90

P
ai

rs
 o

f D
oc

um
en

ts
 

Similarity (%)

Mod100    
Min100     
Sketch100
BSW100  

Figure 9: Number of similar file pairs identified under different similarity algorithms in the enterprise repositories:
(a) Collection 1 and (b) Collection 2.

5. FINDING SIMILAR DOCUMENTS IN EN-
TERPRISE REPOSITORIES

Hewlett-Packard has large collections of technical support
documents on different topics. As a part of content man-
agement it is important to identify and filter out support
documents that are largely duplicates of newer versions in
order to improve the quality of the existing collection.

Our goal was to process given collections of documents
with the four similarity algorithms under study and compare
the results.

 100

 1000

 10000

 100000

 0  1000  2000  3000  4000  5000  6000

S
iz

e 
in

 B
yt

es
 (

lo
gs

ca
le

)

Document ID

Collection1
Collection2

Figure 10: The document size distribution in two en-
terprise repositories.

We processed two collections of documents with 5040 and
2500 documents respectively. The document length distri-
butions for both collections are shown in Figure 10. The
documents in the first collection were relatively short (600-
1500 bytes) with a small subset of longer documents. The
second collection had slightly longer documents (2-4 KB)
and a small subset of long (larger than 10 KB) documents.

Since these two collections had mostly short files, we tuned
a sampling frequency in Modn and BSWn to produce finer
granularity by using n=100. Even then, Mod100 and BSW100

had 7 times fewer (on average) hashes in the document sig-
nature than Sketch100 or Min100 (Sketch100 and Min100

produce 100-entry feature vectors independent of the file
size). For the second collection this ratio was 2.5 times.

Figure 9 shows the number of similar file pairs for varying
the similarity theshold from 40% to 90% identified under
different similarity algorithms in the two enterprise collec-
tions. Typically, the pairs of files with similarity metrics
higher than 70% might be good candidates for being near-
duplicates. We analyzed pairs of documents with similarity
above 70% reported by different algorithms, and Table 2
presents the summary of the results. For both collections,

Collection 1
Mod100 Min100 Sketch100 BSW100

Total (65) 61 25 17 20
Correct (51) 48 24 17 19

Collection 2
Total (81) 75 65 49 55
Correct (81) 75 65 49 55

Table 2: Summary of the results for Collection 1 and
Collection 2.

Mod100 and Min100 identified a higher number of poten-
tially similar pairs compared to Sketchn and BSWn. At
the same time, for Collection 1, the combined number of
potentially similar pairs reported by the four algorithms in-
dependently is 65. However, only 12 of them are reported
by all 4 algorithms. For Collection 2, the combined number
of pairs reported by all four algorithms independently is 81,
but only 45 of them are reported by all 4 algorithms.

The trends in reported results agree with our observa-
tions for the four algorithms derived with the Research Cor-
pus experiments (except a closer match between BSWn and
Sketchn). However, in the case of the two enterprise col-
lections we do not know the “ground truth”, i.e., which of
the reported documents are indeed similar, and which ones
might be false positives. To understand this we performed
an additional document analysis in the following way. For
each of the reported similar pair of documents D and D′,
we used UNIX diff utility to compute the edit distance. In



most of the cases, the outcome of diff was very compact with
easily observable difference in the pair of documents due to
document number, or date, or some other small details. In
these cases, it was clear that documents D and D′ were
indeed similar. In a few cases, the outcome of diff was sig-
nificant and, indeed, documents D and D′ were apparently
different. Using this approach, we identified which of the
similar pairs were reported correctly and which were false
positives.

It was interesting to see the groups of similar documents
and what constitute overlapping and different portions of
these documents. For example, there were pairs of techni-
cal support documents with different dates and document
numbers, but very similar root cause analysis and solution
information written about different applications, say X and
Y . After talking to experts it became apparent that Y was
a new generation of product that replaced X.

As shown in Table 2, for the first collection, Mod100 had
highest number of correctly identified documents (48), but
at the same time 13 documents (13 = 61−48) were false pos-
itives. Min100 and BSW100 both had 1 false positive pair.
While Sketch100 did not have any false positives, it had
the lowest number of reported similar pairs among the four
algorithms. All the false positives happened for short doc-
uments. One of the explanations is that the documents in
both collections had a “loose” configuration template defin-
ing content of the documents, and for very short documents
it introduced by itself a significant amount of “noise”. For
the second collection of documents, where the documents
were longer, none of the algorithms reported false positives
as shown in Table 2.

In summary, Modn significantly outperformed the other
algorithms, with Minn being second, BSWn and Sketchn

sharing the third place. These findings are consistent with
our observations and experiments in Section 4 with the Re-
search Corpus.

An interesting extension of this work will be incorporat-
ing some additional document analysis for identified pairs
of similar documents to avoid false positives and helping
experts to more easily filter them out. Once the clusters
of similar documents are built, one can apply more expen-
sive methods to “highlight” the exact difference in identified
pairs of documents to semi-automate the document analysis
process at this stage.

6. RUNTIME COMPARISON
We performed a comparison of the document processing

time under different algorithms and their parameters. Fig-
ure 11 shows the processing time of a 500 KB file under
Modn, Minn, Sketchn and BSWn. While this figure is
specific to our implementation of these algorithms, it still
reflects some general trends. Document processing under
Modn, Minn, and BSWn is based on Rabin fingerprints [17]
that have a very fast software implementation and are in-
dependent of a sliding window size. Processing time under
Sketchn algorithm involves concurrent computation with n
different hash functions (we used the Bob Jenkins hash func-
tion for speed). Moreover hash computation over a larger
sliding window has a significant additional overhead.

The results in Figure 11 are for a longer file to stress the
difference. Obviously, for short files this difference is less
pronounced. When choosing a particular similarity algo-
rithm, one needs to carefully estimate the length of the file
signature as well as the document processing cost based on
the average file size. However, in general, the processing
cost under Modn, Minn, and BSWn is lower than under

 0

 5

 10

 15

 20

Window=100Window=20

T
im

e

MOD100   
MIN100   

Sketch100
BSW100   

Figure 11: Comparison of the processing time for a 500
KB file.

Sketchn. The Sketchn algorithm must compute a family of
n hash functions rather than just a single hash function, and
this significantly impacts its speed.

7. RELATED WORK
Many document repositories, such as newswire, web sites,

and digital libraries typically have a significant amount of
repeated or similar information. The extent to which docu-
ments are considered similar to each other defines a similar-
ity spectrum. On one side there is a broad topical (semantic)
similarity with document identity on the other side. In this
paper, we studied a few algorithms that can be classified
as a syntactic similarity group. The similarity of documents
under this definition is entirely defined by the syntactic prop-
erties of the documents.

Duplicate and near-duplicate web pages cause problems
for web search engines: increased index size , slower searches,
and lower quality results. A variety of syntactic similar-
ity algorithms proposed for detection of near-duplicate web
pages are based on a “shingling” technique [2, 3]. While
these algorithms were proposed more than 10 years ago, we
are not aware of any performance study comparing them,
especially in the context of enterprise information manage-
ment. In [12], M. Henzinger compares the performance of
the Sketchn algorithm with Charikar’s algorithm [5] based
on random projections of words in a document. More ex-
actly, a variation of the Sketchn algorithm with super-shingles
is used in this work. Under this approach a set of shingles
is combined into a super-shingle to simplify the second step
– clustering process. It is interesting work that involves
a large-scale evaluation, namely a set of 1.6B distinct web
pages. The author finds that neither of the algorithms works
well for finding near-duplicate pairs on the same site, while
both achieve high precision for near-duplicate pairs on dif-
ferent sites. In this work, the author chooses a set of param-
eters for these algorithms based on the earlier use cases. It
might be interesting to repeat the same algorithms under dif-
ferent parameters and compare the outcome. In [7], the au-
thors apply Sketchn algorithm with super-shingles for iden-
tifying near-duplicate web pages but pursue a different goal
of understanding how the clusters of near-duplicates evolve
over time. Another interesting performance study, [19], an-
alyzes the sources and amount of document replication on
the web.

There is a group of similarity algorithms that aim to detect
copyright violations and plagiarism [1, 18, 10, 13]. In [18],
the authors study a variety of choices for chunking policies
(fixed size, variable size, small vs. large chunks, overlapping
vs. non-overlapping chunks) where the chunks are defined at
the granularity of words, group of words, and sentences. The
authors compare the cost (in terms of storage) of different
chunking schemes and accuracy of finding the overlapping
chunks in documents from DL. The chunking approach in
their paper is closer to a classic Basic Sliding Window al-
gorithm with a difference that a “word” is the basic unit
(compared to a byte in our approach). In [9], authors suc-



cessfully applied the content-based chunking algorithm to
identify similar documents in large enterprise repositories.
However, in [18, 9], the authors use the entire chunk hashes
for a file signature (compared to the smallest hash of the win-
dow within the chunk in our approach). This is exact docu-
ment fingerprinting; all the policies considered in our paper
use approximate fingerprinting. They find that a coarser
chunking misses many overlaps within the test set, while a
finer granularity chunking improves the outcome. In [13],
the authors concentrate on identifying plagiarism and dis-
cuss how this problem is different from a more traditional
problem of finding similar documents. They investigate a
number of approaches that can be applied to this problem,
and mostly concentrate on the 1-to-n problem, i.e., finding
the derivatives for a given document. A good survey of dif-
ferent methods proposed for finding similar documents to a
given one is provided in [6]. For solving the n-to-n similarity
problem the authors promote an I-match approach [6] which
is based on term collection statistics. It is closer to a seman-
tic document analysis rather than a pure syntactic approach.
I-match identifies a smaller number of near-duplicates (but
with a higher accuracy) compared to a shingling technique
because it requires an exact match for the document terms
remaining after the syntactic filtration process.

8. CONCLUSION
Many enterprises are building new applications associ-

ated with document management, data retention, regula-
tory compliance, and litigation issues as a part of informa-
tion management solution. The problem of robust discovery
of similar enterprise documents is an essential part of this
solution. In this paper, we evaluate and compare the perfor-
mance of four syntactic similarity algorithms. Three algo-
rithms are based on Broder’s “shingling” technique while the
fourth algorithm employs a more recent approach, “content-
based chunking”. Our performance study reveals that the
similarity metric reported by all four algorithms is highly
sensitive to settings of the sliding window size and sampling
frequency parameters. We identify a useful range of these
parameters for achieving good practical results, and com-
pare the performance of the four algorithms in a controlled
environment. We validate our results by applying these algo-
rithms to finding similar documents in two large collections
of HP technical support documents.

In this work, we used a slightly modified version of a tradi-
tional Basic Sliding Window algorithm: instead of taking the
hash of the entire chunk, we used the numerically smallest
fingerprinted sliding window within this chunk. This modi-
fication made the original algorithm more resilient to small
changes within the chunk, and improved its performance
for small documents. Additionally, this change enabled a
fair comparison between the four similarity algorithms since
they were defined using the same type parameters such as
the sliding window size and sampling frequency.

For a family of shingling-based algorithms the sampling is
essential, because it drastically reduces the amount of data
(fingerprinted shingles) to compare and makes the whole
approach feasible. However, sampling always introduces a
degree of “fuzziness” and a probability for false positives.

The traditional Basic Sliding Window algorithm produces
a compact file signature without sampling by using the chunk
hashes. This file signature encodes exact information about
the file. If two files do have 9 out of 10 hashes in com-
mon, then we know precisely which portions of the files are
identical. This is an appealing property. We believe that
traditional Basic Sliding Window algorithm might be a more

promising approach for longer files than the“sampling”-based
technique and is worth future investigation.

9. REFERENCES
[1] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection

mechanism for digital documents. Proc. of ACM SIGMOD
International Conference on Management Data, May, 1995.

[2] A. Broder. On the Resemblance and Containment of
Documents. Proc. of IEEE Conf. on the Compression and
Complexity of Sequences, June, 1997.

[3] A. Broder, M. Charikar, A. Frieze, M. Mitzenmacher.
Min-wise independent permutations. Proc. of the Thirtieth
Annual ACM Symposium on Theory of Computing,q
Dallas, Texas, USA, May, 1998.

[4] A. Broder, S. Glassman, M. Manasse, G. Zweig. Syntactic
clustering of the Web. Selected papers from the 6-th Intl.
Conference on World Wide Web, Sept.1997, Santa Clara,
CA, USA.

[5] M. S. Charikar. Estimation technique from rounding
algorithms. Proc. of 34th Annual ACM Symposium on
Theory of Computing (STOC), May, 2002.

[6] A. Chowdhury, O. Frieder, D. Grossman, and M. McCabe.
Collection Statistics for Fast Duplicate Document
Detection. ACM Transactions on Information Systems
(TOIS), 20(2), April 2002.

[7] D. Fetterly, M. Manasse, M. Najork. On the Evolution of
Clusters of Near-Duplicate Web Pages. Journal of Web
Engineering, vol.2, N.4, Oct, 2004.

[8] D. Fetterly, M. Manasse, M. Najork. Detecting
Phrase-Level Duplication on the World Wide Web. Proc. of
the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR’05), Salvador, Brazil, Aug, 2005.

[9] G. Forman, K. Eshghi, S. Chiocchetti. Finding Similar Files
in Large Document Repositories. Proc of the 11th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2005.

[10] N. Heintze. Scalable document fingerprinting. Proc. of the
Second USENIX Workshop on Electronic Commerce, 1996.

[11] V. Henson. An analysis of compare-by-hash. Proc. of the
9th conference on Hot Topics in Operating Systems
(HotOS’03), Lihue, Hawaii, USA, 2003.

[12] M. Henzinger. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. Proc. of the 29th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’06),
Seattle, Washington, USA, 2006.

[13] T. Hoad and J. Zobel. Methods for Identifying Versioned
and Plagiarised Documents. Journal of the American
Society for Information Science and Technology, vol. 54,
2002.

[14] B. Jenkins. Hash Functions. ”Algorithm Alley”, Dr. Dobb’s
Journal, September, 1997, http://www.ddj.com/184410284

[15] U. Manber. Finding similar files in a large file system. Proc.
of the Winter 1994 USENIX Conference, 1994.

[16] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. Proc. of the 18th ACM
Symposium on Operating Systems Principles (SOSP’01),
Banff, Canada, October 2001.

[17] M.O. Rabin. Fingerprinting by random polynomials.
Technical Report TR-15-81, Center for Research in
Computing Technology, Harvard University, 1981.

[18] N. Shivakumar and H. Garcia-Molina. Building a Scalable
and Accurate Copy Detection Mechanism. Proc. of 1st
ACM International Conference on Digital Libraries , March
1996.

[19] N. Shivakumar and H.Garcia-Molina. Finding near-replicas
of documents on the web. Proc. of Workshop on Web
Databases (WebDB’96), Valencia, Spain, 1996.

[20] A. Tridgell and P. Mackerras. The rsync algorithm.
Technical Report TR-CS-96-05, Australian National
University, 1996.


