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Abstract
Burstiness (i.e., sudden surges) in user demands in enter-

prise systems that operate under the multi-tiered paradigm is a
common phenomenon that leads to overprovisioning: the sys-
tem is configured with excess hardware to meet peak user de-
mands, often resulting in excessive (and unnecessary) power
costs. In this paper, we present Fastrack, a parameter-free
algorithm for dynamic resource provisioning that uses sim-
ple statistics to promptly distill information about changes in
workload burstiness. This information, coupled with the ap-
plication’s end-to-end response times and system bottleneck
characteristics, guides resource allocation, which proves to
be effective under a broad variety of application burstiness
profiles and bottleneck scenarios. Extensive simulations illus-
trate Fastrack’s robustness for consistently meeting predefined
service level objectives while minimizing power usage.

1 Introduction
Capacity planning that focuses on both performance and

power is a critical task for the effectiveness and business suc-
cess of today’s enterprise systems. Identifying customer de-
mands and consequent system bottlenecks is central for pro-
visioning such systems in order to meet predefined service
level objectives (SLOs). Sudden surges in user demands are
a common phenomenon (and can be fueled by special events,
e.g., sales), resulting in temporal loads of orders of magnitude
higher than the average load. Capacity planning must cater
for such phenomena as perceived user performance must al-
ways be within certain SLOs. Consequently, traditional ca-
pacity planning promotes over-provisioning, i.e., the system
is always configured to meet peak user demand, resulting in
systems where the cost of power becomes crippling.

Resource allocation in a multi-tiered system is more chal-
lenging than in a single-tiered one. In a multi-tiered system,
the tier that is the bottleneck regulates the flow of requests and
usually dominates performance. Alleviating the bottleneck
tier by assigning more processing power is straightforward
but should be done with caution as the bottleneck may simply
shift to another tier [13]. Traditional provisioning relies on
workload observation that triggers resource reallocation when
certain thresholds are exceeded [9, 13]. The effectiveness of
such techniques depends on astute selection of their param-
eters. What makes resource allocation even more challeng-
ing in a multi-tiered system is the phenomenon of bottleneck
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switch that further exacerbates effective provisioning [7, 8].
The additional requirement to save as much power as possi-
ble without compromising performance makes resource allo-
cation a real conundrum for system designers.

In this paper we offer an application-centric approach to
the above difficult problem. We focus on a multi-tiered system
that operates under a bursty workload and present a parameter-
free algorithm called Fastrack that quickly tracks achievable
performance and workload burstiness to self-adjust the allo-
cation of available resources with the aim of optimizing per-
formance while using minimal resources. Fastrack uses online
measurements to determine whether the system experiences
a true surge or simply variability in user arrivals to quickly
determine the start of a burst, signaling the need to assign
more computing resources. Correspondingly, it also detects
the end of a burst, i.e., rapid returns to normal traffic inten-
sity, signaling the need to reduce computing resources with-
out any performance penalty. During a workload surge, the
algorithm uses a “pro-active” approach to quickly identify the
surge, and tames its effects by summoning new resources be-
fore performance starts to suffer. On the other hand, after the
algorithm detects a quiet period, it releases resources with a
slower pace such that jobs that are accumulated during a burst
are flushed and the operation of the system quickly reverts to
normal. Timely identification of the start and end of bursts
is the core of Fastrack and together with the system’s SLOs
guides when to expand/contract the assigned resources.

We simulate the behavior of a multi-tiered system that is
built according to the classic TPC-W paradigm. Detailed ex-
perimentation demonstrates the robustness of Fastrack if the
workload conditions span from mildly bursty to very bursty.
Comparisons with other resource allocation policies in the lit-
erature illustrate the effectiveness of Fastrack to stay close to
the SLOs while using as few resources as possible. The re-
mainder of the paper presents our results in more detail.

2 Burstiness: Friend or Foe?
Burstiness in flows of systems has been shown detrimen-

tal for performance. Recent work in multi-tiered systems has
demonstrated that burstiness may be endogenous, e.g., it may
be due to database locks or caching in one of the tiers [7], or
exogenous, i.e., due to bursty external arrivals[8]. Burstiness
in flows results in the phenomenon of persistent “bottleneck
switch” where performance measures are counter-intuitive,
e.g., user SLOs are grossly violated while performance mea-
sures such as device utilizations are moderate, for more de-
tails we direct the interested reader to [7]. In [7], the authors
successfully incorporated the index of dispersion I into new
capacity planning models of multi-tier enterprise systems. In
this section, we show how to use I to infer information about



the patterns of upcoming workloads. In effect, we advocate
using burstiness as a friend rather than a foe. We show that I
can provide a simple yet powerful way for prompt identifica-
tion of the start and the end of a bursty period.

Given a time series of random variables {Xn}, where n =
0, . . . ,∞, the index of dispersion is defined as follows:

I = SCV

�
1 + 2

∞�
k=1

ρk

�
, (1)

where the squared-coefficient of variation (SCV ) quanti-
fies the variability in this series and the lag-k autocorrelation
coefficient ρk expresses the relationship between consecutive
occurrences of the random variable with respect to its mean 1.
The mathematical definition of I in Eq.(1) shows that the in-
dex of dispersion jointly captures variability and burstiness in
a single number and that the summation of autocorrelations at
all lags further gives a measure of the strength of burstiness.

To illustrate how I as a single measure can capture bursti-
ness, we show the counts of arrivals per 10 second windows as
a function of elapsed time (total elapsed time of 90,000 sec-
onds) for two arrival patterns, one with high variability but
no burstiness and one with a clear burstiness profile, see Fig-
ures 1(a) and 1(b). Figure 1(a) shows an arrival sequence that
was generated with a hyperexponential distribution and Fig-
ure 1(b) corresponds to a bursty sequence that was generated
by a MAP [2] with the same mean and SCV as the hyperex-
ponential. When there is no burstiness, the value of I exactly
equals the squared-coefficient of variation because the sum-
mation of all autocorrelation coefficients ρk is equal to zero.
In Figure 1(a), I = SCV = 20 because the hyperexponential
that is used to generate this arrival trace has high variability
but no burstiness. The MAP process that is used to gener-
ate the arrival stream in Figure 1(b) has instead I = 3014.
We remark that arrival patterns like the one illustrated in Fig-
ure 1(b) are commonly found in real systems, see for example
the arrival pattern in the classic FIFA World Cup trace where
the index of dispersion for consecutive days in the arrivals to
the FIFA web site reaches values as high as 8400. For more
details we direct the reader to [8].

Looking at the difference in the two arrival patterns of Fig-
ure 1(a) and 1(b) one can immediately see that using simple
observations such as sudden changes in the arrival rate of in-
coming requests to guide readjusting of resource allocation
is not straight forward. Detecting changes in the arrival rate
within successive time windows may be perilous: a current
prediction may be incompatible with the upcoming next win-
dow, therefore suggesting too often and wasteful changes in
resources. For a variable (but not bursty) workload as the
one depicted in Figure 1(a), the best strategy for effective re-
source allocation is to rely on classic capacity planning in or-
der to identify the ideal resource allocation to meet service and
power level objectives. The pattern depicted in Figure 1(b)
however, suggests that this is a case where one allocation can-
not fit well all periods. In this paper, we propose to use I to

1In a time series of random variables {Xn}, where n = 0, . . . ,∞, ρk
shows the value of the correlation coefficient for different lag k > 0: ρk =
E[(Xt−μ)(Xt+k−μ)]

σ2 , where μ is the mean and σ2 is the variance of {Xn}.
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Figure 1. Illustrating the difference in two arrival processes
which are driven from a hyperexponential with mean μ−1 = 1
and SCV = 20 (left column of graphs), and from MAP with
the same mean μ−1 = 1 and SCV = 20 but strong burstiness
(right column of graphs). The left column corresponds to a
process with high variability but no burstiness and the right
column to a process that is bursty.

quickly detect changes in arrival intensities. An obvious dis-
advantage for any practical implementation of the calculation
of I using Eq.(1) is the ∞ term in the summation. Here, we
use a batch of K = arrival rate × C requests, where C is
a constant set to 20002 and because we are interested in only
short-term changes in the process, we substitute the ∞ term
in Eq.(1) with only the first ten percent of the batch size. Dra-
matic changes in I within successive batches show that there
has been a significant change in the arrival rate for a given
batch, and that information coupled with the current and previ-
ous arrival rates can show whether a burst has begun or ended.
Note that comparing statistics of successive batches of jobs
is superior to comparing statistic within successive windows
of time, as the number of requests within successive windows
may vary widely.

The algorithm for determining the start and the end of a
bursts is shown in Figure 2. The algorithm runs on batches
of K requests. For every batch, it calculates the index of dis-
persion and the arrival rate for the current set of K requests
and updates the total arrival rate and SCV for all requests
processed. If the absolute change in the index of dispersion
between the current batch and the previous batch is greater
than twice the SCV , this event signals the beginning (or end)

2We have used several constants C from 100 to several thousand and we
found that 2000 work effectively for our purposes for a wide variety of traces
with different burstiness profiles.



for every batch of K requests do
current I← calculate I for current batch
batch rate← arrival rate for current batch
total rate← update average arrival rate (all requests)
SCV ← update SCV (all requests)
if (|current I - old I|> 2*SCV ) AND�

old I
current I > 2 OR old I

current I < 0.5
�

if batch rate > total rate
burst starts

else
burst ends

old I← current I

Figure 2. Algorithm for detecting bursts.

of a burst3. Note that the direction of the change in the in-
dex of dispersion between successive batches does not indi-
cate whether a burst has begun or ended. To determine this,
we look at the arrival rate of the current batch, and compare
it to the total (i.e., all requests) arrival rate into the system. A
batch with arrival rate higher than the system average coupled
with a change in the index of dispersion indicates the begin-
ning of a burst. Similarly, a change in the index of dispersion
coupled with a lower than average arrival rate signals the end
of a burst.

Figures 1(c) and 1(d) plot the I values for successive
batches as a function of elapsed time. It is interesting to see
that changes in I (corresponding to spikes or dips) are reported
after longer elapsed time during quiet periods, see Figure 1(d).
It is also clear that successive changes in I are dramatic for
the case of the bursty process, while they remain modest for
the hyperexponential case. Observe also the difference in the
range of the two y-axes between the two graphs.

The outcome of algorithm is illustrated in Figures 1(e) and
1(f). Only for the bursty arrivals case, the algorithm correctly
detects when burstiness starts (state 1) and when it ends (state
0) and these changes follow well the actual bursts depicted in
Figure 1(b). One should notice that the algorithm is slower in
the detection of a quiet period. This happens because a batch
of K takes longer to gather after the conclusion of a burst.
However, this turns out to be beneficial for performance since
the release of resources is slower and this allows the system
to flush faster the waiting queue that possibly built up during
a burst. In general, comparing Figures 1(b) and 1(f), we note
that the algorithm correctly captures the beginning and end
of most bursty periods, albeit making some errors. If a burst
starts though, it tends to quickly recover, see for example the
behavior at time-stamp 5 in Figures 1(b) and 1(f).

3 Allocation Algorithm: Fastrack
Our focus is on effective resource allocation in multi-tiered

systems, and, to ease description, we assume an architecture
that is used by the TPC-W benchmark, a standard benchmark
that is routinely used for capacity planning of e-commerce
systems. This multi-tier application uses a paradigm which

3We require the computed I for the current batch to be larger than twice
the SCV in order to prevent thrashing for small changes in I . By setting
the threshold to be twice the SCV , we essentially require that the difference
across the two batches in the sum of all autocorrelation coefficients ρk to be
greater or equal to 0.5. This is a conservative estimation provided that the
values of ρk are between -1 and 1, see Equation [1].

consists of a web server, an application server, and a back-end
database. The web server and the application server reside
usually within the same physical server, which is called front
sever. Client requests may cycle between the front and back-
end (database) servers before they are returned to the client.
The TPC-W benchmark implements a fixed number of emu-
lated browsers (EBs) that is equal to the maximum number
of client connections. Each EB sends requests to the system
with an average think time E[Z] that represents the time be-
tween receiving a Web page and the following page download
request. We further assume that there is a pool of front servers
that the application can use while there is only one back-end
server. The rationale for this assumption is that having mul-
tiple back-end servers requires secure and consistent database
replication, which by its nature is a difficult problem that is
outside the scope of this work. Consequently, we focus on
how to allocate resources on the front tier only.

Under bursty workload conditions, it is tremendously im-
portant for a successful allocation algorithm to act pro-
actively, i.e., to quickly detect a surge and immediately assign
additional resources, that is, before queues start to build up
and performance degradation becomes noticeable to the user.
The algorithm presented in the previous section, see Figure 2,
serves this purpose. Similarly, when the end of a burst is de-
tected, the algorithm should reduce its resource assignment in
order to save power. Independent from the detection of bursty
conditions, it is also important to keep track of changes in the
target performance measures and continuously compare them
with those of systems SLOs, which are usually in the form
of percentiles of user response times (RTs). A successful al-
location algorithm should also act reactively. i.e., it should
monitor deviations of the user performance measures from the
target SLOs and quickly adjust resources. Similarly, if RT per-
centiles are well below SLOs, it may be desirable to reduce
allocation in order to save power. Fastrack aims at meeting all
of the above targets.

Fastrack first allows for a small amount of warm-up time to
pass where the system simply collects statistics with the cur-
rent configuration to calculate percentiles4. After the warm-up
time, the system looks at batches of K requests and collects
RT percentiles for the current configuration while updating the
RT percentiles of all requests into the system. Collecting per-
centiles for each allowable configuration in the system allows
for a quick performance reference, essentially we keep mem-
ory of reachable performance in order to avoid unfavorable
configurations. Fastrack collects other workload statistics (see
Figure 2) that aid in identifying a burst.

Beyond collecting statistics across batches, it is important
to identify whether the database is the system “bottleneck”.
This determines whether it is judicious to assign more front
servers during a burst or when there is a violation in the per-
formance SLOs. A database is deemed the bottleneck if the
contribution to the end-to-end RT percentile from the front
servers is larger than twice the time spent on the front servers.
This requirement stems from the non-linear relationship be-

4We assume that the target SLOs are expressed in the form of percentiles.
SLOs could be also expressed in simpler forms such as performance averages
with minimum changes into the algorithm.



tween response times and utilization, especially in moderate
to high utilization levels [6]. The database bottleneck con-
dition is critical for successful resource allocation in the two
tiers. If simply the utilization levels of the two tiers are com-
pared to decide whether the database or the front server is the
bottleneck, then the tier contributions to end-to-end response
times are ignored. A more utilized database but a much faster
one than the front tier can withstand more load without appre-
ciable change in end-to-end response times. Correspondingly,
if the bulk of end-to-end time is spent in the less loaded (but
slower) front tier, it is advantageous to drastically reduce the
front tier time and perhaps increase the database time. If the
database is instead slow (but relatively low utilized) and con-
tributes to the bulk of request end-to-end time, then assigning
more front servers to quickly serve a burst will only exacer-
bate RTs at the (already slow) database. The situation is much
simpler if the end of a burst is identified: the number of front
servers are reduced to conserve power.

In the absence of a burst Fastrack looks at the performance
of the current batch to adjust provisioning. If the RT per-
centiles of all requests are less than the target SLOs or if
the database is the bottleneck, then Fastrack reduces the front
server resources in order to save power and alleviate a very
loaded database server. If however the RT percentiles in the
current batch are higher than the target SLOs and the database
is not the bottleneck server, then performance can improve by
increasing the front servers. It is important to note that the rate
of increase or decrease can be done using different functions.
A conservative increase/decrease would be to add/subtract one
server, a more drastic approach would be to double/halve the
existing servers. In the specific instantiation of Fastrack in this
paper, we add/increase servers using the double/halve rule to
quickly react to changes in burstiness. Figure 3 gives the high-
level description of Fastrack.

for every batch of K requests do
update total RT percentiles (all requests)
update current RT percentiles (current resource configuration)
Proactive Adjustment:

Use Burst Detection Algorithm (see Figure 2)
if there is a change in workload burstiness

if burst starts // improve performance
if (!db bottleneck) then increase front servers

if burst ends
decrease front servers // save power

else // if no change in burstiness
Reactive Adjustment: Compare RTs to target RTs (SLOs)
if (total RT percentile < target RT percentile

OR db bottleneck)
decrease front servers // save power

else if (current RT percentile > target RT percentile
AND (!db bottleneck) )

increase front servers // improve performance

Figure 3. Fastrack: an algorithm for adjusting resources.

4 Performance Evaluation of Fastrack
We evaluate the effectiveness of Fastrack by simulating

the workload flows in a typical TPC-W 2-tier implementation
(i.e., a front server and a database server). We extend the basic
model to include a pool of 8 front servers that can be brought
online/offline during the experiment. We focus on the effec-

tiveness of the algorithm under a wide variety of workloads:
different burstiness levels, different loads, different workloads
demands (i.e., different bottlenecks), and also under the dif-
ficult case of bottleneck switch. Our purpose is to show the
robustness of the algorithm under all of the above conditions.

The TPC-W defines 14 transactions, each of which can
be generally classified as “browsing” or “ordering”. Further-
more, TPC-W defines three transaction mixes based on the
weight of each type in the particular transaction mix:
• browsing mix: 95% browsing and 5% ordering;
• shopping mix: 80% browsing and 20% ordering;
• ordering mix: 50% browsing and 50% ordering.

The think times of emulated browsers are modeled by using
two different MAPs, each with a different burstiness profile.
Consistent with the specifications of the TPC-W benchmark,
both MAPs result to average user think time equal to 7 sec-
onds but their SCV is equal to 20 (i.e., inter-arrival times into
the system are very variable). Furthermore, the two MAPs
have different burstiness profiles: one results in the index of
dispersion I = 41, i.e., very low burstiness, and the other one
to I = 1, 806 which constitutes significant burstiness.

For a given experiment, we choose one of the transaction
mixes, and use MAPs fitted from TPC-W experiments on a
real testbed to model the service processes in the front and
database servers. For more information on the fitting pro-
cess that results in MAPs that accurately capture the service
processes in TPC-W we direct the interested reader to [7].
For each of transaction mixes and arrival MAPs, we run an
experiment for a large range of populations to gauge perfor-
mance across different system loads. We gather pertinent sys-
tem statistics such as user response time percentiles and power
usage, and then compare these results to systems with a static
number of servers. For each experiment we also report results
of static configurations with 1 and 8 front servers, resulting in
upper and lower performance bounds, respectively.

Power usage is measured in raw machine seconds, i.e.,
the sum of times that front servers are in operation. To ease
comparison of power usage, all simulations run for a fixed
amount of time, resulting in a range of several hundred thou-
sand to several million requests processed on a given run. We
choose to work with a constant time interval for practical rea-
sons; if the simulations are run with a fixed request sample
instead, then each simulation would run for drastically dif-
ferent amounts of time. Since one of the main foci of our
work is on power savings, we opt to use a constant time scale,
such that different runs can be judged on raw machine time
units used, rather than averaging power costs across different
simulation times. Traditionally, there are different ways to
compute the power used by a server. Each server has a min-
imum power usage pidle that corresponds to the idle server,
and a maximum power usage pbusy that corresponds to 100%
CPU utilization. The power used by a server is estimated as
pidle + u · (pbusy − pidle), where u is the CPU utilization of
the server [12]. In this work, we use a simplified power us-
age accounting in raw machine seconds to explicitly reflect
the number of servers in the configuration used over time.

Figure 4 depicts the performance results for the various
experiments. The figure, organized as a three by three grid,
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Figure 4. Illustrating 95th percentiles of response times and raw machine times under three transaction mixes and two arrival MAPs.
Each row of graphs shows performance numbers for a different transaction mix. The left column is response time percentiles for the
low burstiness, the middle column is the high burstiness, and the right column summarizes the power usage of each configuration.

presents performance numbers in the form of 95th percentiles
of user response times for the three TPC-W mixes when the
arrival workload exhibits slight burstiness (leftmost column
of graphs), high burstiness (middle column of graphs), and
raw machine times units for the front tier (rightmost column).
All results are presented for various populations (emulated
browsers) in the system such that we show performance in
low load (low populations) and high load (high populations).
The first row of graphs corresponds to the browsing mix, the
second one to the ordering mix, and the last row to the shop-
ping mix. Each plot in Figure 4 shows the results for Fastrack,
the two boundary cases with a static number of front servers
equal to 1 and 8, and the target SLOs. We set a different SLO
for each mix. This is a user defined input to the algorithm,
and is dependent on the performance level needed for the ap-
plication. We consider the three mixes to be representative of
three different application types, each with a different SLO.
The last column of graphs shows the machine times as a func-
tion of population for the static 1 and 8 cases (the two parallel
flat lines that correspond to the two boundary static cases) as
well as the machine times for Fastrack. Naturally, the closer
the Fastrack machine times are to the lower flat line, the lower
the power consumption. In the following subsections, we dis-
cuss the performance and power consumption under various
transaction mixes.

4.1 Bottleneck Switch: Browsing Mix
The browsing mix (top row of graphs in Figure 4) exhibits

bottleneck switch inherent to the service processes at the front
and database tiers [7], before any burstiness is added to the
arrival process. Without a constant bottleneck across time, it
is difficult to efficiently provision servers to this mix, as in-
creasing capacity at one tier does not have the same effect as
if that tier were the consistent system bottleneck. Our algo-
rithm is able to stay near the response time SLO for this mix,
and is able to save significant power while doing so. In the low
burstiness case, up until 1400 EBs Fastrack is able to use only
1 server most of the time (see the machine time graph) while
still meeting the response time target. Beyond 1400 EBs, more
servers must be assigned to the front servers to sustain good
throughput and good response time. Correspondingly, more
front servers translate to high power usage. With 1800 EBs,
the static 8 server configuration is just slightly above our SLO
target of 1.2, while Fastrack misses the target by about 20%.
However, Fastrack was able to achieve that level while using
an average of only 3 servers over the course of the run. Fas-
track sees that the added front servers will not make a drastic
difference in response time, and thus the added power cost of
using all 8 servers is not worth. Fastrack strikes a balance
between reaching the SLO goal and achieving good power ef-
ficiency.



Figure 5 shows the system throughput (completed requests
per time unit) as a function of the number of EBs for brows-
ing when I = 41 (low arrival burstiness) and illustrates the
strengths of dynamic server provisioning. Up to 1200 EBs,
the static 1 server and static 8 server configurations result in
the same throughput, as the load is light enough that the ex-
tra servers do not help appreciably. However, at 1400 EBs
and beyond, throughput begins to level off for the static 1 ar-
rangement but continues to grow for the static 8 arrangement.
Fastrack exploits the positives in both static configurations. In
low load, i.e., for less than 1400 EBs, it behaves as the static 1
policy (see also the rightmost graph in Figure 4 for browsing,
where the machine times clearly suggest that 1 server is only
used if EBs are less than 1400). For more than 1400 EBs, Fas-
track tends to assign more front servers as the EBs increase,
and in doing so maintains the same throughput as the static
8 policy (see again the the top-right corner graph in Figure 4
for browsing, where the raw time is commensurate with the
increase of EBs).
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Figure 5. Throughput (served requests per time unit) for the
browsing mix, low burstiness.

In the high burstiness case, (see middle graph and right-
most graphs on the top row of Figure 4) spikes in arrivals cause
raw machine times to increase under lighter load, and the SLO
is violated. As in the low burstiness case, Fastrack provisions
servers efficiently, staying near the much more power inten-
sive static 8 case, while saving significant power. Past 1400
EBs, even the static 8 case surpasses the SLO threshold, but
Fastrack continues to maintain a balance between good re-
sponse times and efficient power usage.

4.2 Persistent Bottleneck: Ordering Mix
The ordering mix (see middle row of graphs in Figure 4)

poses a difficult problem for effective capacity planning. By
observing the end-to-end response time of requests across dif-
ferent EB levels, we see that the database contribution to the
end-to-end times is much smaller in comparison to the front
server. As a result, adding more front servers can significantly
improve the responsiveness of the system before the database
is unable to handle the increased arrival intensity from the
front server and becomes truly the bottleneck that regulates
the flow in the system. This mix clearly shows one of the
perils of over-provisioning; although a static 8 arrangement of
servers can maintain excellent response times, it is well be-
low the SLO, thus there is plenty of room for reducing power
consumption by reducing front server resources. Fastrack uses
minimal power until the SLO threshold is reached. As the load
increases, Fastrack only increases server usage enough to just

maintain the SLO, (see machine time graph for the ordering
mix, rightmost column of graphs in Figure 4).

4.3 Persistent Bottleneck: Shopping Mix

The shopping mix (see last row of graphs in Figure 4) pro-
vides a nice contrast to the ordering mix. Here, even in the
simple case of 1 front server only, the database is the sys-
tem bottleneck. Its relative speed compared to that of the
front server tier is such that it dominates end-to-end response
times. Provisioning additional front servers can actually have
a drastically negative impact on the system performance as the
static 8 experiment sees worse end-to-end response times than
the more power efficient configurations. In the low burstiness
case, extra server provisioning is detrimental to the system, as
it completely overloads the database tier. This mix makes a
great case against naively adding servers without careful ca-
pacity planning. In the case of high burstiness, it is not bene-
ficial to add more servers, despite the fact that bursts in traffic
cause some overloading at the front server tier. Although addi-
tional provisioning at the front server would initially improve
response time percentiles when a burst occurs, the net effect
would be negative, as it would still end up overloading the
database. When loads grow large enough to violate the SLO,
our algorithm correctly identifies the database as the system
bottleneck, and does not increase capacity at the front server
tier even in the presence of bursts, achieving excellent power
savings without compromising performance.

4.4 Transient Behavior

To show the algorithm’s responsiveness to burstiness, we
illustrate how Fastrack deploys servers for a representative
case. We have selected here the ordering mix and EBs=1000.
Figure 6 shows the request arrivals of low and high burstiness
to the front server. Arrivals are plotted across time. The re-
ciprocal graphs (second row in Figure 6) show the number of
deployed front servers for the two experiments across time.
At 1000 EBs, the ordering mix cannot maintain the SLO with
just 1 server. Throughout the run, Fastrack deploys a second
server during bursts, and then removes it again when the burst
recedes to maintain power efficiency. In the high burstiness
case (right column of graphs in Figure 6), traffic bursts cause
Fastrack to increase the front tier servers to 8. This mitigates
the effects of the bursts and good response times are main-
tained. Despite needing 8 servers at some times, the algo-
rithms follows bursts well enough and the majority of time is
still spent in low power configurations while still maintaining
the target SLO.

5 Comparisons
In this section we evaluate the effectiveness of Fastrack

in comparison with another dynamic assignment algorithm
for multi-tier systems [13]. The algorithm presented in [13]
(henceforth referred to as the umass algorithm) is based on a
multi-tier application model that can be summarized as fol-
lows: The peak arrival rate λi to the system is expressed as:

λi ≥
�
si +

σ2
a + σ2

b

2 · (di − si)

�−1

,
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Figure 6. Comparison of transient server allocations of Fas-
track for the ordering mix, EBs=1000, for low and high bursti-
ness levels.

where σ2
a and σ2

b are the variance of inter-arrival time and the
variance of service time, respectively, di is the mean response
time at tier i and si is the mean service time at tier i.
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Figure 7. Comparison of performance and power savings of
Fastrack and the umass algorithm.

A lower bound of λi is substituted into Little’s Law to find
the number of servers needed to accommodate a given arrival
rate

ηi =
⌈

βiλτ

λiZ

⌉
, (2)

where λτ

Z is the request arrival rate and βi is a tier-specific
constant. The reactive portion of the umass algorithm is a
comparison of predicted arrival rate to the observed arrival
rate. Data from a long running system are used to determine
a predicted arrival rate based on time of day, day of the week.
For the purpose of our experiments, we assume that the “pre-
dicted” arrival rates are already known a priori. For a reactive
adjustment to be made, the ratio of the observed arrival rate to

the predicted rate must be larger than a threshold:

λobs

λpred
> τ

We chose τ = 1.5, as it seemed a reasonable level to war-
rant addition provisioning. When this threshold is surpassed,
Eq.2 is reevaluated with the new observed arrival rate, and a
new provisioning is determined. An additional important pa-
rameter for provisions is βi in Eq.2. To allow for a favorable
implementation of the umass algorithm, we chose a β i such
that the initial number of servers are at a good level.

We conducted all experiments presented in Section 4 but
we only report here on the browsing experiments due to lack
of space. We selected the browsing mix to present because this
is the most challenging one for Fastrack, see first column of
graphs in Figure 4 that compare Fastrack with the SLOs. By
design, we anticipate that Fastrack nets better power efficiency
while the umass algorithm does better in performance. This is
because in the umass algorithm, more servers are added as in-
creases in the arrival rate are detected, but these servers are
not taken away when the arrival rate drops. This inevitably
results in better power savings for Fastrack. Figure 7 presents
the performance and power savings for the two algorithms as
a function of the system load (population) and confirms that
indeed Fastrack is superior to the umass algorithm for power
savings while it does not achieve as good response times. To
improve the clarity of the figure, we did not add the SLO tar-
gets, but these lines can be seen in Figure 4. The umass al-
gorithm detects the first burst and immediately assigns more
processors. Bursts are more pronounced in the light load cases
(low number of EBs) , so it is not surprising that a burst causes
a very high number of servers to be provisioned.

Results for the ordering and shopping mixes are more fa-
vorable for Fastrack and are not presented here due to lack
of space. In the case of the ordering mix, there are again in-
stances when traffic bursts cause a large number of servers to
be brought on. The shopping mix case shows much of the
same behavior, but response time does not improve much at
all with the addition of servers here, and so this is the clearest
case of wasted power for the umass algorithm.

6 Related Work
Dynamic resource management and power consumption

are emerging as key challenges in data center environments.
In response to the increased importance of this problem, there
has been a large body of research work on enterprise power
management. Many papers in this area, e.g., [3, 9], apply
server turn on/off mechanism for power management. These
early papers consider a simple single-tier Internet applica-
tions that are deployed using web server clusters. In [9],
the authors design an algorithm which periodically evaluates
whether nodes should be added/removed from the cluster,
based on threshold driven policy and expected performance.
The paper [3] considers the problem of resource allocation
and power management in hosting centers by using market-
based policies. The proposed framework enables adaptive re-
source provisioning by dynamic trade-offs of service quality



and cost. The authors approximate the resource demand on
cluster nodes from the observed historic information.

In [4], the authors address power management while meet-
ing the application response SLAs. They employ both tech-
niques for power management: shutting down the servers and
voltage scaling (DVS). The authors propose a solution that
integrates proactive and reactive mechanisms. The proactive
mechanism predicts load for the near future, and uses this in-
formation in a stochastic queuing model for server provision-
ing task. The reactive mechanism is based on feedback con-
trol and uses dynamic voltage scaling. The authors present a
simple prediction technique based on S-ARMA model. Our
approach also relies on proactive and reactive mechanisms,
but the proposed proactive mechanism is based on an insight-
ful workload model that significantly improves the accuracy
of load prediction.

There is a large body of research (e.g., [5, 14]) devoted to
the server consolidation problem with the objective of mini-
mizing the number of servers supporting workloads, that nat-
urally leads to a more efficient power usage. Most of these
papers employ the “black-box” approach, and hence, are not
application-centric. Commonly available resource demand
traces are the basis for such management systems. However,
there are many works, e. g., [11, 13, 1], which design dynamic
provisioning systems for targeted classes of applications, e. g.,
multi-tier applications. In [11], the authors discuss system-
workload context (system and workload characteristics) that
impact energy saving policies. Especially interesting are key
workload characteristics used by the authors, such as the load
ratio (defined as the ratio of the average load to the peak load)
and the rate of change in load in relation to the current load.
These characteristics aim to capture the load profile and serve
as a very simple characterization of burstiness. In [13], the
authors argue that dynamic resource provisioning of multi-tier
applications is very different from provisioning of single tier
applications (we share the same position). The authors de-
sign an analytical model of multi-tier application that practi-
cally reflects the required capacity at different tiers for a given
workload. The authors employ a combination of predictive
models and reactive techniques at different time scales for dy-
namic provisioning of multi-tier applications.

The work presented in this paper is different from the above
works in that it focuses on solving the performance/power
problem in the more difficult case of bursty workloads. Bursti-
ness precludes the use of analytical models that are used
in [14] as these models may result in predictions that underes-
timate the effects of burstiness [7]. In [7], new analytic mod-
els are proposed that can capture the performance effects of
burstiness switch in multi-tier systems. In [8], a methodol-
ogy is proposed that uses the index of dispersion as a turnable
knob to inject burstiness in TPC-W in a reproducible way. The
parameter-free Fastrack algorithm is different from the earlier
approaches in that it does not depend on specific workload
thresholds that trigger allocation/deallocation of resources. In
addition to identifying when to allocate more resources, Fas-
track is also effective in the prompt release of under-utilized
resources in contrast to other works that release resources only
when they are needed by other applications [13].

7 Conclusions
Effective resource allocation in multi-tiered system that

aims at meeting predefined SLOs while using minimal re-
sources is a challenging problem that is exacerbated by work-
load burstiness, uneven demands in the various tiers, and the
phenomenon of bottleneck switch. We presented Fastrack, a
self-adaptive, parameter-free algorithm that detects the start
and end of bursty periods and appropriately adjusts its con-
figuration parameters to meet SLOs while restraining the us-
age of additional resources. Extensive experimentation has
revealed that Fastrack can effectively operate under various
workload conditions and levels of burstiness in the arrivals.
Our results uniformly show that Fastrack is a robust, efficient
algorithm that can operate seamlessly in a variety of settings.

In the future, we intend to work on estimating the duration
of bursty and quiet periods to further refine Fastract. More-
over, we intend to implement Fastract in a real server farm
and measure its performance results.
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