
A Capacity Planning Framework for Multi-tier
Enterprise Services with Real Workloads
Qi Zhang

College of William and Mary
Williamsburg, VA 23187, USA

Ludmila Cherkasova
Hewlett-Packard Labs

Palo Alto, CA 94304, USA

Guy Mathews, Wayne Greene
Hewlett-Packard

Palo Alto, CA 94304, USA

Evgenia Smirni
College of William and Mary
Williamsburg, VA 23187, USA

Abstract—With complexity of systems increasing and customer
requirements for 7oS growing, new methods and modeling tech-
niques that explain large-systems’ behavior and help predict their
future performance are required to effectively tackle the emerg-
ing performance issues. To accurately answer capacity planning
questions for an existing production system with a real workload
mix, we propose a new capacity planning framework that is
based on the following three components: i) a Workload Profiler
that dynamically builds the workload pro!le; ii) a Regression-
based Solver that is used for deriving the CPU demand of client
transactions on a given hardware; and iii) an Analytical model that
is based on a network of queues representing the different tiers.
To validate our approach, we conduct a detailed case study using
the access logs from two heterogeneous production servers that
represent customized client accesses to a popular and actively
used HP Open View Service Desk application.

I. PROBLEM STATEMENT

As IT and application infrastructures become more com-
plex, predicting and controlling the issues surrounding sys-
tem performance and capacity planning become a difcult
and overwhelming task to many organizations. For larger IT
projects, it is not uncommon for the cost factors related to
performance tuning, performance management, and capacity
planning to result in the largest and least controlled expense.
Application performance issues have an immediate impact on
customer satisfaction. A sudden slowdown of enterprise-wide
application can affect a large population of customers, can
lead to delayed projects, and ultimately can result in company
nancial loss. It is not unusual for a piece of new hardware to
be added into the infrastructure to alleviate performance issues
without fully understanding where the problem really is.
Large-scale enterprise development projects use a collection

of mechanisms and interfaces in a dynamic enterprise IT
environment to connect different applications where classic,
data-processing legacy systems can be integrated with agile
web-based front-end applications. Application servers provide
a standardized platform for developing and deploying scalable
enterprise systems. Application servers are becoming a core
component of an enterprise system and an integral part of
a new trend towards building service-oriented architectures.
Today, the three-tier architecture paradigm has become an
industry standard for building scalable client-server appli-
cations. In multi-tier systems, frequent calls to application
servers and databases place a heavy load on resources and may

cause throughput bottlenecks and high server-side processing
latencies.
With complexity of systems increasing and customer re-

quirements for QoS growing, the research challenge is to
design effective system modeling techniques in order not
only to explain large-system behavior but also predict and
plan their future performance. Capacity planning is a critical
area obtaining a lot of attention in IT management aiming at
quality of service support and decision making [1]. Typically,
preliminary system capacity estimates are done by using
synthetic workloads or benchmarks which are created to reect
a “typical application behavior” for “typical client requests”.
Many of industry benchmarks are build using this principle [9],
[10]. Traditional capacity planning methodologies [5], [6]
aim to accommodate variations in load under such “typical
application behavior”, and examine peak loads and system
utilization to conclude on the number of clients that can be
handled by the system. However, real workloads rarely exhibit
this feature. While this performance evaluation approach can
be useful at the initial stages of design and development
of a future system, it might not be adequate for answering
specic questions about the existing production system. Often,
a service provider does need to answer the following questions:

• How many additional clients can be supported by the
existing system i) while still providing the same perfor-
mance guarantees, e.g., response time under 6 sec., and
ii) assuming that new clients perform activities as already
existing clients in the system, i.e., the system processes
the same type of workload?

• Does the existing system have enough available capac-
ity for processing an additional service for N number
of clients where the client activities and behaviors are
specied as a well-dened subset of the current system
activities?

• If the current client population doubles, then what is the
expected system response time?

Instead of focusing on loads solely, a robust capacity plan-
ning methodology must also consider the changing workload
mix since the system capacity directly depends on the types
of user performed activities. In this work, we propose a novel
capacity planning framework, called R-Capriccio, for practical
capacity evaluation of existing production systems under real
workload. R-Capriccio can assist in providing answers for

advanced “what-if” scenarios in system capacity analysis
where the evaluated system operates under a diverse workload
mix. It uses a similar closed multi-tier model as in [7], but
in contrast to [7] or any examples in the existing literature
of capacity planning, R-Capriccio does not use a controlled
environment to parameterize the analytic model. Instead of
characterizing the overall service time of every server, it uses a
statistical regression method to approximate the service cost of
individual core transactions. This CPU cost function together
with the transaction mix help for approximating system service
times that vary with a changing transaction mix.
The use of statistical methods in capacity planning has

been proposed in the early 80’s [8], [1], but the focus was
on a single machine/cluster that is much simpler than current
large-scaled multi-tiered systems. Recently statistical methods
are getting more attention in computer performance analysis
and system performance prediction. In [2] the authors use
multiple linear regression techniques for estimating the mean
service times of applications in a single-threaded software
server. These service times are correlated with the Application
Response Measurement package (ARM) data to predict system
future performance. In [3],[4] the authors focus on large-
scale distributed servers as our work does. They use linear
regression for predicting the transaction response time under
varying transaction mix. To the best of our knowledge, R-
Capriccio is a rst capacity planning framework which pro-
vides a practical, exible and accurate toolbox for answering
capacity planning questions for multi-tier production systems
with real workloads. More importantly, it can be used for
explaining large-scale system behavior and predicting future
system performance.

II. SOLUTION WE ARE WORKING ON

R-Capriccio is comprised of the following key components:
• Workload profiler: The proler extracts a set of most
popular client transactions, called core transactions, to
characterize the overall site workload and the most pop-
ular client sessions at the site.

• Regression-based solver: Using statistical regression, the
solver approximates the resource cost (CPU demand)
of each core transaction on a given hardware. Thus
a real workload mix can be directly mapped into the
corresponding CPU demand requirements.

• Analytical model: For capacity planning of multi-tier
applications with session-based workloads, an analytical
model based on network of queues is developed, where
the queues represent different tiers of the application.

We consider a web page accessed by the client and gener-
ated by the application as the basic unit of client/server activity
in R-Capriccio and call it a transaction. A web page consists
of an HTML le and embedded objects retrieved via the HTTP
protocol. The regression technique works well for estimating
the CPU cost of transactions that represent a collection of
smaller objects, where direct measurements fail. There are no

practical means to effectively measure the service times for all
these objects, while the accurate CPU consumption estimates
are required for capacity planning of the systems operating
under real workload mix. Thus, one of the main problems is
to approximate the CPU cost of different client transactions at
different tiers, and then use these cost functions for evaluating
the system resource requirement under diverse real workloads
to accurately size a future system.
A prerequisite for applying our framework is that a service

provider collects the following information:
• the application server access log that reects all processed
client requests and client activities at the site;

• CPU utilization at all tiers of the evaluated system.
Workload pro!ler. The proler collects a set of workload

and system metrics over time: i) the average CPU utilization,
ii) the number of different transactions, iii) the number of con-
current sessions, and iv) the client think times. Additionally,
for each time window (1-hour in our case study), the proler
provides the average CPU utilization as well as the number
of transactions Ni for the a set of M most popular client
transactions, where 1 ≤ i ≤ M . A fragment of the workload
prole is shown in Table I.

TABLE I
AN EXAMPLE OF TRANSACTION PROFILE.

Time N1 N2 N3 · · · NM UCPU Think Time
(hour) (%) (second)
1 21 15 21 · · · 0 13.3201 72.58
2 24 6 8 · · · 0 8.4306 107.06
3 18 2 5 · · · 0 7.4107 160.21
· · ·

Regression-based solver. We use the Non-negative Least
Squares Regression to approximate the CPU cost Ci of dif-
ferent client transactions (at different tiers) from the following
equation:

C0 +
∑

i

Ni · Ci = UCPU · T , (1)

where T is the length of the monitoring window; N i is the
number of transactions of the i-th type (1 ≤ i ≤ M); UCPU

is the average CPU utilization during this monitoring window;
Ci is the average CPU service time of transactions of the i-th
type and C0 is the average CPU overhead related to system
activities that “keep the system up”.
To solve for Ci, one can choose a regression method from a

variety of known methods in the literature. The non-negative
least squares regression method used here is to nd a set of
non-negative values of Ci to minimize the squared error of the
measured UCPU and the tted U ′

CPU which is computed by
applying the solutions of Ci into Eq. (1). Statistical regression
works well for estimating the CPU demands of transactions
that represent a collection of smaller objects. thus when direct
measurement methods are not feasible.
Analytical model: Due to the session-based client behavior,

a multi-tier system is usually modeled as a closed system with

a network of queues where the queues represent different tiers
of the application as shown in Fig. 1. The number of clients in

0

...

4

Q4

Q3

3

...

Q

Q

Q

L

L!1

L!2

L

L!1

L!2

Q

2

Q2

1

Q1

Fig. 1. Queuing network modeling of a multi-tier closed system.

the system is xed. When a client receives the response from
the server, it issues another request after certain think time.
This think time is modeled as an innite server Q0 in Fig. 1.
We use the results of the regression method to derive service
time in each queue and parametrize our analytical model of
queues. This closed system can be solved efciently using
Mean-Value Analysis (MVA) [1].
The workload mix of real systems changes over time, hence

service times could not be modeled as a xed distribution
for the entire lifetime of the system. Still, one can treat the
workload as xed during shorter time intervals (e.g., 1 hour).
R-Capriccio executes the capacity planning procedure for each
monitoring time window and then combines the results across
these time points to get the overall solution.

III. CASE STUDY

To validate R-Capriccio, we conducted a detailed case study
using the access logs from two heterogeneous production
servers that represent customized client accesses to a popular
and actively used HP Open View Service Desk application.
These traces have a detailed information about each processed
request at the OVSD business portal during July 2006, includ-
ing request arrival and departure time, request URL, and client
session ID.
Overall, there are 756 different unique transactions (or

transaction types). Consistently with earlier works, the studied
workload exhibits a very high degree of reference locality: i.e.,
a small subset of site transactions is responsible for a very high
percentage of client accesses, e.g.,

• the top 10 transaction types accumulate 79.1% of all the
client accesses;

• the top 20 transaction types are responsible for 93.6% of
the site accesses;

• the top 100 transaction types account for 99.8% of all
site accesses.

Fig. 4 shows the percentages of these transaction types
in the workload mix over time. Each point in these gures
corresponds to the statistics of one hour. The gure shows that
the transaction mix is not stable over time. During weekends,
20% of the entire transactions are of the second popular

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35

Pe
rc

en
ta

ge
 (%

)

Time (days)

rank 1
rank 2
rank 3

Fig. 2. Portions of the transactions belonging to the second top 3 popular
transactions across time.

transaction type, while the transactions of the most popular
type are only about 5%. During peak times in workdays, 40%
of the transactions are of the most popular type, but even
during the same workday the transaction mix changes from
hour to hour.
Solving a large number of equations with 756 variables

might result in a long computation time. So, the question
is whether accurate performance results can be obtained by
approximating the CPU cost of a much smaller set of popular
(core) transactions. To this end, we divided the OVSD trace
into two parts. The rst half is used as a training set to solve
for the CPU cost Ci using the non-negative LSQ regression
method. The second half is treated as a validation set. To
capture the changes in user behavior we observe a number of
different transactions over xed length 1-hour time intervals.
Fig. 2 (a), (b) show the CDF of the relative errors for training

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

CD
F

(%
)

Relative error (%)

(a) Training

K = 10
K = 20
K = 60

K = 100

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

CD
F

(%
)

Relative error (%)

(b) Validating

K = 10
K = 20
K = 60

K = 100

Fig. 3. Server 1. CDF of relative errors under a different number of of core
transactions chosen for a regression method: (a) training set, (b) validating
set.
and validating sets for server 1 (results for server 2 are similar
to those reported in this gure). Overall, the non-negative
LSQ regression achieves good results when it is is applied
to approximate the CPU cost of the top 10, 20, 60, or 100

most popular transactions. For the training set, at least 70%
of the points have relative errors less than 10%. At least
92% of the points have relative errors less than 20%, see
Fig. 2 (a). The accuracy of the method for the validating
set is only slightly worse, see Fig.2 (b). Prediction accuracy
signicantly improves when workload locality properties are
taken into account, i.e., when we apply regression to the top 20
most popular transactions and omit the rest of rarely accessed
transactions. This indicates that the regression method with
core transactions has a unique ability to “absorb” some level
of uncertainty or noise always present in real-world data.
Combining the knowledge of critical workload features with
statistical regression provides an elegant and powerful solution
for performance evaluation of complex production systems
with real workload.
We use the deduced costs Ci of the 20 most popular

transaction types to approximate the average service time for
each 1-hour time interval. These service times are the input
to the third step of R-Capriccio n the analytic model. Fig. 4
shows the validation results by comparing the throughput of
the analytic model and the measured transaction throughput of
server 1. The analytic model captures the real system behavior
well, i.e., 90% of the relative errors are below 18.7%.

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 /

ho
ur

Time (day)

measured
analytic

Fig. 4. Server 1. Throughput of transactions: measurements versus analytic
model.

Assume that R-Capriccio is used to answer the following ca-
pacity planning question: How many clients can be supported
by the existing system, providing the desirable performance
guarantees, e.g., response time, is under ΓR? The MVA-based
analytic model with simple changes can answer this question
for each hour. The smallest value among the results of all the
hours is the global solution of this system. Table II gives the
summary of results in our case study. Because server 2 has a
faster CPU, it is expected to have a much higher capacity than
server 1. Higher values of threshold allow for a larger number
of clients to be supported by the system.

TABLE II
MAXIMUM NUMBER OF CLIENTS UNDER DIFFERENT ΓR

ΓR(sec) Server 1 Server 2 Total
1 472 1349 1821
3 528 1478 2006
6 565 1534 2099
10 608 1580 2188

The capacity of the entire application server composed
of these two heterogeneous servers is also determined by

the load balancing policy. For example, if the SLA denes
that the average transaction response time is not higher than
1 seconds, the studied application server can handle 1821
concurrent clients but only if the load balancer is aware of
the heterogeneous capacity of these two servers, it can split
the load proportionally to server capacity. If the load balancer
partitions transactions equally, capacity reduces to 944, just
half of the previous one. Such a big difference indicates
the signicant impact of a load balancing policy on system
capacity as heterogeneous CPU speeds must be taken into
account.

IV. CONCLUSION
In this paper, we present R-Capriccio, a new capacity

planning framework which provides a practical, exible and
accurate toolbox for answering capacity planning and anomaly
detection questions for multi-tier production systems with real
workloads. More importantly, it can be used for explaining
large-scale system behavior and predicting future system per-
formance. We used the access logs from the OVSD application
servers to demonstrate and validate the three key components
of R-Capriccio: the workload proler, the regression-based
solver, and the analytic model. We believe that this framework
also provides a natural extension to the existing Open View
tool such as Open View Transaction Analyzer (OVTA) and can
be easily integrated with it to offer a new attractive service
to system administrators and service providers dealing with
complex and dynamic multi-tier applications.

REFERENCES
[1] D. Menasce, V. Almeida, L. Dowdy. Capacity Planning and Performance

Modeling: from mainframes to client-server systems. Prentice Hall,
1994.

[2] J. Rolia, V. Vetland. Correlating Resource Demand Information with
ARM Data for Application Services. In Proc. of the ACM Workshop on
Software and Performance, 1998.

[3] T. Kelly. Detecting Performance Anomalies in Global Applications. Sec-
ond Workshop on Real, Large Distributed Systems (WORLDS’2005),
2005

[4] T. Kelly, A. Zhang. Predicting Performance in Distributed Enterprise
Applications. HP Labs Tech Report, HPL-2006-76, May 2006.

[5] Daniel Villela, Prashant Pradhan, Dan Rubenstein. Provisioning Servers
in the Application Tier for E-Commerce Systems. In Proc. of IWQoS’04,
Montreal, Canada, 2004.

[6] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic Provi-
sioning of Multi-tier Internet Applications. In Proc. of the 2nd IEEE
International Conference on Autonomic Computing (ICAC-05), Seattle,
June 2005.

[7] B. Urgaonkar, G. Pacici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
Analytical Model for Multi-tier Internet Services and its Applications.
In Proc. of the ACM SIGMETRICS’2005, Banff, Canada, June 2005.

[8] T. M. Kachigan. A Multi-Dimensional Approach to Capacity Planning.
In Proc. of CMG Conference 1980. Boston, MA, 1980.

[9] The Workload for the SPECweb96 Benchmark. URL
http://www.specbench.org/osg/web96/workload.html

[10] TPC-W Benchmark. URL http://www.tpc.org

