
Cluster Comput
DOI 10.1007/s10586-008-0067-6

1000 islands: an integrated approach to resource management
for virtualized data centers

Xiaoyun Zhu · Donald Young · Brian J. Watson · Zhikui Wang · Jerry Rolia ·
Sharad Singhal · Bret McKee · Chris Hyser · Daniel Gmach · Robert Gardner ·
Tom Christian · Ludmila Cherkasova

Received: 22 September 2008 / Accepted: 9 October 2008
© Springer Science+Business Media, LLC 2008

Abstract Recent advances in hardware and software virtu-
alization offer unprecedented management capabilities for
the mapping of virtual resources to physical resources. It
is highly desirable to further create a “service hosting ab-
straction” that allows application owners to focus on ser-

X. Zhu (�) · D. Young · B.J. Watson · Z. Wang · J. Rolia ·
S. Singhal · B. McKee · C. Hyser · R. Gardner · T. Christian ·
L. Cherkasova
Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA
e-mail: Xiaoyun.Zhu@hp.com

D. Young
e-mail: deyoung@tiworks.com

B.J. Watson
e-mail: brian.j.watson@hp.com

Z. Wang
e-mail: Zhikui.Wang@hp.com

J. Rolia
e-mail: Jerry.Rolia@hp.com

S. Singhal
e-mail: Sharad.Singhal@hp.com

B. McKee
e-mail: Bret.McKee@hp.com

C. Hyser
e-mail: Chris.Hyser@hp.com

R. Gardner
e-mail: Robert.Gardner@hp.com

T. Christian
e-mail: Tom.Christian@hp.com

L. Cherkasova
e-mail: Lucy.Cherkasova@hp.com

D. Gmach
Technical University of Munich (TUM), Munich, Germany
e-mail: daniel.gmach@in.tum.de

vice level objectives (SLOs) for their applications. This calls
for a resource management solution that achieves the SLOs
for many applications in response to changing data center
conditions and hides the complexity from both application
owners and data center operators. In this paper, we describe
an automated capacity and workload management system
that integrates multiple resource controllers at three different
scopes and time scales. Simulation and experimental results
confirm that such an integrated solution ensures efficient and
effective use of data center resources while reducing service
level violations for high priority applications.

Keywords Data center · Virtualization · Resource
management · Control · Optimization · Integration

1 Introduction

Data centers are inexorably growing more complex and dif-
ficult for humans to manage efficiently. Although virtualiza-
tion provides benefits by allowing consolidation and driving
higher levels of resource utilization, it also contributes to
this growth in complexity. Data centers may include both
hardware- and software-level virtualization, such as HP’s
Virtual Connect [1] network virtualization technology, as
well as the hypervisor-based VMware ESX Server [2],
Citrix XenServer [3], Microsoft Hyper-V [4], and Virtual
Iron [5] products. Each technology offers different “control
knobs” for managing the mapping of virtual and physical
resources. Continually adjusting these knobs in response to
changing workloads and data center conditions can min-
imize hardware and energy costs while meeting the ser-
vice level objectives (SLOs) specified by application own-
ers. This activity should be automated to help avert the com-
ing complexity crisis in data center resource management
and more fully realize the benefits of virtualization.

mailto:Xiaoyun.Zhu@hp.com
mailto:deyoung@tiworks.com
mailto:brian.j.watson@hp.com
mailto:Zhikui.Wang@hp.com
mailto:Jerry.Rolia@hp.com
mailto:Sharad.Singhal@hp.com
mailto:Bret.McKee@hp.com
mailto:Chris.Hyser@hp.com
mailto:Robert.Gardner@hp.com
mailto:Tom.Christian@hp.com
mailto:Lucy.Cherkasova@hp.com
mailto:daniel.gmach@in.tum.de

Cluster Comput

The purpose of our work is to enable both application
owners and data center operators to focus on service pol-
icy settings, such as response time and throughput targets,
and not worry about the details of where an application is
hosted or how it shares resources with others. These details
are handled by our resource management solution, so that
system administrators can “set it and forget it”.

This paper describes three key contributions. First, we
propose the 1000 Islands solution architecture that supports
automated resource management in a virtualized data center.
It exploits multiple control knobs at three different scopes
and time scales: short-term allocation of system-level re-
sources among individual workloads on a shared server,
medium-term live migration of virtual machines (VMs) be-
tween servers, and long-term organization of server clus-
ters and groups of workloads with compatible long-term de-
mand patterns. This architecture integrates multiple resource
controllers that are designed using different analytical tech-
niques including control theory, bin packing, trace-based
analysis and other optimization methods. The innovation is
in leveraging each of these independently and then combin-
ing their power. Second, we define specific interfaces for co-
ordinating the individual controllers at run time to eliminate
potential conflicts. This includes interfaces for sharing pol-
icy information, so that policies do not have to be duplicated
among controllers, as well as application resource demands.
Finally, we validate the effectiveness of the integrated so-
lution through a simulation study, as well as experimental
evaluation on a testbed built from real systems.

Section 2 presents the 1000 Islands solution architecture,
and explains how its three controllers are integrated. Sec-
tion 3 describes the simulation environment and the experi-
mental testbed used to validate the architecture. The perfor-
mance evaluation results from two case studies are shown
in Sect. 4. Section 5 discusses related work. In Sect. 6, we
conclude and discuss future research directions.

2 Our solution

The 1000 Islands architecture (shown in Fig. 1) consists of
three individual controllers operating at different scopes and
time scales:

• On the shortest time scale (seconds), node controllers dy-
namically adjust resource allocations to the virtual ma-
chines (VMs) running on each node (physical server).
Each VM hosts a workload (WL), which is an applica-
tion or its component. The node controller aims to satisfy
the SLOs of individual applications in spite of changes in
workload demands.

• On a longer time scale (minutes), pod controllers manage
pods (workload migration domains consisting of multiple
nodes) by adjusting the placement of workloads on nodes
within a pod, in response to changing pod conditions.

• On the longest time scale (hours to days), pod set con-
trollers study the resource consumption history of many
workloads. This controller determines whether the data
center has enough resource capacity to satisfy workload
demands, places compatible workloads onto nodes, and
groups nodes into pods. A pod set can consist of multiple
non-overlapping pods.

The next three subsections describe the three individual
controllers, and the last subsection presents how the three
controllers are integrated.

2.1 Node controller

A node controller is associated with each node in a pod. It
manages the dynamic allocation of the node’s resources to
each individual workload running in a VM. Next, we de-
scribe two implementations of the node controller: the HPL
node controller and the TUM node controller. The former is
used for the measurement testbed and the latter in our work-
load emulation environment.

Fig. 1 The 1000 Islands
solution architecture consisting
of node, pod, and pod set
controllers

Cluster Comput

Fig. 2 Node controller architecture

HPL Node Controller The HPL node controller consists of
two layers: a set of utilization controllers (UCs) for the indi-
vidual VMs, and an arbiter controller (AC) for the node. Fig-
ure 2 shows this layered structure. For this implementation,
we use the term resource to refer to a specific type of system
resource (e.g., CPU) on a node, although the algorithm can
be generalized to handle multiple resources (such as mem-
ory, disk I/O or network bandwidth) at the same time.

A utilization controller collects the average resource con-
sumption of each VM from a sensor (see “S” in Fig. 2), and
determines the required resource allocation to the VM such
that a specified utilization target can be achieved. This is
done periodically with a control interval of seconds. We de-
fine a VM’s utilization as the ratio between its resource con-
sumption and resource allocation. For example, if a VM’s
measured average CPU consumption in a control interval is
0.3 of a CPU, and the specified utilization target is 75%,
then the utilization controller will drive the CPU allocation
for the VM towards 0.4 of a CPU in subsequent control in-
tervals. The utilization target for a workload is driven by its
need to meet its application-level SLO. For example, in or-
der for an interactive Web application to meet an average re-
sponse time goal of 1 second, the average CPU utilization of
the VM running the application may have to be maintained
at 60%. A feedback controller was presented in [6] to auto-
matically translate application-level SLOs to VM-level uti-
lization targets. This enhanced controller will be integrated
into the 1000 Islands architecture later.

All utilization controllers feed the desired resource allo-
cation for each VM (referred to as a request) into the ar-
biter controller, which determines the actual resource allo-
cations (referred to as an allocation) to the VMs. If the sum
of all the requests is less than the node’s capacity, then all
the requests are granted. In addition, the excess capacity is
distributed among the VMs in proportion to their requests.
On the contrary, if the sum of all the requests exceeds the
node’s capacity, the arbiter controller performs service level
differentiation based on workload priorities defined in ser-
vice policies by data center operators. In our current imple-
mentation, each workload is assigned a priority level and a
weight within that level. A workload with a higher priority

level always has its request satisfied before a workload with
a lower priority level does. Workloads at the same priority
level receive a percentage of their requests in proportion to
their weights. Finally, the allocations determined by the ar-
biter controller are fed into the resource allocation actuators
(see Fig. 1 or “A” in Fig. 2) for the next control interval.

TUM Node Controller The TUM node controller is used
in the trace-driven emulation environment. The time scale
it emulates depends on the sampling interval used for col-
lecting the traces, in this case, five minutes. The controller
emulates the relationship between resource utilization and
allocation as described above. Utilization targets for CPU
and memory are used to scale resource demands in traces
to allocations. The arbiter operates on the allocation val-
ues. The assumption is that a real node controller, such as
the HPL node controller, that operates at shorter timescales
would yield allocation requests that approach the TUM
controller’s allocation estimates when observed at the five
minute timescale. Unsatisfied allocations are carried for-
ward to the next control interval.

2.2 Pod controller

The pod controller provides automatic, policy-driven re-
arrangement of workloads within a pod in response to
changes in workload demands and infrastructure. Its primary
purpose is to react to aggregate resource requests exceeding
a node’s capacity, exploiting the fact that they will rarely
exceed total pod capacity. The pod controller uses live mi-
gration of VMs [7] to move workloads between nodes to
mitigate node overload.

In our experiments, moving a 512 MB VM takes slightly
over one minute from migration initiation to completion,
with only sub-second actual downtime. This makes live mi-
gration effectively transparent to the workload inside the
migrated VM, though the nodes experience transient CPU
and LAN overheads. Similar to the node controller, we use
the HPL pod controller for the measurement testbed and the
TUM pod controller for the workload emulation environ-
ment.

HPL Pod Controller The HPL pod controller [8] con-
sists of a simulated annealing algorithm that periodically
searches for VM to node mappings in accordance with a
node overload avoidance and mitigation policy. Sensor in-
formation on each VM’s resource consumption and work-
load placement policies specified by data center operators,
such as consolidation to the fewest physical nodes, are in-
cluded in the fitness function of the SA algorithm that is used
to guide the search for potential mappings. Candidate map-
pings are generated by modeling the effects of a succession
of random VM migrations, and are evaluated using a cost

Cluster Comput

function that penalizes mappings that lead to overload con-
ditions on any node. A node is defined as overloaded when
the total CPU request or memory consumption of its VMs,
plus the hypervisor and the DOM-0 overheads, exceeds the
available capacity of the node. Mappings with some head-
room are favored to avoid overload or SLO violations. To
mitigate overloads that do occur, mappings with fewer high
priority VMs per node enable more effective service level
differentiation by the node controller. This is done with a
nonlinear penalty on the count of high priority VMs per
node. The best mapping is turned into a migration list and
fed into the workload migration actuators (see Fig. 1).

This pod controller implementation has the following
three advantages. First, the optimization approach used, in
contrast with [17], simplifies adding new constraints such
as those representing cooling efficiency of different nodes,
into the problem. The objective then is to minimize the total
weighted penalties associated with soft to semi-hard con-
straint violations and maximize weighted rewards associ-
ated with desirable arrangements. A unique element of this
algorithm is a penalty for the overhead of live migration.
This can be a function of prior migration history to provide
critical hysteresis, such that minor changes in metrics will
only infrequently trigger migrations thus permitting an oc-
casional minor optimization.

Second, stability is a fundamental consideration, and is
defined here such that bounded input changes must result in
bounded controller reactions. Migration of a running VM
can have transient effects on that machine’s performance
(e.g., catching up on queued, re-tried network packets), as
well as overhead on the source and target nodes during
the migration. The combination of migration cost hysteresis
and a transient-damping settling time prevent bounded in-
put changes from resulting in unbounded migrations. With
migrations taking approximately one minute from start to
completion, a one minute settling time is used.

A third advantage of this algorithm is the creation and ex-
ecution of a migration plan whenever an atomic set of multi-
ple migrations are deemed desirable. For example, a failure
in the cooling system or large changes in several VM work-
loads could trigger this response. As part of the selection
of a new arrangement, a migration plan is created and eval-
uated, with migrations parallelized and strictly ordered as
needed to transiently satisfy or minimally violate constraints
and policies.

Note that what would be considered hard constraints
in a typical optimization problem are treated as soft con-
straints, and handled using proportional penalties in the
objective function. This allows the algorithm to find “less
bad” arrangements in response to unplanned events like in-
frastructure failures.

TUM Pod Controller The TUM pod controller [9] uses a
fuzzy logic feedback control loop. It continuously monitors

the nodes’ resource consumptions for values that are too
low or too high. In our experiments, a node is overloaded
whenever its CPU or memory consumption exceeds 99%
or 95%, respectively. Furthermore, a pod is lightly utilized
if the average CPU or memory consumption of all nodes
drops below 40% or 60%, respectively. Our justification for
these thresholds is beyond the scope of this paper, but ap-
pears in related work [10]. After detecting a lightly utilized
or overloaded situation, the pod controller identifies actions
to remedy the situation, considering the load situation of all
affected nodes and workloads. If a node is overloaded, it first
determines a workload on the node that should be migrated,
and then searches for another node to receive the workload.
These rules also initiate the shutdown and startup of nodes
to help reduce power usage within a pod.

2.3 Pod set controller

A pod set controller determines whether a data center pod
set has enough resource capacity to satisfy all workloads,
and periodically determines compatible sets of workloads
to place onto nodes within each pod. Our pod set con-
troller [11] supports capacity planning for pod sets, as well
as objectives that consolidate workloads to a small number
of nodes or balance workloads across nodes. To accomplish
this, it studies the historical resource demands of each work-
load and assumes that future demand patterns will be simi-
lar to past demand patterns. The pod set controller simulates
the future resource demand behavior of alternative workload
placements and uses an optimization heuristic to determine
a placement expected to take best advantage of statistical
multiplexing among time-varying workload demands.

2.4 Controller integration

One of our contributions is identifying necessary interfaces
between these three controllers, so that they can work well
together to achieve fully automated capacity and workload
management at a data center scale. The red arrows in Fig. 1
indicate these integration points. First, the node controllers
must provide estimated resource demands to the pod con-
troller. Otherwise, the pod controller might estimate re-
source demands that do not agree with the node controllers.
If the pod controller’s estimates are too low, then it will
pack too many workloads onto a node, possibly causing
application-level SLO violations. On the other hand, esti-
mates that are too high could trigger an excessive number
of overload conditions, and would reduce the power savings
that could be achieved by consolidating workloads onto as
few nodes as possible.

Second, the pod controller must provide pod performance
data to the pod set controller so that the latter can improve

Cluster Comput

Fig. 3 Simulation environment
setup

the compatibility of workloads it places in each pod, and re-
act to pod overload or underload situations by adding or re-
moving nodes. Third, the pod set controller should provide
hints to the pod controller about what will happen in the
near future. If a workload’s resource demand is expected to
increase significantly at a particular time, then the pod con-
troller can prepare in advance by placing that workload on
a lightly loaded node. Finally, all three controllers must be
configurable through a single user interface, and they must
consider the other controllers’ configuration parameters. For
example, the pod controller needs to know the workload
priorities used by the node controllers, so that it does not
group too many high priority workloads onto the same node,
thus preventing effective service level differentiation. When
properly integrated, these controllers automate resource al-
location and hide the complexity of resource management
from data center operators.

3 Validation of the solution

In order to validate the design of the proposed architecture
and to demonstrate the merits of the integration approach,
we have built both a host load emulator and an experimen-
tal testbed to perform workload consolidation case studies
using real-world resource consumption traces from enter-
prise data centers. For the work described here, we have used
the experimental testbed for evaluating the integration of the
HPL pod and node controllers in a small-scale pod, and the
emulator for evaluating the integration of the pod set and
TUM pod controllers in a large-scale pod with a larger num-
ber of workloads. This section describes the setup of these
two environments.

3.1 Host load emulator

Predicting the long term impact of integrated management
solutions for realistic workloads is a challenging task. We

employ a simulation environment to evaluate a number of
management policies in a time effective manner.

The architecture for the host load emulator is illustrated
in Fig. 3. The emulation environment takes as input histor-
ical workload resource consumption traces, per-workload
utilization targets for CPU and memory, per-workload pri-
ority and weight, node resource capacity descriptions, pod
descriptions, and the management policy. The node re-
source capacity descriptions include numbers of processors,
processor speeds, and physical memory size. A routing ta-
ble directs the historical time-varying resource consumption
data for each workload to the appropriate simulated node,
which then determines how much of its aggregate work-
load demand can be satisfied and shares this time varying
information through the central pod sensor. The manage-
ment policy determines how controllers are invoked. Pod
and pod set controllers periodically poll the sensor and de-
cide whether to migrate workloads from one node to another.
Migration is initiated by a call to the central pod actuator.
In our emulation environment this changes the routing table
and adds an estimated migration overhead to both the source
and destination nodes for the duration of the migration.

Our emulator gathers various statistics, including the fre-
quency and length of CPU and memory saturation periods,
node capacity used in terms of CPU hours, and the number
of workload migrations. Different controller policies have
different behaviors that we observe through these metrics.

3.2 Experimental testbed

Our experimental testbed consists of four VM hosts, as well
as several load generator and controller machines, all in-
terconnected with Gigabit Ethernet. Each VM host is an
HP Proliant server consisting of dual 3.2 GHz Pentium D
processors with 2 MB of L2 cache, 4 GB of main memory,
and SLES 10.2 with a Xen-enabled 2.6.16 kernel. Storage
for the VMs is provided by an HP StorageWorks 8000 En-
terprise Virtual Array, and the nodes connect to the array via

Cluster Comput

Qlogic QLA2342 Fiber Channel HBA. Each VM is config-
ured with 2 virtual processors and 512 MB of memory, and
runs SLES 10.2 for best interoperability with the Xen hosts.

We use an Apache Web server (version 2.2.3) as the test
application inside each Xen VM. It serves CGI requests,
each doing some random calculation and returning the re-
sult in HTML. Eight other physical machines are used to
generate workload demands on the VMs. These “driver” ma-
chines are mostly dual AMD Opteron servers with 1 MB of
L2 cache and 8 GB of main memory, each running Redhat
AS4. Each driver machine hosts two instances of a modified
version of httperf [12], which can continuously generate a
variable number of concurrent HTTP sessions. Each session
consists of a series of CPU-intensive CGI requests. In or-
der to reproduce the CPU consumption from the real-world
resource consumption traces, we first ran experiments to cal-
ibrate the average CPU time used by a CGI request, and then
we calculated the CGI request rate to produce a given level
of CPU consumption.

The Xen hypervisor interface exposes counters that ac-
cumulate the CPU time (or cycles) consumed by individual
VMs. The counters are sampled at fixed intervals, effectively
yielding a sensor for CPU consumption (i.e., resource con-
sumption sensor in Fig. 1). Information on the completed
transactions, like URLs and response times, is collected on
the client side. Xen also exposes interfaces in Dom-0 that al-
low run time adjustment of scheduler parameters such as the
CPU share for each VM (i.e., resource allocation actuator in
Fig. 1). In our experiments, we use the Credit Scheduler as
the actuator for CPU allocation, operated in the non-work-
conserving mode, which means that a VM cannot use more
than its share of the total CPU time, even if there are idle
CPU cycles. However, as noted earlier in Sect. 2.1, the ar-
biter in the node controller always allocates all the node’s
resource capacity to the VMs even if the node is underuti-
lized, so this does not result in unnecessary throttling of the
workloads. In addition, this capped mode of the scheduler
provides a straightforward guarantee on the CPU time allo-
cated to a VM and provides performance isolation among
workloads hosted by different VMs. Live VM migration in
Xen uses a bounded iterative pre-copy of VM memory from
node to node, followed by a stop and copy of remaining or
recently dirtied pages [7]. This increases the time between
migration initiation and completion, in favor of minimizing
VM down time when network connections might be lost.

4 Results from case studies

The following subsections discuss performance evaluation
results from two case studies. In the first study, we used
the host load emulation environment to evaluate the pod
set, TUM pod, and TUM node controllers. The second case

study was done on our experimental testbed using the HPL
node and HPL pod controllers.

4.1 Emulation results

In this study, we focus on the use of all three controllers
within a single pod. The evaluation used real-world load
traces for 138 SAP enterprise applications. The load traces
captured average CPU and memory consumption as re-
corded every 5 minutes for a three month period. Each work-
load has a utilization target of 66% for CPU to ensure in-
teractive responsiveness and a utilization target of 95% for
memory. All workloads have equal priority and weight. The
host load emulator walked forward through this data in suc-
cessive 5 minute intervals. The nodes in the emulated pod
had 8 2.93-GHz processor cores, 128 GB of memory, and
two dual 10 Gigabit Ethernet network interface cards for
network traffic and for virtualization management traffic, re-
spectively.

Migration overheads were emulated in the following way.
For each workload that migrated, a CPU overhead was
added to the source and the destination nodes. The over-
head was proportional to the estimated transfer time based
on the workload’s memory size and the network interface
card bandwidth. In general, we found our results to be in-
sensitive to proportions in the range of 0.2–1. Therefore, we
chose a factor of 0.5 of a CPU to be used throughout the
transfer time.

Figure 4 shows the results of an emulation where we used
the pod set controller alone to periodically rearrange the 138
workloads to minimize the time-varying number of active
nodes. For this scenario, we assumed the pod set controller

Fig. 4 CPU quality vs. rearrangement periods for pod set controller
only (with perfect knowledge of future demands)

Cluster Comput

had perfect knowledge of the future and chose a workload
placement such that each node was able to satisfy the peak of
its aggregate workload CPU and memory demands, which
gives us a theoretical baseline for comparison with algo-
rithms that have realistic assumptions. Figure 4 shows the
impact on capacity requirements of using the pod set con-
troller once at the start of the three months (i.e., Initial Re-
arrangement Only) and for cases where the workload place-
ment is recomputed every 4 Weeks, 1 Week, 1 Day, 4 Hours,
1 Hour, and 15 Minutes, respectively. The x-axis shows the
Total CPU Hours used relative to the 4 Hours case. A smaller
value indicates lower CPU usage. CPU Hours includes busy
time and idle time on nodes that have workloads assigned to
them. The cases with more frequent migrations incur greater
CPU busy time, due to migration overhead, but may have
lower total time if fewer nodes are needed. Shown in paren-
theses for each case is the average number of migrations per
workload per day. The Initial Rearrangement Only case has
migrations only at the very beginning, so it has the smallest
count. As the rearrangement period decreases, the migra-
tion overhead increases. The figure shows that re-allocating
workloads every 4 Hours captures most of the capacity sav-
ings that can be achieved. It requires 39% less CPU hours
than the Initial Rearrangement Only case (1.00 vs. 1.64) and
22% less CPU hours than rearranging on a daily basis (1.00
vs. 1.28). It uses 9% and 14% more CPU hours than rear-
ranging every hour (1.00 vs. 0.92) and 15 minutes (1.00 vs.
0.88), respectively, but it has much better CPU quality, as
we discuss in the next paragraph. That is why we selected
the 4 Hours case as our baseline.

Even though we assume perfect knowledge of workload
demands, we did not include the CPU overhead of migra-
tions when conducting our workload placement analysis.
For this reason, even the ideal cases can have time inter-
vals when a node’s CPU is saturated. However, there was
no memory overhead for migrations, so there was no occur-
rence of memory saturation for these cases. Because CPU
saturation can result in SLO violations in the hosted work-
loads, we use the term SLO violation event to refer to a time
interval where a workload is allocated less CPU than what
it demands. Figure 4 shows the frequency of SLO violation
events using a vertical bar for each case. The y-axis is a
logarithmic scale for the mean start-to-start time between
SLO violation events, which is calculated by dividing 12
weeks by the number of events. The bottom tick on a bar
corresponds to a violation event of one epoch (5 minutes) or
longer (i.e., all violation events). Each tick upwards corre-
sponds to two epochs (10 minutes) or longer, three epochs
or longer, as so forth.

For the 4 Hours case, there are SLO violation events last-
ing five minutes or longer every three hours, ten minutes or
longer every day and a half, and fifteen minutes or longer
every three weeks. This is aggregated over all 138 work-
loads. One of the ticks in the 15 Minutes case of Fig. 4 is

Fig. 5 Emulation results for four different combinations of controller
policies

annotated with a “10” to indicate that it corresponds with
events lasting 10 epochs (50 minutes) or longer. The care-
ful reader will observe that it is actually the ninth tick from
the bottom. This is because this case has no SLO viola-
tion events that are 9 epochs long, so the tick for 9 epochs
or longer would be in the same position as the tick for 10
epochs or longer.

We now describe several policies for integrating the con-
trollers. Note that all of the policies use the TUM node con-
troller. Policy names and descriptions only highlight the re-
lationship between the pod set and pod controllers. Four
policies are considered in this study:

• PC: the pod controller is used alone.
• PSC: the pod set controller is used alone.
• PSC‖PC: The pod set controller operates periodically

with the pod controller operating in parallel.
• PSC + PC: The pod controller is enhanced to invoke the

pod set controller on demand to consolidate workloads
whenever the servers being used are lightly utilized. This
is a tighter integration of controllers than when they oper-
ate in parallel.

Figure 5 shows the SLO violation events for these four
policies. The events are characterized by two numbers. The
x-axis shows the length of violations (in minutes), and the
mean start-to-start time (in hours) between events of a given
length are on the y-axis, which uses a log scale to better
show the dramatically different interarrival times. The data
points are discrete, due to the five minute granularity of
the emulator, and the points representing events of various
lengths for each case are connected by lines with different
colors, styles, and markers to guide the eye. Also shown are
error bars representing 95% confidence intervals.

Cluster Comput

The four test cases are indicated by labels, which include
the total CPU capacity, normalized relative to the 4 Hours
baseline, and the number of VM migrations executed per
workload per day by the pod set and pod controllers. For
example, the PC policy used 34% more capacity than the
baseline, and it migrated each workload 0.183 times per day
on average.

The use of a pod controller alone, i.e., PC, is most typ-
ical of the literature [13]. Figure 5 shows that the use of a
pod controller alone for managing the resource pool incurs
a 5 minute SLO violation event approximately each hour on
average, and a 10 minute violation about every 3 hours on
average. It has a normalized capacity of 1.34, which means
that it used 1.34 times as many total CPU hours as Fig. 4’s
ideal case with a 4 hour placement interval. While these are
good results, the remaining policies have much less frequent
5, 10, and 15 minute violations and required lower normal-
ized capacity.

PSC reduced normalized capacity to 1.28 by globally
consolidating workloads. However, it is the only policy to
have longer SLO violations because it is unable to adapt to
SLO violations between its 4 hour pod set controller con-
trol intervals. It had SLO violations that were 100 and 200
minutes in length, which were omitted from Fig. 5 for clar-
ity. PSC‖PC overcomes the quality issues while simulta-
neously reducing normalized capacity. The integrated con-
troller policy PSC + PC improves on quality further. This is
clear for 5 and 10 minute SLO violations, and is likely the
case for longer SLO violations according to the 95% confi-
dence intervals. However it used slightly more normalized
capacity, 1.27 instead of 1.26 for the PSC‖PC case.

We note that the PSC + PC case offered better quality
than the 4 hour ideal case from Fig. 4. This is only possi-
ble because it uses 1.27 times as much capacity as the ideal
case. From detailed results, the ideal case has 5 minute SLO
violations every 3.2 hours on average and 10 minute viola-
tions every 1.6 days on average. PC had 5 minute violations
every 5 hours, but had 10 minute violations every 0.96 days.
PSC‖PC had 5 minute violations every 3.1 hours, likely due
to increased use of migrations by the pod set controller,
and 10 minute violations also every 0.96 days. PSC + PC,
the tightly integrated controllers, had 5 minute violations
every 5.4 hours and 10 minute violations every 3.1 days.
It achieved the best quality while using only slightly more
capacity than PSC‖PC but less capacity than PC.

Finally, we note that policies employing the pod set con-
troller cause up to 10 times more migrations per workload
day than the PC policy. While this is not an issue for the re-
source pools we considered, it may be an issue in bandwidth
constrained environments.

4.2 Experimental results

Another case study was done on our experimental testbed
described in Sect. 3.2 to validate the effectiveness of the in-

tegration between the HPL node controller and the HPL pod
controller. We ran 16 Apache Web servers in 16 Xen VMs
on 4 physical nodes in a pod. The workloads were driven
using CPU consumption traces from 4 Web servers, 10 e-
commerce servers and 2 SAP application servers from vari-
ous enterprise sites. For the purpose of this study, we ignore
the potential heterogeneity in the servers where the original
applications were run, and map CPU consumption of x% in
the original trace to a workload demand of x% of a CPU on
our test server.

The workloads are associated with two classes of service,
where eight of them belong to the High Priority- (HP-) class
and the other eight belong to the Low Priority- (LP-) class.
We start with a semi-random initial placement of workloads,
where each node hosts four workloads, two in the HP-class
and two in the LP-class. We consider a resource utilization
target of 70% and 80% for HP-class and LP-class work-
loads, respectively, to provide service level differentiation
between the two classes. During resource contention on a
node, the resource requests of HP-class workloads are sat-
isfied, if possible, before the workloads in the LP-class get
their shares.

We compare three workload management policies in this
experimental study:

• Fixed Allocation (no control): Each VM (incl. Dom-0) has
a fixed 20% allocation of its node’s CPU capacity. There
are no VM migrations.

• PC‖NC (independent control): The HPL pod and node
controllers run in parallel without integration.

• PC + NC (integrated control): The HPL pod and node
controllers run together with integration.

The first policy is one without dynamic resource control,
and it simply provides a baseline for the study. The control
intervals for the pod and node controllers are 1 minute and
10 seconds, respectively.

Figure 6 shows a comparison of the resulting applica-
tion performance from using the three policies. From the
client side, a mean response time (MRT) is computed and
logged every 10 seconds over the duration of each experi-
ment (5 hours). To better illustrate the results, we consider a
2-s MRT target for the HP-class workloads and a 10-s target
for the LP-class workloads, as indicated by the two verti-
cal lines in the figure. For the Fixed Allocation policy, the
cumulative distribution function (CDF) of the MRT across
all 16 workloads is represented by the dashed line in Fig. 6.
No class of service was considered in this policy. All the
workloads achieve the 2-s target 68% of time and the 10-s
target 90% of time. For PC‖NC, or the independent control
policy, the solid line with a triangle marker represents the
CDF of the MRT for the HP-class workloads, and the solid
line with an ‘x’ corresponds to the LP-class workloads. As
we can see, the HP-class workloads achieve the 2-s target

Cluster Comput

Fig. 6 Cumulative distributions of 10-second mean response times for
all the workloads from using three workload management policies—no
control, independent control, and integrated control

Table 1 Probability of SLO satisfaction for different response time
targets, different workload management policies, and different priority
classes

MRT ≤ 2 s MRT ≤ 10 s

HP LP HP LP

Fixed allocation 68% 90%

PC‖NC 73% 57% 88% 67%

PC + NC 90% 53% 98% 70%

73% of time (a 5% improvement over Fixed Allocation),
but the LP-class workloads achieve the 10-s target only 67%
of time. For PC + NC, or the integrated control policy, the
MRT distributions for the HP-class and the LP-class work-
loads are represented by the two solid lines with a circle or
a dot marker, respectively. We see that the HP-class work-
loads achieve the 2-s target 90% of time, an improvement of
22% and 17% over the no control and independent control
policies, respectively. The relative improvements in these
two cases are 32% (22/68) and 23% (17/73), respectively.
The LP-class workloads achieve the 10-s target 70% of time,
similar to the no integration case. The values of these prob-
abilities are also summarized in Table 1 for easy reference.

To explain the observed difference between the two con-
troller policies, we recall that without integration, the pod
controller estimates workload resource demand based on
the observed resource consumptions only. In contrast, when
the two controllers are integrated, the node controller deter-
mines the resource allocation each workload needs to sat-
isfy its performance goal, and this information is provided
to the pod controller as an input. The results in Fig. 6 and
Table 1 clearly show that this integration enables the pod
controller to take into account the performance-driven re-
source demands of all the workloads, and therefore make

Table 2 Comparison of migration events and unsatisfied demand with
and without integration

No. of migration Unsatisfied demand

events (% of total demand)

HP LP HP LP

PC‖NC 17 14 15 12

PC + NC 13 22 9 15

better workload placement decisions such that the HP-class
workloads have higher probabilities of achieving their ser-
vice level objectives.

In addition, we computed the statistics of system-level
metrics from the controller logs to see if they demonstrate
similar trends as seen in the response time data. Table 2
shows a comparison of the two controller policies in terms
of two metrics: the total number of VM migrations that oc-
curred and the total unsatisfied demand (resource request) as
a percentage of total demand, for both the HP-class and LP-
class workloads. As we can see, the HP-class workloads ex-
perienced a smaller number of migrations using integrated
control (13) than using independent control (17). This is
consistent with our previous explanation that when resource
requests are considered instead of measured consumptions,
the HP-class workloads are less likely to be migrated and
consolidated, leading to better performance. Similarly, using
the integrated control policy resulted in a lower percentage
of unsatisfied demand (9%) compared to using the indepen-
dent control policy (15%). Both statistics are consistent with
the observed response time data shown in Fig. 6.

In Fig. 7, we demonstrate the impact of controller inte-
gration on a particular HP-class workload. The top two fig-
ures show the measured CPU consumption, the CPU request
computed by the utilization controller, and the actual CPU
allocation determined by the arbiter controller for this work-
load over a 10 minutes interval. In particular, Fig. 7(a) shows
the results from using independent node and pod controllers,
and Fig. 7(b) represents the integrated control policy. Fig-
ure 7(c) shows a comparison of the resulting response times
from both control policies.

As we can see, for the independent controllers case, the
actual allocation is below the request most of the time (see
Fig. 7(a)), causing the VM hosting this workload to be over-
loaded resulting in a high response time of approximately 10
seconds for most of the 10 minutes interval (see Fig. 7(c)).
This is likely due to the pod controller placing too many
workloads onto this node causing the shared node to be over-
loaded. Note that the response time drops off at around 300
seconds, which is due to the reduced resource demand as we
can see from Fig. 7(a). In a few sampling intervals that fol-
low, the allocation is below the request but above the average
consumption, which means that the VM is less overloaded

Cluster Comput

Fig. 7 Time series of the resource consumption, request, and alloca-
tion with independent control (a) and integrated control (b), as well
as measured mean response time with both control policies (c) for an
HP-class workload

and has a much lower response time. With the integrated
control policy, the CPU request is satisfied for most of the
interval (see Fig. 7(b)). This leads to a much lower response
time that remains under 1 second (see Fig. 7(c)). The ad-
vantage of the integrated control policy is that it made more
informed placement decisions that did not subject this HP-
class workload to an overload situation.

5 Related work

VMware’s VirtualCenter and DRS products [2] and the man-
agement infrastructure from Virtual Iron [5] provide alterna-
tives to parts of our solution. Each offers a degree of pod
control for workloads in hypervisor-based VMs. Our ap-
proach considers additional metrics, like application service
level metrics (e.g., response time and throughput), and uses
long-term historical usage trends to predict future capacity
requirements. The commercial products could possibly be
integrated into our architecture.

Other researchers have studied potential conflicts that can
arise when running multiple automation policies indepen-
dently without coordination. In [14], Kephart et al. studied
the scenario where a performance manager that dispatches

workloads to a set of blades runs in parallel to a power man-
ager that controls processor frequency and demonstrated
that oscillations can occur in both autonomic managers. The
paper also showed how this problem can be fixed by explicit
communication between the two managers. In [15], Heo
et al. identified the incompatibility between a DVFS adapta-
tion policy and a server on/off policy in a server farm when
they are not coordinated, and presented a co-adaptation ap-
proach that can resolve such conflicts. Neither study dealt
with resource management in virtualized data centers as is
considered in this article.

Xu et al. presented a two-layered approach to manag-
ing resource allocation to virtual containers sharing a server
pool in a data center and evaluated the scheme on a testbed
running VMware ESX Server [16]. The local and the global
controllers together offer a solution similar to the node con-
troller studied in this article, while using fuzzy logic instead
of feedback control. The solution does not explore other re-
source management mechanisms such as workload migra-
tion.

Khana et al. solved the dynamic VM migration prob-
lem using a heuristic bin-packing algorithm, evaluated on
a VMware-based testbed [13]. Wood et al. considered black
and grey box approaches for managing VM migration using
a combination of node and pod controllers in a Xen-based
testbed [17]. They only considered resource utilization for
the black box approach, and added OS and application log
information for the grey box approach. They found that the
additional information helped make more effective migra-
tion decisions. Neither work took advantage of long-term
demand patterns as we do using the pod set controller.

Raghavendra et al. integrated various sophisticated poli-
cies for power and performance management at the node
and the pod levels [18]. It presented a simulation study that
optimizes with respect to power while minimizing the im-
pact on performance. The simulation results for integrated
control suggest that between 3% and 5% of workload CPU
demand is not satisfied, but unsatisfied demands were not
carried forward between simulation periods. Our host emu-
lation approach carries forward demands and focuses more
on the length of events where performance may be impacted.

Control theory has recently been applied to performance
management in computer systems [19] through admission
control [20, 21] or resource allocation [22–24], including
dynamic resource allocation in virtualized environments
[6, 25, 26]. Compared with these prior solutions that only
dealt with individual non-virtualized or virtualized systems,
we have proposed an integrated solution for capacity and
workload management in a virtualized data center through a
combination of dynamic resource allocation, VM migration,
and capacity planning.

Cluster Comput

6 Conclusion and future work

In this paper, we introduce the 1000 Islands solution archi-
tecture that integrates islands of automation to the benefit of
their managed workloads, as well as our first steps toward
an implementation of this architecture.

While all of the controllers achieve their goals indepen-
dently using different analytic techniques, including con-
trol theory, meta-heuristics, fuzzy logic, trace-based analy-
sis, and other optimization methods, there is power in lever-
aging each controller independently and then combining
them in this unified architecture. In the emulations, the in-
tegrated pod set and pod controllers resulted in CPU and
memory quality that improved upon the ideal case, while
using only 27% more capacity. The testbed showed that the
integration of pod and node controllers resulted in perfor-
mance improvements of 32% over the fixed allocation case
and 23% over the non-integrated controllers, as well as re-
duced migrations for high priority workloads. In addition,
service level differentiation can be achieved between work-
load classes with different priorities.

As a next step, we plan to scale our testbed to a larger
number of physical nodes so that they can be divided into
multiple pods. This will allow us to evaluate the complete
solution architecture that consists of node, pod, and pod set
controllers on real systems, as well as study consolidation
scenarios with a much larger number of workloads.

We will also integrate with power [18] and cooling [27]
controllers, to better share policies and to offer a more uni-
fied solution for managing both IT and facility resources
in a data center. For example, our node controller can be
extended to dynamically tune individual processor P-states
to save average power, our pod controller can consider
server-level power budgets, and the thermal profile of the
data center can guide our pod set controller to place work-
loads in areas of lower temperature or higher cooling capac-
ity.

Ultimately, data center operators would like application-
level service level objectives (SLOs) to be met without
having to worry about system-level details. In [28], work-
load demands are partitioned across two priorities to en-
able workload-specific quality of service requirements dur-
ing capacity planning and runtime phases. This can be inte-
grated with node and pod controllers. In [29], application-
level SLOs are decomposed into system-level thresholds us-
ing performance models for various components being mon-
itored. These thresholds can potentially be used to drive our
utilization controllers at the VM level. However, this decom-
position is done over longer time scales (minutes). In [6], we
have developed a feedback controller for translating SLO-
based response time targets into resource utilization targets
over shorter time scales (seconds). These approaches can be

incorporated in our next round of integration. Finally, a dis-
tributed management framework is being developed for in-
tegrating all of these components in a scalable manner, such
that they can potentially manage a data center of 10,000
nodes.

References

1. HP Virtual Connect Enterprise Manager: http://h18004.www1.hp.
com/products/blades/components/ethernet/vcem/index.html

2. VMware ESX Server: http://vmware.com/products/vi/esx/
3. Citrix XenServer: http://www.citrixxenserver.com/products/Pages/

XenEnterprise.aspx
4. Microsoft Hyper-V:

http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx
5. Virtual Iron: http://www.virtualiron.com/products/
6. Zhu, X., Wang, Z., Singhal, S.: Utility-driven workload manage-

ment using nested control design. In: Proc. of the American Con-
trol Conference (ACC’06), June 2006

7. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach,
C., Pratt, I., Warfield, A.: Live migration of virtual machines. In:
Proc. of the 2nd Symposium on Networked Systems Design and
Implementation (NSDI’05), May 2005

8. Hyser, C., Mckee, B., Gardner, R., Watson, B.J.: Autonomic vir-
tual machine placement in the data center. HP Labs Technical Re-
port HPL-2007-189, February 2007

9. Seltzsam, S., Gmach, D., Krompass, S., Kemper, A.: AutoGlobe:
An automatic administration concept for service-oriented database
applications. In: Proc. of the 22nd Intl. Conference on Data Engi-
neering (ICDE’06), Industrial Track, April 2006

10. Gmach, D., Rolia, J., Cherkasova, L., Belrose, G., Turicchi,
T., Kemper, A.: An integrated approach to resource pool man-
agement: policies, efficiency and quality metrics. In: Proc. of
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’08), June 2008

11. Rolia, J., Cherkasova, L., Arlitt, M., Andrzejak, A.: A capacity
management service for resource pools. In: Proc. of the 5th Intl.
Workshop on Software and Performance (WOSP’05), Spain, July
2005

12. Mosberger, D., Jin, T.: Httperf—A tool for measuring Web server
performance. In: Proc. of the Workshop on Internet Server Perfor-
mance, June 1998

13. Khana, G., Beaty, K., Kar, G., Kochut, A.: Application perfor-
mance management in virtualized server environments. In: Proc.
of the IEEE/IFIP Network Operations & Management Symposium
(NOMS’06), April 2006

14. Kephart, J., Chan, H., Das, R., Levine, D., Tesauro, G., Raw-
son, F., Lefurgy, C.: Coordinating multiple autonomic managers
to achieve specified power-performance tradeoffs. In: Proc. of the
4th IEEE Int. Conf. on Autonomic Computing (ICAC’07), June
2007

15. Heo, J., Henriksson, D., Liu, X., Abdelzaher, T.: Integrating adap-
tive components: An emerging challenge in performance adaptive
systems and a server farm case-study. In: Proc. of the 28th IEEE
Int. Real-Time Systems Symposium (RTSS’07), December 2007

16. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: Auto-
nomic resource management in virtualized data centers using
fuzzy logic-based approaches. Cluster Comput. J. 11, 213–227
(2008)

17. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box
and gray-box strategies for virtual machine migration. In: Proc.
of the 4th USENIX Symposium on Networked Systems Design &
Implementation (NSDI’07), April 2007

http://h18004.www1.hp.com/products/blades/components/ethernet/vcem/index.html
http://h18004.www1.hp.com/products/blades/components/ethernet/vcem/index.html
http://vmware.com/products/vi/esx/
http://www.citrixxenserver.com/products/Pages/XenEnterprise.aspx
http://www.citrixxenserver.com/products/Pages/XenEnterprise.aspx
http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx
http://www.virtualiron.com/products/

Cluster Comput

18. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.:
No power struggles: Coordinated multi-level power management
for the data center. In: Proc. of the 13th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS’08), March 2008

19. Hellerstein, J., Diao, Y., Parekh, S., Tilbury, D.: Feedback Con-
trol of Computing Systems. Wiley-IEEE Press, New York (2004).
ISBN: 0-471266-37-X

20. Kamra, A., Misra, V., Nahum, E.: Yaksha: A self-tuning controller
for managing the performance of 3-tiered web sites. In: Proc. of
the Int. Workshop on Quality of Service (IWQoS’04), June 2004

21. Karlsson, M., Karamanolis, C., Zhu, X.: Triage: Performance
differentiation for storage systems using adaptive control. ACM
Trans. Storage 1(4), 457–480 (2005)

22. Abdelzaher, T., Shin, K., Bhatti, N.: Performance guarantees for
web server end-systems: A control-theoretical approach. IEEE
Trans. Parallel Distrib. Syst. 13, 80–96 (2002)

23. Lu, Y., Abdelzaher, T., Saxena, A.: Design, implementation, and
evaluation of differentiated caching services. IEEE Trans. Parallel
Distrib. Syst. 15(5), 440–452 (2004)

24. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic pro-
visioning of multi-tier internet applications. In: Proc. of the Int.
Conf. on Autonomic Computing (ICAC’05), June 2005

25. Wang, Z., Zhu, X., Singhal, S.: Utilization and SLO-based con-
trol for dynamic sizing of resource partitions. In: Proc. of the
16th IFIP/IEEE Distributed Systems: Operations and Manage-
ment (DSOM’05), October 2005

26. Padala, P., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant,
A., Salem, K., Shin, K.: Adaptive control of virtualized resources
in utility computing environments. In: Proc. of the EuroSys’07,
March 2007

27. Bash, C.E., Patel, C.D., Sharma, R.K.: Dynamic thermal manage-
ment of air cooled data centers. In: Proc. of the Intersociety Con-
ference on Thermal and Thermomechanical Phenomena in Elec-
tronic Systems (ITHERM’06), May 2006

28. Cherkasova, L., Rolia, J.: R-Opus: A composite framework for
application performability and QoS in shared resource pools. In:
Proc. of the Int. Conf. on Dependable Systems and Networks
(DSN’06), June 2006

29. Chen, Y., Iyer, S., Liu, X., Milojicic, D., Sahai, A.: SLA decompo-
sition: Translating service level objectives to system level thresh-
olds. In: Proc. of the 4th IEEE Int. Conf. on Autonomic Comput-
ing (ICAC’07), June 2007

Xiaoyun Zhu is a senior scientist
at Hewlett-Packard Labs in Palo
Alto, California. Her research in-
terests are in applying control the-
ory, optimization, algorithms, statis-
tical analysis and simulation to IT
systems and services management,
data center management and cloud
computing. She received her Ph.D.
in Electrical Engineering from Cal-
ifornia Institute of Technology in
2000, and her dual B.S. in Automa-
tion and Applied Mathematics from
Tsinghua University in 1994. She is
a member of the IEEE and ACM.

Donald Young has managed HP
Labs projects focused on applying
formal control theory and machine
learning to IT automation. His cur-
rent interests continue earlier au-
tomation and ecommerce themes;
this time applying them to the in-
tegration of internet business and
medical monitoring services. He
holds a Masters in Engineering Ad-
ministration from George Washing-
ton University and a BSEE from
Northeastern University.

Brian J. Watson is a research sci-
entist in Hewlett-Packard’s Sustain-
able IT Ecosystem Laboratory. His
interests include models and con-
trollers for maximizing the utiliza-
tion of server resources while en-
suring that performance, availabil-
ity, and other requirements are sat-
isfied. He is also interested in how
IT can help automate and reduce
the resource needs of other sectors
of the economy. His diverse ca-
reer has spanned computer science,
aerospace engineering, and physics.

Zhikui Wang received the B.S. de-
gree in Automation in 1995 from
Tsinghua University, M.S. degree
in Industrial Automation in 1998
from the Chinese Academy of Sci-
ences both at Beijing, China, and
Ph.D. degree in Electrical Engineer-
ing in 2005 from UCLA, Los Ange-
les, CA, USA. He is now a research
scientist at Hewlett-Packard Labo-
ratories, Palo Alto, CA, USA. His
research interests are in the control
and optimization of networks, com-
puters and data centers.

Jerry Rolia is a Principal Scien-
tist in the Automated Infrastruc-
ture Laboratory of Hewlett- Packard
Labs. His research interests include
resource pool management, soft-
ware performance engineering, and
utility and cloud computing. Jerry
received his Ph.D. from the Uni-
versity of Toronto in 1992, was an
Associate Professor in the depart-
ment of Systems and Computer En-
gineering at Carleton University in
Ottawa, Canada until 1999, and has
been with HP Labs since.

Cluster Comput

Sharad Singhal is a Distinguished
Technologist at Hewlett Packard
Laboratories, Palo Alto, CA. His
current research interests include
application of control theory to
systems management, policy-based
system management, and large-
scale management architectures. He
received the 2003 Joel S. Birnbaum
prize for innovation at HP, and the
Harding Bliss prize for his gradu-
ate work at Yale University. He ob-
tained his B. Tech degree from the
Indian Institute of Technology, Kan-
pur, and his M.S. and Ph.D. degrees

from Yale University. He is a member of the IEEE and the Acoustical
Society of America.

Bret McKee Bret McKee is a senior engineer at Hewlett-Packard in
Fort Collins, Colorado. His current career interests include virtualiza-
tion and networking protocols for file sharing. He received B.S. and
M.S. degrees in Computer Science from Iowa State University in 1986
and 1988.

Chris Hyser is a senior researcher
at Hewlett Packard Labs based in
Rochester, New York.

Daniel Gmach is a Ph.D. student
at the database group of the Tech-
nische Universität München. Before
joining the chair in 2003, he stud-
ied computer science at the Uni-
versity of Passau. His current re-
search interests are in adaptive re-
source pool management of virtual-
ized enterprise data centers, perfor-
mance measurement and monitor-
ing, hosting large-scale enterprise
applications, database systems, and
software engineering principles.

Robert Gardner has been an en-
gineer with Hewlett Packard for 25
years, with a broad variety of R&D
experience. He currently works for
HP’s Storage Works Division as the
team leader for the high availability
NFS kernel subsystem. He received
his B.S. and M.S. degrees in Com-
puter Science from Clarkson Col-
lege of Technology (now Clarkson
University) in 1983.

Tom Christian is a Principal Sci-
entist in the Sustainable IT Ecosys-
tem Lab at Hewlett-Packard Labo-
ratories and is currently working on
the Data Center Synthesizer compo-
nent of the Sustainable Data Cen-
ter project. Tom joined Hewlett-
Packard in 1978, having previously
worked at Ball Aerospace and the
University of Colorado at Boulder.
While at HP, Tom has contributed to
the development of networking, pro-
gramming language, operating sys-
tem, artificial intelligence and soft-
ware engineering products for HP
computer systems.

Ludmila Cherkasova is a senior
scientist in the Storage and Informa-
tion Management Platforms Labora-
tory at HP Labs, Palo Alto. Before
joining HP Labs, she was a senior
researcher at Institute of Computing
Systems, Russia, and adjunct asso-
ciate professor at Novosibirsk State
University. Her current research in-
terests are in distributed systems,
internet technologies and network-
ing, performance measurement and
monitoring, characterization of next
generation system workloads and
emerging applications in the large-
scale enterprise data centers.

	1000 islands: an integrated approach to resource management for virtualized data centers
	Abstract
	Introduction
	Our solution
	Node controller
	HPL Node Controller
	TUM Node Controller

	Pod controller
	HPL Pod Controller
	TUM Pod Controller

	Pod set controller
	Controller integration

	Validation of the solution
	Host load emulator
	Experimental testbed

	Results from case studies
	Emulation results
	Experimental results

	Related work
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

