
COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 55

M

SUPPORTING APPLICATION
QUALITY OF SERVICE IN
SHARED RESOURCE POOLS

By JERRY ROLIA, LUDMILA CHERKASOVA, MARTIN ARLITT,
and VIJAY MACHIRAJU

any enterprises are beginning to
exploit large shared resource pools in
data center environments to lower their
infrastructure and management costs.

These environments may have tens, hundreds, or even thousands of server
resources. Capacity management for resource pools decides how many
resources are needed to support a given set of application workloads, which
applications must be assigned to each resource, and per-application schedul-
ing parameters to ensure appropriate sharing and isolation for the applica-
tions. Capacity management is a challenging task for shared environments
that currently requires significant manual effort and tends to overprovision
resources. Here, we describe our approach to automate the steps of a capacity
self-management system that best matches resource supply with demand.

Dividing an application’s workload
demands to better manage resource capacity.

56 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

Resource pools are collections of resources, such
as clusters of servers or racks of blade servers, which
offer shared access to computing capacity. Virtual-
ization and automation technologies support the
life-cycle management (creation, relocation, termi-
nation) of resource containers (virtual machines or
virtual disks [1, 2, 11, 12]). Workload managers for
resources [3, 5, 6] provide containers with access to
shares of resource capacity. Application workloads
are associated with the containers; the containers are
then assigned to resources in the pool.

Applications can make complex demands on such
pools. For example, many enterprise applications
operate continuously, have unique, time-varying
demands, and have performance-oriented Quality of
Service (QoS) objectives. Objectives express per-
application requirements for responsiveness.
Resource pool operators must decide which work-
loads share specific resources and how workload
managers should be configured to support each
application. This is a challenge because the capacity
of resource pools are generally overbooked (the sum
of per-application peak demands are greater than the
capacity of the pool), and because different applica-
tions can have different QoS requirements that are
affected by the applications’ ability to obtain capac-
ity when needed.

To address these challenging issues, we propose to
replace the standard capacity management process
with a self-managing system that governs access to
capacity for resource pools. This article describes the
system with a focus on a method for ensuring appli-
cation QoS objectives. The method exploits work-
load manager allocation priorities to achieve an
application’s QoS objectives. Allocations are time-
varying shares of resource capacity that become ded-
icated to each application. When demand exceeds
supply, higher-priority allocation requests are dedi-
cated capacity first. The method takes as input a
characterization of the application’s workload
demands, its QoS requirement, and a measure of

resource access QoS for resources that governs over-
booking (statistical multiplexing) within the pool.
As output, the method automatically specifies how
to divide an application’s workload demands across
two workload manager allocation priorities in a
manner expected to realize the application’s QoS
requirement.

CAPACITY MANAGEMENT ACTIVITIES

Figure 1 illustrates capacity management activities
for resource pools at different timescales. Long-term
management corresponds to capacity planning; the
goal here is to decide when additional capacity is
needed for a pool so that a procurement process can
be initiated. Over a medium timescale (weeks to
months), groups of resource containers are chosen
that are expected to share resources well. Each group
is then assigned to corresponding resources. Assign-
ments may be adjusted periodically as service levels
are evaluated. Capacity management tools can be
used to automate such a process. For example, our
capacity management tool [8] takes into account
detailed workload interactions and the overbooking
of resources via statistical multiplexing to automati-
cally decide which containers should share resources.
Once resource containers are assigned to a resource,
a workload manager for the resource [5, 6] adjusts
workload capacity allocations over short timescales
based on time-varying workload demand. Finally,
resource schedulers operate at the time-slice (sub-
second) granularity according to these allocations.
Adjustments to allocations in response to changing
workloads can greatly increase the efficiency of the
resource pool while providing a degree of perfor-
mance isolation for the containers.

WORKLOAD MANAGERS

We assume that each resource in the pool has a
workload manager. The manager monitors its work-
load demands and dynamically adjusts the alloca-
tion of capacity (for example, the CPU) to the

ADJUSTMENTS TO ALLOCATIONS IN RESPONSE TO
CHANGING WORKLOADS CAN GREATLY INCREASE THE EFFICIENCY

OF THE RESOURCE POOL WHILE PROVIDING A DEGREE OF
PERFORMANCE ISOLATION FOR THE CONTAINERS.

workloads, aiming to pro-
vide each with access only
to the capacity it needs.
When a workload demand
increases, its allocation
increases; similarly, when a
workload demand decreases,
its allocation decreases. Such
managers can control
the relationship between
demand and allocation
using a burst factor; a work-
load resource allocation is determined periodically by
the product of some real value (the burst factor) and its
recent demand. The burst factor addresses the issue that
allocations are adjusted using utilization measurements.
Utilization measurements over any interval are mean
values that hide the bursts of demand within the inter-
val. The product of mean demand for an interval and
this burst factor estimates the true demand of the
application at short time
scales and is used for the
purpose of allocation. In
general, the greater the
workload variation and
client population, the
greater the potential for
bursts in demand, the
greater the need for a larger
allocation relative to mean
demand (utilization), and
hence the greater the need
for a larger burst factor.

Further, let us assume
that the workload manager
implements two allocation
priorities. Demands associated with the higher priority
are allocated capacity first; they correspond to the
higher class of service. Any remaining capacity is then
allocated to satisfy lower-priority demands; this is the
lower class of service.

APPLICATION QOS-AWARE CAPACITY

MANAGEMENT

Our process for supporting application QoS in
resource pools is shown in Figure 2. A resource pool
operator decides on resource access QoS objectives
for two classes of service for resources in the resource
pool [8]; these are described further here. For each
application workload, the application owner speci-
fies its application’s workload QoS requirement as a
range for the burst factor. The range spans from
ideal to simply adequate application QoS. This
range and the resource access QoS objectives are

used to map the applica-
tion’s workload demands
onto the two classes of
service. Finally, over the
medium term, the
capacity manager [8, 10]
assigns application
workload resource con-
tainers to resources in
the pool in a manner
expected to satisfy the
resource access QoS
objectives for the pool.
Application workload
monitoring maintains

up-to-date views on application resource usage as
feedback for this self-managing approach.

The resource access QoS objectives specified by
the resource pool operator govern the degree of over-
booking in the resource pool. We assume the first

class of service offers
guaranteed service. For
each resource, the capac-
ity manager ensures the
sum of per-application
peak allocation require-
ments associated with
this higher class of ser-
vice does not exceed the
capacity of the resource.
The second class of ser-
vice offers a lower QoS.
It is associated with a
resource access probabil-
ity, U, that expresses the
probability that resources
will be available for allo-
cation when needed.
The capacity manager
finds workload place-

ments such that both constraints are satisfied. Thus
it manages overbooking for each resource (statistical
multiplexing). Deciding on resource access QoS
objectives is a long-term capacity planning task that
takes into account the economics of providing
resource pool capacity as a service and the resource
access risk that application owners are willing to
incur.

PARTITIONING AN APPLICATION’S DEMANDS ACROSS

TWO CLASSES OF SERVICE

We now describe our technique for mapping an
application’s workload demands across two classes of
service (CoS) to realize its application QoS objec-

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 57

Figure 1. Capacity Management Activities
and Time Scales.

Rolia fig 1 (3/06)

Timescale

Sub-second

Schedule
 according to
 allocations

Seconds
to 10's of
seconds

Adjust
 workload
 allocations

Day to
weeks

Service
 level
 evaluation

Weeks to
months

Workload
 placement

Months

Capacity
 planning

Activity

Figure 1. Capacity management
activities and time scales.

Rolia fig 2 (3/06)

Figure 2. Application QoS-aware Capacity
Management Process for Resource Pools.

Workload
allocation traces for

two scheduling
priorities

Resource pool
QoS objectives

for two workload
scheduling
priorities

Application to resource
assignments

Partition
application
demands

across two
classes of service

Application
workload

monitoring

Capacity manager service
for workload placement

Application
QoS requirements

Representative
application

workload demand
traces

Figure 2. Application QoS-aware
capacity management process for
resource pools.

tives. The proposed method is motivated by portfo-
lio theory [4], which aims to construct a portfolio of
investments, each having its own level of risk, to
offer maximum expected returns for a given level of
risk tolerance for the portfolio as a whole. The anal-
ogy is as follows. The resource access QoS commit-
ments quantify expected risks of resource sharing for
the two CoS. These CoS correspond to potential
investments with the lower CoS having a greater
return because the resource pool operator can pro-
vide a lower-cost service when permitted to increase
overbooking. The application demands represent
investment amounts. They are partitioned across the
CoS so that application QoS remains in the toler-
ated range, which corresponds to the risk tolerance
for the portfolio as a whole. By making greatest use
of the lower CoS we offer the resource pool operator
the greatest opportunity to share resources and
hence lower the cost to the application owner.

Our method takes as input a characterization of
an application’s workload demands on the resource,
the resource access QoS objectives for resources in
the resource pool, and the application-level QoS
requirements (expressed using a range for the burst
factor). As output, it describes how the application’s
workload demands should be partitioned across the
pool’s two classes of service.

TTrraaccee--bbaasseedd CChhaarraacctteerriizzaattiioonn ooff WWoorrkkllooaadd
DDeemmaanndd.. We utilized a trace-based approach to
model the sharing of resource capacity for resource
pools [8]. Each application workload is character-
ized using several weeks to several months of
demand observations (for example, with one obser-
vation every five minutes). The general idea behind
trace-based methods is that traces capture past
demands and that future demands will be approxi-
mately similar. Though we expect demands to
change, for most applications they are likely to
change slowly (such as over several months). By
working with recent data, we can adapt to such a
slow change. Significant changes in demand, due for
instance to changes in business processes, sales for e-
commerce systems, or modified application func-
tionality, are best forecast by business units; they
must be communicated to the operators of the
resource pool so their impact can be reflected in the
corresponding traces. New applications, those with-
out historical traces, need estimates for capacity.
They may be placed in overprovisioned sand-box
environments and observed until their workloads
and demands are reflected in demand traces. We
have found the trace-based techniques to be suffi-
ciently accurate for ongoing capacity management
in an enterprise environment [8].

RReessoouurrccee AAcccceessss QQooSS CCoonnssttrraaiinnttss aanndd AApppplliiccaa--
ttiioonn QQooSS.. The resource access probability for a
capacity attribute is defined in [9]. For each class of
service of the resource pool, an operator specifies a
threshold for the resource access probability. Appli-
cation workloads that use a given CoS can thus
assume they will receive resources with a given prob-
ability. Furthermore, we define a QoS constraint as
the combination of a threshold value for the
resource access probability and a deadline such that
those demands that are not satisfied immediately are
satisfied within the deadline.

Supporting application QoS by managing
resource provisioning requires an understanding of
how application QoS requirements relate to resource
usage. The relationship is complex because it
requires detailed knowledge of numerous applica-
tion requests and transactions that is rarely known
to people involved in capacity management. Fur-
thermore, system measurements are typically col-
lected at a coarse timescale, such as five minutes.
These hide bursts in application activity that happen
within measurement intervals. We employ empirical
approaches to discover the relationship and express
the relationship as a range for burst factors that
relate demands to allocations.

We suggest two empirical approaches. As a first
approach, a stress-testing exercise may be used to
submit a representative workload to the application
in a controlled environment [7]. Within the con-
trolled environment, we vary the burst factor that
governs the relationship between application
demand and allocation. We then search for the value
of the burst factor that gives the responsiveness
required by application users (that is, good but not
better than necessary). Next, we search for the value
of a second burst factor that offers adequate respon-
siveness (worse responsiveness would not be accept-
able to the application users). These define an
acceptable range of operation for the application on
the resource. The utilization of the allocation for a
given workload must remain within this range. An
alternative approach is to adjust the burst factors in
an operational environment to find those values that
support required and adequate responsiveness.

PPoorrttffoolliioo AApppprrooaacchh.. We aim to partition an
application’s workload demands across two classes of
service, CoS1 and CoS2, to ensure the application’s
burst factor remains within its acceptable range.
CoS1 offers guaranteed access to capacity. By associ-
ating part of the demands with CoS1, we limit the
resource access risk to the demands associated with
CoS2. The resource access probability of CoS2 is
chosen by the resource pool operator. Consider

58 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

three operating scenarios for
a resource: it has sufficient
capacity to meet its current
demands; demand exceeds
supply but the resource is sat-
isfying its resource access

constraint; and demand exceeds supply and the
resource is not satisfying its resource access con-
straint. We consider the first two scenarios here;
workload placement techniques can be used to avoid
and react to the third scenario [8].

When the system has sufficient capacity, each
application workload gets access to all the capacity it
needs. In this case, the application’s resource needs
will all be satisfied and the application’s utilization of
allocation will be ideal. In the case where demands
exceed supply, the allocations associated with CoS1
are all guaranteed to be satisfied. However, the allo-
cations associated with CoS2 are not guaranteed and
will be offered with at worst the operator-specified
resource access probability. We aim to divide work-
load demands across these two classes of services
while ensuring the utilization of allocation remains
in the acceptable range defined previously to satisfy
the application’s QoS requirements.

Let p be a fraction of peak demand D for the CPU
attribute for the application workload that is associated
with CoS1. The product of p and D gives a breakpoint
for the application workload such that all demand less
than or equal to this value is placed in CoS1 and the
remaining demand is placed in CoS2. We solve for p
such that in the second scenario the burst factor
offered to the application is bounded by the value
deemed to give adequate application QoS [9].

CASE STUDY

Next, we present some results regarding the portfolio
approach and the implications of these results on 26
application workloads from a large enterprise order

entry system [8]. Figure 3a
shows the relationship between
resource access probability,
denoted as U, for CoS2 and the fraction of an appli-
cation’s peak demand that is associated with CoS2.
Four curves are shown. Each corresponds to a par-
ticular utilization of allocation range with a lower
bound of 50% and upper bounds of 60% through
90%, respectively. The range [0.5, 0.6] corresponds
to the highest application QoS, whereas [0.5, 0.9]
corresponds to the lowest application QoS. The fig-
ure shows that even a low resource access probability
of U=0.6 permits between 40% and 100% of appli-
cation demands to be associated with CoS2 for the
highest and lowest application QoS scenarios,
respectively, thereby increasing opportunities for
sharing.

Figure 3b illustrates the impact of this approach
on the number of CoS1 CPUs needed by the 26
applications for an application utilization of alloca-
tion range of [0.5, 0.6]. The figure has three curves:
the top curve shows the peak number of CPUs
needed by each application; the bottom two curves
show the number of CPUs needed for the scenarios
with the resource pool resource access probability of
U=0.7 and U=0.8, respectively. As expected, a
higher value for U means a lower breakpoint so that
less demand is associated with CoS1 and more with
CoS2. For greater values of U, the use of the shared
portion of each resource increases, which may
increase the utilization of resources in the pool.
From more detailed results [9], we found that a value
of U=0.9 puts virtually all application workload
demands in CoS2.

Finally, we expect that through the automation of
capacity management practices, planned application
demands will rarely exceed the capacity of a resource.
Most often a resource pool will provide a resource
access probability that is greater than the value spec-

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 59

Rolia fig 3a (3/06)

Figure 3a Sensitivity: Resource Access Probability,
Range for Utilization of Allocation, and

Percentage of Demand for CoS2.

1.0

0.8

0.6

0.4

0.2

0
0 0.1

Fr
ac

tio
n

of
 A

pp
s

D
em

an
d

C
oS

0.2

Uhigh=90%

Breakpoint Sensitivity to Uhigh (with Ulow=50%)

Uhigh=80%
Uhigh=70%
Uhigh=60%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

Rolia fig 3b (3/06)

Figure 3b. Application Workload Usage of CoS1.

8

7

6

5

4

3

2

1

0
25 3020151050

N
um

be
r

of
 C

PU
s

Application (Number)

Number of CPUs per App in CoS1 (Ulow=50%, Uhigh=60%)

App Peak Demand
=0.7
=0.8

Figure 3a. Sensitivity:
Resource access probability,
range for utilization of
allocation, and percentage
of demand for CoS2.

Figure 3b. Application
workload usage of CoS1.

ified by the resource pool operator. As a result, most
applications will operate toward their ideal applica-
tion QoS, that is, lower utilization of allocation,
much of the time.

CONCLUSION

We have presented a method for dividing an appli-
cation’s workload demands across two workload
manager allocation priorities. This can be used to
satisfy application QoS objectives in shared resource
environments. Application owners specify applica-
tion QoS requirements using a range for a workload
manager burst factor for the CPU demand attribute.
This range, along with resource pool resource access
QoS, determines how much of the application’s
demands must be associated with a guaranteed allo-
cation class of service and how much with a second
class of service that offers resources with a given
probability defined by a resource pool operator. The
more workload that is associated with the second
class of service, the greater the opportunity for the
resource pool to overbook resources.

Experimental results validate our technique. This
approach can support the configuration of a self-
managing system for managing the capacity of
resource pools. In the future, we plan to complete
the characterization of application risks of sharing,
based on aggregate application demands on a
resource, and to use this information to further
improve the management of the resource pool.

References
1. Banga, G., Druschel, P., and Mogul, J. Resource containers: A new

facility for resource management in server systems. In Proceedings of the
3rd Symposium on Operating System Design and Implementation (OSDI
‘99), New Orleans, LA, 1999.

2. Dragovic, B., Fraser, K., Hand, S. et al. Xen and the art of virtualiza-
tion. In Proceedings of 19th ACM Symposium on Operating Systems Prin-
ciples (SOSP 2003), (Bolton Landing, NY, Oct. 2003).

3. Duda, K. and Cheriton, D. Borrowed-virtual-time (BVT) scheduling:

Supporting latency-sensitive threads in a general purpose scheduler. In
Proceedings of the 17th ACM Symposium on Operating Systems Principles
(SOSP 1999) (Kiawah Island Resort, SC, Dec. 1999).

4. Elton, E.J. and Gruber, M.J. Modern Portfolio Theory and Investment
Analysis. Wiley, 1995.

5. HP-UX Workload Manager; www.hp.com/products1/unix/operat-
ing/wlm/.

6. IBM Enterprise Workload Manager; www.ibm.com/developerworks/
autonomic/ewlm/.

7. Krishnamurthy, D. Synthetic workload generation for stress testing ses-
sion-based systems. Ph.D. Thesis, Carleton University, January 2004.

8. Rolia, J., Cherkasova, L., Arlitt, M. and Andrzejak, A. A capacity man-
agement service for resource pools. In Proceedings of the 5th Interna-
tional Workshop on Software and Performance (WOSP 2005) (Palma,
Spain, July 2005), 229–237.

9. Rolia, J., Cherkasova, L., Arlitt, M. and Machiraju, V. An automated
approach for supporting application QoS in shared resource pools. In
Proceedings of the 1st International Workshop on Self-Managed Systems
and Services (SelfMan 2005) (Nice, France, May 2005).

10. Singhal, S., Graupner, S., Sahai, A. et al. A resource utility system. In
Proceedings of the 9th International Symposium on Integrated Network
Management (IM 2005) (Nice, France, May 2005).

11. VMware VirtualCenter 1.2; www.vmware.com/products/vmanage/
vc_features.html.

12. Whitaker, A., Shaw, M. and Gribble, S. Scale and performance in the
Denali isolation kernel. In Proceedings of the 5th Symposium on Operat-
ing System Design and Implementation (OSDI 2002), (Boston, MA,
Dec. 2002).

Jerry Rolia (jerry.rolia@hp.com) is a senior scientist in the
Internet Systems and Storage Laboratory at Hewlett-Packard
Laboratories in Palo Alto, CA.
Ludmila Cherkasova (lucy.cherkasova@hp.com) is a senior
scientist in the Internet Systems and Storage Laboratory at Hewlett-
Packard Laboratories in Palo Alto, CA.
Martin Arlitt (martin.arlitt@hp.com) is a senior scientist in
the Internet Systems and Storage Laboratory at Hewlett-Packard
Laboratories in Palo Alto, CA.
Vijay Machiraju (vijay.machiraju@hp.com) is a senior scientist
and project manager in the Internet Systems and Storage Laboratory
at Hewlett-Packard Laboratories in Palo Alto, CA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0300 $5.00

c

60 March 2006/Vol. 49, No. 3 COMMUNICATIONS OF THE ACM

THIS APPROACH CAN SUPPORT THE CONFIGURATION
OF A SELF-MANAGING SYSTEM FOR MANAGING THE

CAPACITY OF RESOURCE POOLS.

