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Abstract—This paper presents three methods for apportioning 
server costs among workloads in shared resource environments 
such as computing clouds. We consider a fine sharing of 
resources, the impact of time varying resource usage, large ratios 
for peak to mean workload demands, and the influence of 
random choices for the co-placement of workloads on shared 
servers. These features can affect the quantity of servers needed 
to support workloads as well as the robustness of the cost values 
assigned to each workload. We compare the three methods for 
apportioning costs and recommend the method that assigns costs 
in the most repeatable manner. A detailed study involving 312 
workloads from an HP customer environment demonstrates the 
result. 

Keywords-component; Cloud Computing, Cost models, Shared 
Resources, Virtualization 

I.  INTRODUCTION 
Virtualization technologies are maturing and the computing 

capacity of individual servers is increasing rapidly. As a result 
more and more computing can be conducted in shared resource 
pools such as private and public clouds. A new hot topic in 
cloud computing and the virtualized world is how to account 
for the shared infrastructure usage and how to chargeback 
services running on top of the underlying physical 
infrastructure. In the recent past, before the virtualization era, 
the accounting model was relatively simple and 
straightforward: the server hardware, its power usage, and 
software costs were directly associated with the deployed 
application using these resources, while the storage and 
networking costs were typically apportioned on a usage basis. 
When multiple virtual machines are deployed to a shared 
resource pool, the virtual machines may migrate between hosts 
periodically or frequently. The virtual machines may have 
different resource requirements yet the hosts have bounded 
capacity so the number of virtual machines that can be assigned 
to a host while satisfying service level requirements depends on 
the time varying workloads of the applications in the virtual 
machines. The question is “who is responsible for the incurred 
costs” for cost recovery? The focus of this paper is on the 
notion of cost recovery or charge back for shared resource 
pools, as opposed to pricing or what customers are willing to 
pay for resources.  

A common sense approach for costing is to extend the 
usage-based model, i.e., from virtualization layer monitoring 
information one can derive average resource usage per appli-
cation for a costing interval, e.g., three weeks, and then the 
physical server cost can be split up respectively. Currently, 
many service providers employ such simplified usage–based 

accounting models [1─4]. However, the relationship between 
application workloads and costs is actually more complicated.  

Some workloads may have a large peak to mean ratio for 
demands upon server resources. We refer to such workloads as 
bursty. For example, a workload may have a peak CPU 
demand of 5 CPU cores but a mean demand of 0.5 of a CPU 
core. Such ratios may have an impact on shared resource pools. 
A pool that aims to consistently satisfy the demands of bursty 
workloads will have to limit the number of workloads assigned 
to each server. This affects the number of servers needed for a 
resource pool. Thus, burstiness affects costs. Some service 
providers limit the effect of burstiness by capping virtual 
machine sizes, thereby forcing application owners to acquire 
more virtual machines for busy periods. 

Further, server resources are rarely fully utilized. Even 
though many services can be assigned to a server some portion 
of the resources will remain unused over time. The amount of 
unused resources may depend on, from the perspective of 
workloads, random workload placement/consolidation choices. 
The costs of unallocated resources must also be apportioned 
across workloads.  

In this paper, we discuss these issues, present three methods 
for apportioning server costs among workloads that share 
servers in such environments, and demonstrate the implications 
on reported costs for the different methods in a detailed case 
study with 312 workloads from an HP customer environment. 
Two of the methods are new. Our main contribution is a 
method that takes into account burstiness and is tolerant of 
alternative workload placement decisions. The method 
provides for repeatable cost estimates for workloads within a 
shared resource pool. 
This paper is organized as follows. Section II formally intro-
duces the notion of costs and three models for apportioning 
costs. Section III presents a workload characterization for a 
server consolidation exercise considered in the paper. Section 
IV presents a performance case that compares the apportioning 
methods. Section V offers summary and concluding remarks 
along with a description of our next steps. 

II. COSTS AND APPORTIOINING COSTS 
The total costs of a resource pool include the acquisition 

costs for facilities, physical IT equipment and software, power 
costs for operating the physical machines and facilities, and 
administration costs. Acquisition costs are often considered 
with respect to a three year time horizon and reclaimed 
according to an assumed rate for each costing interval. We 
assume that workload placement remains the same within each 



costing interval. Without loss of generality, this paper focuses 
on server and virtualization software licensing costs only.  

Below, we define three categories of resource usage that 
can be tracked separately for each server resource, e.g., CPU, 
memory, for each costing interval. To simplify the notation, the 
equations we present only consider one server resource at a 
time, e.g., CPU or memory for one costing interval. Then the 
corresponding costs over all resources are summed up to give 
the total cost for all server resources for each costing interval. 
The final cost for an application workload is the sum of its 
costs over all costing intervals. The three categories of resource 
usage are: 
• Direct resource consumption by a workload: ds,w, the 

average physical server utilization of a server s by a 
workload w. ds,w in [0,100]. ds,w is 0 if a workload w does 
not use a server s. 

• Burstiness for a workload and for a server: bs,w, the 
difference between peak utilization of a server s by 
workload w and ds,w. bs,w in [0,100]. Additionally, bs, the 
difference between the peak utilization of a server s and its 
average utilization. bs in [0,100]. 

• Unallocated resource for a server: the difference 
between 100 and the peak utilization for a server s, as in 
[0,100]. a refers to unallocated resource. 

Next, we present 3 different methods for apportioning cost. 
We refer to these as server-usage, server-burst, and pool-burst.  

First we consider a server-usage approach that considers 
only the direct resource consumption by W workloads. Suppose 
a server s has a cost CS that represents the costs associated with 
the server. We define a workload’s cost share based on its 
server-usage as ∏server-usage

s,w: 
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Figure 1: CPU demand of workloads 

The server-usage approach does not take into account the 
impact of workload burstiness on costs. Figure 1 motivates our 
concern regarding burstiness. It shows the CPU demands for 
two workloads for three weeks. In the figure, 100 shares corres-

pond to one 1 GHz CPU. Both workloads exhibit a similar 
average CPU demand: 161.8 CPU shares for Workload A 
versus 170.3 for Workload B. Using Eq. (1), for a certain 
consolidation scenario c that considers many workloads for a 
three week consolidation interval, the CPU costs for hosting 
Workload A are $36.27 whereas Workload B has costs of 
$39.12. This clearly does not reflect the real hosting costs for 
these two workloads. Workload A has much higher variability 
and much higher peaks than Workload B, 1200 CPU shares 
compared to 645 CPU shares. The burstiness of Workload A 
actually causes less dense workload placements and thus lower 
average server utilization and the need for more servers. 

To take into account burstiness and unallocated resources 
we partition Cs based on utilization to get Cd

s, Cb
s, Ca

s, 
respectively, where Cd

s corresponds to costs associated with the 
average utilization of the server resource; Cb

s corresponds to 
the burstiness bs of the server resource; and Ca

s corresponds to 
the unallocated server resource, i.e., the difference between 
100% and the peak utilization. 

For the server-burst approach, we divide the burst portion 
of costs for a server in a manner that is weighted by the 
burstiness of each workload on the server. In a second step, the 
server’s unallocated resources are apportioned based on the 
bursty costs. Server-burst ∏server-burst

s,w is defined as: 
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The ε value, a small value, in the numerator and 
denominator of the 2nd term of the first equation ensures that 
the denominator does not evaluate to zero for cases where there 
is no difference between peak and mean resource usage. Using 
Eq. (2) with consolidation scenario c, the total CPU costs are 
$54.7 for Workload A and $21.7 for Workload B. The 
difference stems from the fact that Workload A is much 
burstier than Workload B. 

We note that dividing costs in this way can still lead to a 
lack of robustness for workload costs. The costs are sensitive to 
the placement of workloads on servers. To provide for a more 
robust cost estimate, the following pool-burst approach for 
apportioning costs partitions burstiness and unallocated 
resources using measures for the S servers in a resource pool 
instead of for individual servers. 
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Using Eq. (3) with consolidation scenario c, the total CPU 
costs are $62.2 for Workload A and $23.0 for Workload B. 
Section IV presents a case study that compares cost 
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apportioning results for Eq. (1), (2) and (3). The formulas are 
applied separately to various resources such as CPU and 
memory. The sum of the resulting costs represents the total 
costs for a workload.  

III. WORKLOAD CHARACTERIZATION 
To evaluate the effectiveness of different apportioning 

functions, we obtained three months of workload trace data for 
312 workloads from one HP customer data center. Each 
workload was hosted on its own server so we use resource 
demand measurements for the server to characterize its 
workload's demand trace. Each trace describes resource usage, 
e.g., processor and memory demands, as measured every 5 
minutes.  

We define CPU capacity and CPU demand in units of CPU 
shares. A CPU share denotes one percentage of utilization of a 
processor with a clock rate of 1 GHz. A scale factor adjusts for 
the capacity between nodes with different processor speeds or 
architectures. For example, the nodes with 2.93 GHz CPUs in 
our cases study were assigned 293 shares. We note that the 
scaling factors are only approximate; the calculation of more 
precise scale factors is beyond the scope of this paper. The 
memory usage is measured in GB. 

 
Figure 2: Workload Memory Usage 

 
Figure 3: Workload CPU Usage 

Figure 2 and 3 summarize the memory and CPU usage for 
the workloads under study. Figure 2 shows the average and 
maximum memory usage for each workload. Note that we 
order workloads by their average memory usage for 
presentation purposes. Figure 3 shows the average and 

maximum CPU usage of corresponding workloads. There are a 
few interesting observations:  

For 80% of the workloads, the memory usage is less than 
2 GB. While the maximum and average memory usage are 
small and very close in absolute terms the peak to mean ratios 
are still high. For 10% of the workloads the memory usage is 
much higher, 10─70 GB; the maximum memory usage can be 
very large in absolute terms but the peak to mean ratios are less 
than 3. There are strong correlations; workloads with a high 
memory usage have higher peak and average CPU usage. 
Figure 3 shows that the first 50 workloads have high memory 
usage and higher average CPU usage than the remaining 
workloads. Most workloads have very bursty CPU demands: 
while most of the time these workloads have low CPU usage—
85% of the workloads use on average less than 293 CPU 
shares—their maximum CPU demand is rather high—42% of 
the workloads have a peak usage of more than 1000 CPU 
shares. The average peak to mean ratio for CPU usage was 
52.6, with some workloads having a peak to mean ratio above 
1000. 

IV. CASE STUDY 
We conducted a comprehensive case study using the 

workload data for the 312 workloads and resource pool 
configuration described in Section III to evaluate our proposed 
cost apportioning approaches. We consider the following 
shared resource pool configuration: each server consists of 24 x 
2.93 GHz processor cores, 128 GB of memory, and two dual 
10 Gb/s Ethernet network interface cards for network traffic 
and virtualization management traffic, respectively. The total 
acquisition cost for each of these servers was estimated as 
$58,000, including licensing costs. The costs were 
approximately $31,000 for CPU and $27,000 for memory. 
Using a linear depreciation and assuming a lifetime of three 
years the cost for three weeks is $1,112 per server. 

For consolidation, we employ a consolidation engine that 
minimizes the number of servers needed to host the workloads 
while satisfying their time varying resource demand 
requirements [5]. The engine is able to offer many solutions 
that are near-optimal. To evaluate the robustness, i.e., 
repeatability, of costs assignments for our approaches, we 
consider 100 consolidation solutions for a three week costing 
interval. For the 100 solutions, the consolidation engine 
reported solutions that assigned the 312 workloads to between 
18 and 20 physical servers in the resource pool causing the fine 
sharing of resources. 

 
Figure 4: Costs by Server-usage using Eq. (1) 
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Figure 5: Costs by Server-burst using Eq. (2) 

 
Figure 6: Costs by Pool-burst using Eq. (3) 

Figure 4, 5, and 6 show the costs for the workloads as 
calculated using the server-usage, Eq. (1), server-burst, Eq. (2), 
and pool-burst, Eq. (3), approaches, respectively. Visual 
inspection shows that the server-usage and server-burst 
approaches have very wide ranges for the assigned costs. The 
average differences between min and max costs assigned to the 
workloads are 79% and 72%, respectively. Taking into account 
burstiness decreases the variability in assigned costs, but does 
not yet yield robust cost assignments. For example, for 
Workload 5 of Figure 5 cost could range from $250 to $1100 
for the same work. Such big differences would make it very 
hard to plan and charge for customers workloads. Figure 6 
shows the results for the pool-burst approach. Its cost 
assignments are much less sensitive to workload placement 
decisions and thus have a much tighter range. The average 
difference between min and max costs is reduced to 13%, 
which reflects the difference that arises from consolidating to 
between 18 and 20 servers. 

Figure 7 gives a breakdown of the average sum of CPU and 
memory costs over the 100 consolidation scenarios as 
apportioned by direct usage (according to ds,w), bursty usage 
(according to bs,w ), and unallocated usage as with respect to Eq. 
(3). The workloads are sorted by total cost. The figure shows 
that for most workloads, the largest components of the costs are 
due to direct resource usage and usage burstiness. As defined 
by Eq. (3), the relative costs for unallocated resources are 
similar for all workloads. In this study, the unallocated costs 
were almost entirely due to memory costs. Finally, the figure 

shows that the ratio between costs for direct usage and for 
burstiness differs significantly between the workloads. This is 
expected as the burstiness of the workloads differs significantly 
in the set under study. 

 
Figure 7: CPU + Memory Costs per Workload 

V. CONCLUSIONS AND FUTURE WORK 
This paper describes our preliminary work on apportioning 

costs in cloud computing environments where many 
application workloads share a resource pool. We described 
workload performance features that impact resource pool costs 
and show that these must be taken into account if the true 
impact of workloads on resource pool costs is to be considered. 
We have shown that different apportioning approaches have an 
impact on the robustness of cost assignments and present an 
approach that offers robust, i.e., predictable, cost assignments 
that take into account burstiness and is tolerant of different 
workload placements. The costing information supports charge 
back and can also be useful in support of more elaborate 
pricing models. 

Our future work includes: applying and extending the 
proposed method to other aspects of cost including 
infrastructure, power, and human operation costs; planning for 
resources that are not used all the time and the relationship with 
pricing models; and applying the methods to more example 
workloads. Finally, we will also explore the impact of using 
other high percentiles for resource usage rather than the peak 
resource usage, i.e., the 100 percentile, in our apportioning 
formulas. 
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