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Abstract—Virtualization offers the potential for cost-effective 
service provisioning. For service providers who make significant 
investments in new virtualized data centers in support of private 
or public clouds, one of the serious challenges is the problem of 
recovering costs for new server hardware, software, network, 
storage, management, etc. Gaining visibility and accurately 
determining the cost of shared resources used by collocated 
services is essential for implementing a proper chargeback 
approach in cloud environments. We introduce and compare 
three different models for apportioning cost and champion the 
one that is least sensitive to workload placement decisions and 
provides the most robust and repeatable cost estimates. A 
detailed study involving 312 workloads from an HP customer 
environment demonstrates the result. Finally, we employ the cost 
model in a case study that evaluates the impact on the cost of 
exploiting different virtualization platform alternatives for the 
312 workloads. For example, some workloads may cost more to 
host using certain virtualization platforms than on others or on 
standalone hosts. We demonstrate different decision points with 
potential cost savings of nearly 20% by “right-virtualizing” the 
workloads. 

Keywords-component; Resource Sharing, Workload Placement, 
Virtualization, Burstiness, Cost models 

I. INTRODUCTION 
Virtualization technologies promise great opportunities for 

reducing energy and hardware costs through server 
consolidation. Moreover, virtualization can optimize resource 
sharing among applications hosted in different virtual 
machines to better meet their resource needs. As a result more 
and more computing can be conducted in shared resource 
pools that act as private and public clouds. A new hot topic in 
cloud computing and the virtualized world is how to account 
for shared infrastructure usage and to chargeback the costs of 
running services on top of the underlying physical 
infrastructure. In the recent past, before the virtualization era, 
the accounting model was relatively simple and 
straightforward: the server hardware, its power usage, and 
software costs were directly associated with the deployed 
application using these resources, while the storage and 
networking costs were typically apportioned on a usage basis. 
When multiple virtual machines with different resource 
requirements are deployed to a resource pool and when the 
virtual machines may be frequently reassigned to different 
physical servers, the question becomes more complex: “who is 
responsible for the incurred costs?” and “how to attribute the 
cost recovery”? The focus of this paper is on the notion of cost 

recovery or chargeback, as opposed to pricing or what 
customers are willing to bid/pay for resources.  

A common sense approach for establishing the cost of 
providing a service is to extend the usage-based model, i.e., 
from virtualization layer monitoring information one can 
derive average resource usage per application for a costing 
interval, e.g., three weeks, and then the physical server costs 
can be split up respectively. Currently, many service providers 
employ such simplified usage–based accounting models 
[1─4]. However, the relationship between workloads and costs 
is actually more complex. Some workloads may have a large 
peak to mean ratio for demands upon server resources. We 
refer to such workloads as bursty. For example, a workload 
may have a peak CPU demand of 5 CPU cores but a mean 
demand of 0.5 of a CPU core. Such ratios may have an impact 
on shared resource pools. A pool that aims to consistently 
satisfy the demands of bursty workloads will have to limit the 
number of workloads assigned to each server. This affects the 
number of servers needed for a resource pool. Thus, burstiness 
affects costs. Further, server resources are rarely fully utilized 
even when workloads are tightly consolidated and all servers 
are needed Even though many services can be assigned to a 
server, some portion of the resources remain unused over time. 
The amount of unused resources may depend on workload 
placement/consolidation choices and these choices may 
change frequently. The costs of such unallocated resources 
must be apportioned across workloads, but it should be done 
in a fair and predictable way. Even traditional cloud service 
provider pay-per-use models factor in such unusable capacity 
into their pay-per-use pricing.  

In this paper, we discuss these issues, consider three 
models for apportioning server costs among workloads that 
share servers in such environments, and consider the 
implications of these different choices in a study with 312 
workloads from an HP customer environment. We then 
employ our choice of cost model in a case study that evaluates 
the impact on the cost of exploiting different virtualization 
platform alternatives for the 312 workloads. Each alternative 
has its advantages and disadvantages; a key differentiator is 
cost. We demonstrate different decision points with potential 
cost savings of nearly 20% by “right-virtualizing” the 
workloads. 

This paper is organized as follows. Section II presents the 
background on the workload consolidation approach and tools 
we employ. Section III formally introduces the notion of costs 



and three models for apportioning costs. Section IV presents a 
workload characterization for a server consolidation exercise 
considered in the paper. Section V presents a study that 
compares the three proposed cost models. Section VI 
demonstrates the usefulness of the proposed cost model by 
evaluating design choices for a virtualized environment. 
Finally, we present related work and offer a summary, 
conclusions, and a description of our next steps. 

II. BACKGROUND: WORKLOAD CONSOLIDATION ENGINE 
This section briefly describes the workload consolidation 

engine employed in the costing method and right-
virtualization studies. Its main functionality is to find an 
appropriate workload placement while minimizing the number 
of servers used for hosting these workloads. The workload 
consolidation engine has two components [6]. 

• A simulator component that emulates the assignment of 
several application workloads on a single server. It 
traverses per-workload historical time varying traces of 
demand to determine the peak of the aggregate demand 
for the combined workloads. If for each capacity attribute, 
e.g., CPU and memory, the peak demand is less than the 
capacity of the attribute for the server then the workloads 
fit on the server. 

• An optimizing search component that examines many 
alternative placements of workloads on servers and 
reports the best solution found. The optimizing search is 
based on a genetic algorithm [5].  

The consolidation engine supports both consolidation and 
load leveling exercises. Load leveling balances workloads 
across a set of resources to reduce the likelihood of service 
level violations. The engine offers the controlled overbooking 
of capacity and is capable of supporting a different quality of 
service for each workload [7]. Without loss of generality, this 
paper considers the highest quality of service, which 
corresponds to a required capacity for workloads on a server 
that is the peak of their aggregate demand. The engine can be 
used to support studies on the advantages of consolidation and 
for operational management [16]. 

III. COSTS AND APPORTIOINING COSTS 
The total costs of a resource pool include the acquisition 

costs for facilities, physical IT equipment and software, power 
costs for operating the physical machines and facilities, and 
administration costs. Acquisition costs are often considered 
with respect to a three year time horizon and reclaimed 
according to an assumed rate for each costing interval. 
Without loss of generality, this paper focuses on server and 
virtualization software licensing costs only.  

Below, we define three categories of resource usage that 
can be tracked separately for each server resource, e.g., CPU, 
memory, for each costing interval. To simplify the notation, 
the equations that we present consider only one server 
resource at a time, e.g., CPU or memory for one costing 
interval. Then the corresponding costs over all resources are 

summed up to give a total cost for all server resources for each 
costing interval. Final costs are the sum of costs over all 
costing intervals. The three categories of resource usage are: 

• Direct resource consumption by a workload: the 
notation ds,w represents the average physical server 
utilization of a server s by a workload w. The values of ds,w 
are in [0,100]. Note, that ds,w is 0 if a workload w does not 
use a server s. 

• Burstiness for a workload and for a server: the notation 
bs,w represents the difference between peak utilization of a 
server s by workload w and its average utilization 
represented by ds,w. The values of bs,w are in [0,100]. 
Additionally, bs represents the difference between the peak 
utilization of a server s and its average utilization. The 
values of bs are in [0,100]. 

• Unallocated resource for a server: the notation as 
represents unallocated (unused) server capacity; it is 
defined as the difference between 100 and the peak 
utilization of server s. The values of as are in [0,100]. The 
notation a refers to unallocated resource. 

Next, we present 3 different models for apportioning cost. 
We refer to these as server-usage, server-burst, and pool-burst 
models.  

First, we consider a server-usage model that takes into 
account only the direct resource consumption by W workloads. 
This a traditional usage-based approach applied by many 
service providers due to its simple definition and 
straightforward resource accounting schema. Suppose a server 
s has a cost Cs. The server costs include CAPEX, e.g., fraction 
of acquisition costs based on the length of the considered 
interval, as well as OPEX, e.g., costs for power associated 
with the server. We define a workload’s server-usage share of 
a server as ∏server-usage

s,w: 
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We will demonstrate the outcome of the introduced models 
by considering and comparing the costs of two specially 
selected workloads in the set of 312 workloads from an HP 
customer environment (this workload set will be described in 
more detail in the next Section IV). We consolidate these 
workloads using the consolidation engine described in the 
previous Section II, and then compute their cost in the 
produced consolidation scenario c. 

Figure 1 shows CPU demands of two workloads for three 
weeks (100 shares correspond to one 1GHz CPU) and 
demonstrates the impact of load burstiness on costs. Both 
workloads exhibit similar average CPU demands: 162 CPU 
shares for Workload A and 170 for Workload B. Using Eq. (1) 
for the consolidation scenario c, the CPU cost for hosting 
Workload A is $36 whereas for Workload B $39. However, 
this cost model does not reflect the real hosting costs for the 
two considered workloads. Workload A has much higher 
variability and much higher peaks than Workload B, 1200 
CPU shares compared to 645 CPU shares, i.e., Workload A 



has two times higher peaks than Workload B. Burstiness of 
Workload A actually causes a less dense workload placement 
possible on the server, and hence a lower average server 
utilization, and the need for more servers. The server-usage 
approach does not take into account the impact of workload 
burstiness on costs. 
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Figure 1 Example: CPU demands of two workloads 

To take into account burstiness and unallocated resources 
we partition server cost Cs based on utilization to get Cd

s, Cb
s, 

Ca
s, respectively, where Cd

s corresponds to costs associated 
with the average utilization of the server s, and Cb

s and Ca
s 

correspond to the difference between peak and average 
utilization of the resource, and difference between 100% and 
the peak utilization of the resource, respectively. 
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with the average server utilization 10 ≤≤ d
su  and the peak 

utilization 10 ≤≤ b
su .  

For the server-burst model, we divide the burst portion of 
costs for a server in a manner that is weighted by the 
burstiness of each workload on the server. In a second step, 
the server’s unallocated resources are apportioned based on 
the bursty costs. Server-burst ∏server-burst

s,w is defined as: 
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The ε value, a small value, in the numerator and 
denominator of the 2nd term of the first equation ensures that 
the denominator does not evaluate to zero for cases where 
there is no difference between peak and mean resource usage. 
Using Eq. (2) with consolidation scenario c, the total CPU 
costs are $54.7 for Workload A and $21.7 for Workload B. 

The difference stems from the fact that Workload A is much 
burstier than Workload B. 

The proposed server-burst model incorporates more 
accurately the workload resource usage patterns over time in 
the cost structure. However, note that dividing costs in this 
way may lead to a lack of robustness for workload costs. The 
computed costs are sensitive to the placement of workloads on 
servers. In particular, the amount of unused resources at the 
server depends on the workloads assigned to the server, and 
hence may differ under different placement decisions. This 
might correspond to a significant portion of the cost. It may 
change based on placement decisions and therefore introduces 
variability for a workload’s reported share of cost. Intuitively, 
a cost for a given workload should be mostly defined by the 
amount of resources used and the resource usage pattern and 
should be independent of workload placement decisions: the 
customer should not be charged different costs for the same 
workload under different workload placement scenarios. 

To provide a more robust cost estimate, we introduce the 
following pool-burst model that attributes burstiness cost and 
unallocated resources using measures for the S servers in the 
resource pool instead of the individual servers. 
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Using Eq. (3) with consolidation scenario c, the total CPU 
costs are $62.2 for Workload A and $23.0 for Workload B. 
This approach attributes all the unallocated resources in the 
server pool in a fair way among all the workloads and makes it 
less dependent on the workload placement decisions.  

In Section V, we present a study that compares cost 
apportioning results for different models defined by Eq. (1), 
(2) and (3). The introduced formulas are applied separately to 
various resources such as CPU and memory. The sum of the 
resulting costs represents the total costs for a workload.  

IV. WORKLOAD CHARACTERIZATION 
To evaluate the effectiveness of different cost apportioning 

models, we obtained three months of workload trace data for 
312 workloads from one HP customer data center. Each 
workload was hosted on its own server, so we use resource 
demand measurements for the server to characterize its 
workload's demand trace. Each trace describes resource usage, 
e.g., processor and memory demands, as measured every 5 
minutes.  

We define CPU capacity and CPU demand in units of CPU 
shares. A CPU share denotes one percentage of utilization of a 
processor with a clock rate of 1 GHz. A scale factor adjusts for 
the capacity between nodes with different processor speeds or 
architectures. For example, the nodes with 2.2 GHz CPUs in 



our case study were assigned 220 shares. We note that the 
scaling factors are only approximate; the calculation of more 
precise scale factors is beyond the scope of this paper. The 
memory usage is measured in GB. 

Figure 2 and 3 summarize the memory and CPU usage for 
the workloads under study. Figure 2 shows the average and 
maximum memory usage for each workload. Note, that we 
order workloads by their average memory usage for 
presentation purposes. Figure 3 shows the average and 
maximum CPU usage of corresponding workloads. There are 
a few interesting observations:  

• For 80% of the workloads, the memory usage is less than 
2 GB. While the maximum and average memory usage are 
small and very close in absolute terms the peak to mean 
ratios are still high.  

• For 10% of the workloads the memory usage is much 
higher, 10─70 GB; the maximum memory usage can be 
very large in absolute terms but the peak to mean ratios are 
less than 3.  

• There are strong correlations: workloads with a high 
memory usage (both peak and average) have higher  
average CPU usage. Figure 3 shows that the first 30 
workloads have high memory usage and higher average 
CPU usage than the remaining workloads. 

•  Most workloads have very bursty CPU demands: while 
most of the time these workloads have low CPU usage 
(80% of the workloads use on average less than 220 CPU 
shares, which corresponds to one physical CPU) their 
maximum CPU demand is rather high (42% of the 
workloads have a peak usage of more than 1000 CPU 
shares).  

• The average peak to mean ratio for CPU usage was 52.6, 
with some workloads having a peak to mean ratio above 
1000. 
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Figure 2: Workload memory usage 

One of the traditional questions for any workload analysis 
is: how typical are the observed characteristics that are 
presented above? Most observations about burstiness of the 
CPU usage patterns were found and discussed in some other 
studies as well. In particular, a study presented in [8] has 
analyzed the CPU demands of 139 applications over a period 

of 5 weeks. It showed that more than half of all studied 
workloads are very bursty: their top 3% of CPU demand 
values are 2─10 times higher than the remaining CPU 
demands in the same workload. Furthermore, more than half 
of the workloads observe a mean demand less than 30% of the 
peak demand. These observations show the bursty nature of 
CPU demands for enterprise applications in different studies. 
Consolidating such bursty workloads onto a smaller number of 
more powerful servers is likely to reduce the capacity needed 
to support the workloads. 
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Figure 3: Workload CPU usage 

V. COST APPORTIONING STUDY 
We conducted a comprehensive study using the workload 

data for the 312 workloads to evaluate the three introduced 
cost models. In the study, we consider the following shared 
resource pool configuration: each server consists of 24 x 2.2-
GHz processor cores, 96 GB of memory, and two dual 10 Gb/s 
Ethernet network interface cards for network traffic and 
virtualization management traffic, respectively. The total 
acquisition cost for each of these servers was estimated as 
$23,000, including licensing costs. The costs were 
approximately $10,500 for CPU and $12,500 for memory. 
Using a linear depreciation and assuming a lifetime of three 
years the cost for three weeks is $442 per server. 

For workload consolidation, we employ the consolidation 
engine described in Section II that minimizes the number of 
servers needed to host the workloads while satisfying their 
time varying resource demand requirements. The engine is 
able to offer many solutions that are near-optimal. To evaluate 
the robustness, i.e., repeatability, of costs assignments for our 
approaches, we consider 100 consolidation solutions for a 
three week costing interval. For the 100 solutions, the 
consolidation engine reported solutions that assigned the 312 
workloads to between 18 and 20 physical servers in the 
resource pool causing the fine sharing of resources. 

Figure 4, 5, and 6 show the costs for the workloads as 
calculated using the server-usage, Eq. (1), server-burst, Eq. 
(2), and pool-burst, Eq. (3), approaches, respectively.  



Visual inspection shows that the server-usage and server-
burst approaches have very wide ranges for the assigned costs. 
The average differences between min and max costs assigned 
to the workloads are 79% and 72%, respectively. Taking into 
account burstiness decreases the variability in assigned costs, 
but does not yet yield robust cost assignments. For example, 
for Workload 5 of Figure 5 cost could range from $107 to 
$334 for the same work. Such big differences would make it 
very hard to plan and charge for customers workloads.  

 
Figure 4: Server-usage model: costs with Eq. (1) 

 
Figure 5: Server-burst model: costs with Eq. (2) 

 
Figure 6: Pool-burst model: costs with Eq. (3) 

Figure 6 shows the results for the pool-burst approach. Its 
cost assignment is much less sensitive to workload placement 
decisions and thus has a much tighter range. The average 
difference between min and max costs is reduced to 13%, 
which mostly reflects the difference that arises from 
consolidating to between 18 and 20 servers. 

Clearly, the pool-burst model provides the most 
predictable cost per hosted workload. This cost is much less 
impacted by the workload placement outcome compared to the 
other two considered cost models, and it incorporates the 
resources usage characteristics of a given workload in the 
most fair way. 

Our next goal is to analyze the cost breakdown with 
respect to its different components: i) overall cost structure 
with respect to direct resource usage, burstiness, and unused 
resources, ii) CPU cost structure with respect to direct CPU 
usage, CPU burstiness, and unused CPU portion, and a similar 
analysis for the memory cost: iii) direct memory usage, its 
burstiness, and unused memory resources, and finally, i) CPU 
vs memory cost. 

Figure 7 gives a breakdown of the average sum of CPU 
and memory costs over the 100 consolidation scenarios as 
apportioned by the direct usage (according to ds,w), bursty 
usage (according to bs,w), and unallocated usage (i.e., as) with 
respect to Eq. (3). The workloads are sorted by total cost. The 
figure shows that for most workloads, the largest components 
in the costs are due to direct resource usage and usage 
burstiness. As defined by Eq. (3), the relative costs for 
unallocated resources are similar for all workloads. In this 
study, the unallocated costs were almost entirely due to 
memory costs as it is apparent from the more detailed memory 
cost analysis shown in Figure 9.  

 
Figure 7: CPU + Memory Costs per Workload 

Finally, Figure 7 shows that the ratio between costs for 
direct usage and for burstiness differs significantly between 
the workloads. This is expected as the usage burstiness is an 
individual characteristic of a workload, and may differ 
significantly across different workloads. 



Figure 8 and 9 show the detailed analysis of costs 
distribution for direct usage, burstiness and unallocated 
capacity for CPU and memory, respectively. We note that in 
this consolidation scenario CPU was the bottleneck, so costs 
for unallocated CPU resources are almost negligible as shown 
in Figure 8, and the most of unallocated costs are due to 
memory costs as it is apparent from the detailed memory cost 
analysis shown in Figure 9. The two figures also indicate that 
costs for burstiness are much higher for CPU than for memory 
indicating that a typical memory usage pattern is less bursty 
compared to the CPU usage pattern. 

 
Figure 8: CPU Costs per Workload 

 
Figure 9: Memory Costs per Workload 

 
Figure 10: Sum of CPU and Mem. Costs per Workload 

Finally, Figure 10 shows the sum of the costs for CPU and 
memory per workload in our study. Note, that the workloads 
are ordered in the order of decreasing total workload costs. 
The figure clearly shows that for most of the small workloads 
CPU costs dominate whereas the few really large workloads 
are significantly dominated by memory costs. These large cost 
workloads constitute less than 10% of all the workloads. 
Remember that the outcome of the workload consolidation 
engine was 18─20 servers to host all the workloads in the 
considered set. It means that the cost of these 20 largest 
workloads can dominate capacity usage on their assigned 
servers. The next section presents another case study that is 
based on the proposed cost model. It compares different 
alternatives for employing virtualization. 

VI. TO VIRTUALIZE OR NOT 
Commercial virtualization technologies offer excellent 

support for managing shared resource pools. Naturally, they 
have licensing fees. The fees per server can be comparable to 
the cost of stand-alone servers. As we saw in the previous 
sections, not all the workloads use resources in the same way 
in a consolidated environment. It may be that some large 
workloads cost more to run within a consolidated environment 
than to run on a dedicated server. Our goal is to design an 
automated approach that apportions workload cost in the 
shared virtualized environment to identify such workloads. 
Other hosting alternatives can be considered for these 
workloads to ensure that they are “right-virtualized.” The 
workloads can be hosted directly on dedicated physical 
machines or using virtualization solutions with lower or no 
licensing fees. For example, a workload could be less 
expensively deployed to a server virtualized with Hyper-V 
[15] or on a server running an open-source virtualization 
technology such as KVM [13] or Xen [14]. 

Our approach takes into account the configuration of hosts 
and the time varying demands of workloads, i.e. resource 
usage traces of the application over time. The costs-per-host 
include the host list price, license and maintenance fees for a 
virtualization solution, and host power usage. Prices are 
obtained from the hp.com web site and power usage 
information from HP Power Advisor [9]. We assume a three 
year lifetime for the hosts. The time varying demands of 
workloads are customer specific. 

In the first phase, a desirable host configuration is chosen 
for the resource pool. The host has a certain capacity in terms 
of processing CPU cores and memory. An automated 
consolidation exercise packs the workloads to a small number 
of these hosts. A tool such as HP Capacity Advisor [10] (that 
is based on the CapMan [6] described earlier in Section II) can 
be used for this purpose. The approach takes into account the 
aggregate time varying (multiple) resource usage of the 
workloads and a given capacity of the hosts. Multiple host 
alternatives can be considered iteratively. 

In the second phase, we apportion the cost of the shared 
hosts in the pool among the hosted workloads using the pool-
burst model introduced in Section III. If the cost associated 



with a workload is greater than the cost of a smaller server that 
could also host the workload, then the workload is a candidate 
for right-virtualizing. The method can be repeated for different 
combinations of resource pool host and smaller server host 
configurations.  

In the third phase, we evaluate the average resource usage 
in the pool to make sure that the selected host configuration 
for the resource pool is balanced and well utilized. For 
example, if host memory is often less than 50% utilized we 
may reduce the memory size for the hosts and repeat the 
exercise. 

To evaluate the effectiveness of our approach, we again 
use the three month traces of monitoring data (CPU and 
memory) for 312 workloads from an HP customer that was 
described and analyzed in Section IV. For the consolidated 
exercise, we consider a shared resource pool configured of HP 
ProLiant DL385 G7 servers each with 24 x 2.2-GHz processor 
cores and 96 GB of memory (similar to the configuration that 
was considered and analyzed in Section V). We chose the 
hardware configuration such that after our consolidation 
exercise the peak utilization of CPU and memory were 
balanced for the servers. The acquisition cost for each servers 
is estimated as $23,000, including virtualization platform 
licensing and support costs of $9,800 for a popular 
commercial virtualization solution [4]. We define CPU 
capacity and CPU demand in units of CPU shares (100 shares 
correspond to one 1GHz CPU). Memory usage is measured in 
GB. 
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Figure 11: Costs for different scenarios 

The consolidation engine minimizes the number of servers 
needed to host the set of workloads while satisfying their time 
varying resource demands [6]. Figure 11 summarizes the 
results. Consolidating all workloads into VMs with the 
popular virtualization platform requires a resource pool of 31 
servers with a total cost of $741,441 for a 3 year lifetime 
including estimated IT power costs of $27,580 ($0.1 $/KWh).  

Apportioning the costs across hosted workloads reveals 
that 22 workloads are the candidates for right-virtualizing. For 
these 22 workloads we consider DL385 G7 servers that each 
have two 8 core CPUs with 2.4 GHz and 72 GB of memory. 
We assume no additional costs for virtualization. By “right-
virtualizing”, the cost for the customer decreases by $77,641 
(by 12%). The structure of the cost changes in the following 

way: hardware acquisition costs increase to $453,468 (by 
10%) while virtualization costs decrease to $176,472 (by 
42%). 

We note that because many workloads with high memory 
demand are now hosted outside the pool, we are able to reduce 
the memory size of the resource pool nodes to 48 GB (called 
as the optimized resource pool) without affecting the number 
of workloads that can be hosted. This leads to the additional 
hardware savings of $49,750 for the customer and results in 
18.4% of total costs savings, mostly due to lower 
virtualization licensing costs.  

Finally, the cost of increased power demand for the 
optimized solution is included in our model. Power represents 
a small fraction of total cost for the considered servers.  Large, 
high-end servers are often used for consolidation and are very 
power-efficient in this context. We note that for less power 
efficient and less expensive servers, power will represent a 
larger fraction of total cost. However, the increase in power 
costs for operating a few more servers is expected to be much 
smaller than the savings. We do not consider cooling cost and 
do not expect it to have much impact on total cost. Additional 
networking costs are also not considered.  

To summarize, by considering workload costs that are 
based on the introduced robust cost model, a customer is 
offered a visibility into virtualization costs and the cost of 
alternative less expensive solutions. It is an important exercise 
that helps a customer to make an informed design choice. 

VII. RELATED WORK AND COMPETITIVE APPROACHES 
Historically, cost models in support of chargeback in 

shared IT systems have followed one of several strategies: no 
cost, fixed cost, variable cost based on resource demand, and 
variable cost based on volume. The choice of model depends 
on the desired impact of the strategy on user behavior. The 
pool-burst method we propose is variable cost method that can 
be applied to resource demands or traffic volumes. It is novel 
in that it addresses challenges inherent from the nature of 
modern shared resource pools as opposed to earlier mainframe 
and consolidated environments. Modern resource pools are 
typically made up of large numbers of servers with capacity 
that may be similar to a workload’s demands, and where there 
is a great deal of flexibility regarding dynamic changes to 
workload placement. We have demonstrated that new cost 
models, such as our proposed pool-burst model, are required 
for these environments. These models must take into account 
the impact of demand burstiness that may limit the number of 
workloads that can be assigned to a server and resulting 
impact on cost for other workloads assigned to the server. The 
approach we introduced was shown to provide for stable 
chargeback results. The cost model naturally led to a “right-
virtualization” case study to support decisions regarding 
choices for virtualization based on costs; which is a reasonable 
desired behavior. Pool-burst model is more similar to cost 
models for the electrical system that take into account the peak 
of power demand, or some large percentile, and total power 
use for cost recovery [12]. The greater the peak the more 



electrical grid infrastructure must be deployed regardless of 
mean usage. Similarly, shared resource pool infrastructure 
must also be sized to handle burstiness. 

Amazon EC2 [1] charges per hour for fixed sized virtual 
machines. We consider workloads that do not all fit on their 
offered machine sizes. We consolidate to much larger 
machines and consider a much finer sharing of resources. In 
[11], the authors present Joulemeter, a virtual machine power 
metering approach. They use models to apportion power 
consumption of the physical machine to the hosted virtual 
machines. However, their models are based on actual resource 
utilization only. In contrast to their work, we consider the 
burstiness of workloads to apportion fixed costs to the 
workloads in a less workload placement sensitive manner.  

Some CDNs charge for video delivery on a per Mbps 
sustained model. This means that the customer pays for the 
volume of traffic at any given time, and not based on the total 
bits transferred. Typically, in this pricing model the user is 
charged for excess traffic above the volume of Mbps that he is 
committed to. Often a 95th percentile metric is employed 
where the customer is allowed to burst over the committed 
Mbps allotment for less than 5% of the month with no penalty. 
This model aims to charge for burstiness when it exceeds a 
predefined usage budget [17].  

Customers are benefiting from the advantages of 
virtualization and no longer hesitate to consolidate even their 
production workloads. Many service providers [1][2][3] use a 
single virtualization platform to host and manage all 
workloads. Such an approach provides certain advantages but 
may come at a price. In our case study, the alternative design 
scenarios, that consider different virtualization platforms as a 
possible design choice, could reduce infrastructure and 
licensing costs by up to 20%. 

VIII. CONCLUSIONS AND FUTURE WORK 
In this paper we introduce and compare three different cost 

models for apportioning costs in shared resource 
environments. We described workload performance features 
that impact resource pool costs and show that these must be 
taken into account if the true impact of workloads on resource 
pool costs is to be considered. We have shown that different 
apportioning approaches have an impact on the robustness of 
cost assignments and present an approach that offers robust, 
i.e., predictable, cost assignments. Cost assignments based on 
average usage and even burstiness were not as predictable in 
shared resource pool environments. The proposed pool-burst 
cost model supports a reliable and predictable cost 
apportioning in the shared compute environment, and can also 
be useful in support of more elaborate pricing models. In 
particular, we demonstrated an interesting use case of the 
proposed model where the customer is presented with a set of 
alternative “right-virtualizing” solutions (and their respective 
costs) for the selected workloads to be hosted with different 
means. The customer can compare the design choices and then 
make an intelligent decision about them. In our case study, 

these different design alternatives lead to potential cost 
savings of nearly 20% by “right-virtualizing” the workloads. 

Our future work includes: improving our cost models to 
better reflect the costs for non-bottleneck resources, i.e., costs 
for unallocated non-bottleneck resources may be better 
apportioned based on the resource utilization of the bottleneck 
resource; applying and extending the proposed method to 
other aspects of cost including infrastructure, power, and 
human operation costs; planning for resources that are not 
used all the time and the relationship with pricing models; 
considering additional dynamism where workloads are 
migrated at runtime; and applying the methods to more 
example workloads. Finally, we will also explore the impact 
of using other high percentiles for resource usage rather than 
the peak resource usage, i.e., the 100 percentile, in our 
apportioning formulas. 
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