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Abstract 
 

Recent advances in hardware and software 
virtualization offer unprecedented management 
capabilities for the mapping of virtual resources to 
physical resources. It is highly desirable to further 
create a “service hosting abstraction” that allows 
application owners to focus on service level objectives 
(SLOs) for their applications. This calls for a resource 
management solution that achieves the SLOs for many 
applications in response to changing data center 
conditions and hides the complexity from both 
application owners and data center operators. In this 
paper, we describe an automated capacity and 
workload management system that integrates multiple 
resource controllers at three different scopes and time 
scales. Simulation and experimental results confirm 
that such an integrated solution ensures efficient and 
effective use of data center resources while reducing 
service level violations for high priority applications. 
 
1. Introduction  

Data centers are inexorably growing more complex 
and difficult for humans to manage efficiently. 
Although virtualization provides benefits by driving 
higher levels of resource utilization, it also contributes 
to this growth in complexity. Data centers may include 
both hardware- and software-level virtualization, such 
as HP’s Virtual Connect [1] network virtualization 
technology, as well as the hypervisor-based VMware 
ESX Server [2], Citrix XenServer [3], and Virtual Iron 
[4] products. Each technology offers different control 
“knobs” for managing the mapping of virtual and 
physical resources. Continually adjusting these knobs 
in response to changing data center conditions can 
minimize hardware and energy costs while meeting the 
service level objectives (SLOs) specified by 
application owners. This activity should be automated 
to help avert the coming complexity crisis and more 
fully realize the benefits of virtualization. 

The purpose of our work is to enable both 
application owners and data center operators to focus 
on service policy settings, such as response time and 
throughput targets, and not worry about the details of 
where an application is hosted or how it shares 
resources with others. These details are handled by our 
resource management solution, so that system 
administrators can “set it and forget it”. 

This paper describes three key contributions. First, 
we propose the 1000 Islands solution architecture that 
supports automated resource management in a data 
center. It exploits multiple control knobs at three 
different scopes and time scales: short-term allocation 
of system-level resources among individual workloads 
on a shared server, medium-term live migration of 
virtual machines (VMs) between servers, and long-
term organization of server clusters and groups of 
workloads with compatible long-term demand patterns. 
This architecture integrates multiple resource 
controllers that are implemented using different 
analytic techniques including control theory, bin 
packing, trace-based analysis and other optimization 
methods. The innovation is in leveraging each of these 
independently and then combining their power. 
Second, we define specific interfaces for coordinating 
the individual controllers at run time to eliminate 
potential conflicts. This includes interfaces for sharing 
policy information, so that policies do not have to be 
duplicated among controllers. Finally, we validate the 
effectiveness of the integrated solution through a 
simulation study, as well as experimental evaluation on 
a testbed built from real systems. 

Section 2 presents the 1000 Islands solution 
architecture, and explains how its three controllers are 
integrated. Section 3 describes the simulation 
environment and the experimental testbed used to 
validate the architecture. The performance evaluation 
results from two case studies are shown in Section 4. 
Section 5 discusses related work. In Section 6, we 
conclude and discuss future research directions. 



2. Our Solution 
The 1000 Islands architecture (shown in Figure 1) 

consists of three individual controllers operating at 
different scopes and time scales: 
• On the longest time scale (hours to days), pod set 

controllers study the resource consumption 
history of many workloads (WLs), which are 
applications or their components, and which may 
run in VMs. This controller determines whether 
the data center has enough resource capacity to 
satisfy workload demands, and places compatible 
workloads onto nodes (servers) and groups nodes 
into pods (workload migration domains). A pod 
set can consist of multiple non-overlapping pods.  

• On a shorter time scale (minutes), pod controllers 
react to changing pod conditions by adjusting the 
placement of workloads on nodes.  

• On the shortest time scale (seconds), node 
controllers dynamically adjust workload resource 
allocations to satisfy SLOs for the applications.  

The next three subsections describe the three 
individual controllers, and the last subsection presents 
how the three controllers are integrated. 

2.1. Node controller 
A node controller is associated with each node in a 

pod. It manages the dynamic allocation of the node’s 
resources to each individual workload running in a 
VM. The node controller consists of two layers: a set 
of utilization controllers (UCs) for the individual VMs, 
and an arbiter controller (AC) for the node. Figure 2 
shows this layered structure. In all the discussions that 
follow, we use the term resource to refer to a specific 
type of system resource (e.g., CPU) on a node, 

although the algorithm can be generalized to handle 
multiple resources (such as disk I/O or network 
bandwidth) at the same time. 

A utilization controller collects the average resource 
consumption of each VM from a sensor (see “S” in 
Figure 2), and determines the required resource 
allocation to the VM such that a specified utilization 
target can be achieved. This is done periodically with a 
control interval of seconds. We define a VM’s 
utilization as the ratio between its resource 
consumption and resource allocation. For example, if a 
VM’s measured average CPU consumption in a control 
interval is 0.3 of a CPU, and the specified utilization 
target is 75%, then the utilization controller will drive 
the CPU allocation for the VM towards 0.4 of a CPU 
in subsequent control intervals. The utilization target 
for a workload is driven by its need to meet its 
application-level SLO. For example, in order for an 
interactive Web application to meet an average 
response time goal of 1 second, the average CPU 
utilization of the VM running the application may have 
to be maintained at 60%. A feedback controller was 
presented in [5] to automatically translate application-
level SLOs to VM-level utilization targets. This 
enhanced controller will be integrated into the 1000 
Islands architecture later. 

All utilization controllers feed the desired resource 
allocation for each VM (referred to as a request) into 
the arbiter controller, which determines the actual 
resource allocations (referred to as an allocation) to the 
VMs. If the sum of all requests is less than the node’s 
capacity, then all requests are granted. In addition, the 
excess capacity is distributed among the VMs in 
proportion to their requests. On the contrary, if the sum 
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Figure 1. The 1000 Islands solution architecture consisting of node, pod, and pod set controllers 



of all requests exceeds the node’s capacity, the arbiter 
controller performs service level differentiation based 
on workload priorities defined in policies by data 
center operators. In our current implementation, each 
workload is assigned a priority level and a weight 
within that level. A workload with a higher priority 
level always has its request satisfied before a workload 
with a lower priority level. Workloads at the same 
priority level receive a percentage of their requests in 
proportion to their weights. Finally, the allocations 
determined by the arbiter controller are fed into the 
resource allocation actuators (see Figure 1 or “A” in 
Figure 2) for the next control interval. 
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Figure 2. Node controller architecture 

2.2. Pod controller 
The primary purpose of the pod controller is to react 

to aggregate CPU requests exceeding a node’s 
capacity, exploiting the fact that they will rarely exceed 
total pod capacity. In the event that total pod capacity 
is exceeded, high priority VMs should be favored over 
low priority ones. The pod controller uses live 
migration of VMs to move workloads between nodes 
[6]. In our experiments, moving a 512MB VM takes 
slightly over one minute from migration initiation to 
completion, with only sub-second actual downtime. 
This makes live migration effectively transparent to the 
workload inside the migrated VM, though the nodes 
experience transient CPU and LAN overheads. Next, 
we describe two implementations of the pod controller 
that are used in our experiments. 

CF pod controller 
The CF pod controller implementation [7] consists 

of a simulated annealing algorithm that periodically 
searches for VM to node mappings in accordance with 
a node overload avoidance and mitigation policy. 
Candidate mappings are generated by modeling the 
effects of a succession of random VM migrations, and 
are evaluated using a cost function that penalizes 
mappings that lead to overload conditions on any node. 
A node is defined as overloaded when the total CPU 
request or memory consumption of its VMs, plus the 
hypervisor and the DOM-0 overheads, exceeds the 
available capacity of the node. Mappings with some 

headroom are favored to avoid overload or SLO 
violations. To mitigate overloads that do occur, 
mappings with fewer high priority VMs per node 
enable more effective service level differentiation by 
the node controller. This is done with a non-linear 
penalty on the count of high priority VMs per node. 
The best mapping is turned into a migration list and fed 
into workload migration actuators (see Figure 1). 

TUM pod controller 
The TUM pod controller [8] uses a fuzzy logic 

feedback control loop. It continuously monitors the 
nodes' resource consumptions for values that are too 
low or too high. In our experiments, a node is 
overloaded whenever its CPU or memory consumption 
exceeds 85% or 95%, respectively. Furthermore, a pod 
is lightly utilized if the average CPU or memory 
consumption of all nodes drops below 50% or 80%, 
respectively. Our justification for these thresholds is 
beyond the scope of this paper, but appears in related 
work [9]. After detecting a lightly utilized or 
overloaded situation, the pod controller identifies 
actions to remedy the situation, considering the load 
situation of all affected nodes and workloads. If a node 
is overloaded, it first determines a workload on the 
node that should be migrated, and then searches for 
another node to receive the workload. These rules also 
initiate the shutdown and startup of nodes to help 
reduce power usage within a pod. 

2.3. Pod set controller 
A pod set controller determines whether a data 

center pod set has enough resource capacity to satisfy 
all workloads, and periodically determines compatible 
sets of workloads to place onto nodes within each pod. 
Our pod set controller [10] supports capacity planning 
for pod sets, as well as objectives that consolidate 
workloads to a small number of nodes or balance 
workloads across nodes. To accomplish this, it studies 
the historical resource demands of each workload and 
assumes that future demand patterns will be similar to 
past demand patterns. The pod set controller simulates 
the future resource demand behavior of alternative 
workload placements and uses an optimization 
heuristic to determine a placement expected to take 
best advantage of statistical multiplexing among time-
varying workload demands. 

2.4. Controller integration 
One of our contributions is identifying necessary 

interfaces between these three controllers, so that they 
can work well together to achieve fully automated 
capacity and workload management at a data center 
scale. The red arrows in Figure 1 indicate these 
integration points. First, the node controllers must 
provide estimated resource demands to the pod 



controller. Otherwise, the pod controller might 
estimate resource demands that do not agree with the 
node controllers. If the pod controller’s estimates are 
too low, then it will pack too many workloads onto a 
node, possibly causing application-level SLO 
violations. On the other hand, estimates that are too 
high could trigger an excessive number of overload 
conditions, and would reduce the power savings that 
could be achieved by consolidating workloads onto as 
few nodes as possible.  

Second, the pod controller must provide pod 
performance data to the pod set controller so that the 
latter can improve the compatibility of workloads it 
places in each pod, and react to pod overload or 
underload situations by adding or removing nodes. 
Third, the pod set controller should provide hints to the 
pod controller about what will happen in the near 
future. If a workload’s resource demand is expected to 
increase significantly at a particular time, then the pod 
controller can prepare in advance by placing that 
workload on a lightly loaded node. Finally, all three 
controllers must be configurable through a single user 
interface, and they must consider the other controllers’ 
configuration parameters. For example, the pod 
controller needs to know the workload priorities used 
by the node controllers, so that it does not group too 
many high priority workloads onto the same node, thus 
preventing effective service level differentiation. When 
properly integrated, these controllers automate 
resource allocation and hide the complexity of resource 
management from data center operators. 

 
3. Validation of the Solution 

In order to validate the design of the proposed 
architecture and to demonstrate the merits of the 
integration approach, we have built both a host load 
emulator and an experimental testbed to perform 
workload consolidation case studies using real-world 
resource consumption traces from enterprise data 
centers. For the work described here, we have used the 
experimental testbed for evaluating the integration of 
the CF pod and node controllers in a small-scale pod, 
and the emulator for evaluating the integration of the 
pod set and TUM pod controllers in a large-scale pod 
with a larger number of workloads. This section 
describes the setup of these two environments. 

3.1. Host Load Emulator 
Predicting the long term impact of integrated 

management solutions for realistic workloads is a 
challenging task. We employ a simulation environment 
to evaluate a number of management policies in a time 
effective manner.  

 
Figure 3. Simulation environment setup 

The architecture for the host load emulator is 
illustrated in Figure 3. The emulation environment 
takes as input historical workload resource 
consumption traces, node resource capacity 
descriptions, pod descriptions, and the management 
policy. The node resource capacity descriptions include 
numbers of processors, processor speeds, and physical 
memory size. A routing table directs the historical 
time-varying resource consumption data for each 
workload to the appropriate simulated node, which 
then determines how much of its aggregate workload 
demand can be satisfied and shares this time varying 
information through the central pod sensor. The 
management policy determines how controllers are 
invoked. Controllers periodically poll the sensor and 
decide whether to migrate workloads from one node to 
another, which is initiated by a call to the central pod 
actuator. In our emulation environment this changes 
the routing table and adds an estimated migration 
overhead to both the source and destination nodes for 
the duration of the migration. 

Our emulator gathers various statistics, including 
the frequency and length of CPU and memory 
saturation periods, node capacity used in terms of CPU 
hours, and the number of workload migrations. 
Different controller policies have different behaviors 
that we observe through these metrics. 

3.2. Experimental testbed 
Our experimental testbed consists of eight VM 

hosts, as well as several load generator and controller 
machines, all interconnected with Gigabit Ethernet. 
Each VM host is an HP Proliant server consisting of 
dual 3.2GHz Pentium D processors with 2MB of L2 
cache, 4GB of main memory, and SLES 10.1 with a 
Xen-enabled 2.6.16 kernel. Storage for the VMs is 
provided by an HP StorageWorks 8000 Enterprise 
Virtual Array, and the nodes connect to the array via 
Qlogic QLA2342 Fiber Channel HBA. Each VM is 
configured with 2 virtual processors and 512MB of 
memory, and runs SLES 10.1 for best interoperability 
with the Xen hosts.  



We use an Apache Web server (version 2.2.3) as the 
test application inside each Xen VM. It serves CGI 
requests, each doing some random calculation and 
returning the result in HTML. Another eight physical 
machines are used to generate workload demands on 
the VMs. These "driver" machines are mostly dual 
AMD Opteron servers with 1MB of L2 cache and 8GB 
of main memory, each running Redhat AS4. Each 
driver machine hosts two instances of a modified 
version of httperf [11], which can continuously 
generate a variable number of concurrent HTTP 
sessions. Each session consists of a series of CPU-
intensive CGI requests. In order to reproduce the CPU 
consumption from the real-world resource 
consumption traces, we first ran experiments to 
calibrate the average CPU time used by a CGI request, 
and then we calculated the CGI request rate to produce 
a given level of CPU consumption.  

The Xen hypervisor interface exposes counters that 
accumulate the CPU time (or cycles) consumed by 
individual VMs. The counters are sampled at fixed 
intervals, effectively yielding a sensor for CPU 
consumption (i.e., resource consumption sensor in 
Figure 1). Information on the completed transactions, 
like URLs and response times, is collected on the client 
side. Xen also exposes interfaces in Dom-0 that allow 
run time adjustment of scheduler parameters such as 
the CPU share for each VM (i.e., resource allocation 
actuator in Figure 1). In our experiments, we use the 
Credit Scheduler as the actuator for CPU allocation, 
operated in the capped mode, which means that a VM 
cannot use more than its share of the total CPU time, 
even if there are idle CPU cycles. This non-work-
conserving mode of the scheduler provides a 
straightforward guarantee on the CPU time allocated to 
a VM and provides performance isolation among 
workloads hosted by different VMs. Live VM 
migration in Xen uses a bounded iterative pre-copy of 
VM memory from node to node, followed by a stop 
and copy of remaining or recently dirtied pages [6]. 
This increases the time between migration initiation 
and completion, in favor of minimizing VM down time 
when network connections might be lost. 

4. Results from Case Studies 
The following subsections discuss performance 

evaluation results from two case studies. In the first, 
we used the host load emulation environment to 
evaluate the pod set and TUM pod controllers. The 
second case study was done on our experimental 
testbed using the node and CF pod controllers. 

4.1. Integrated pod set and pod controller 
In this study, we focus on the use of the pod set 

controller within a single pod. The evaluation used 

real-world load traces for 138 SAP enterprise 
applications. The load traces captured average CPU 
and memory consumption as recorded every 5 minutes 
for a three month period. The host load emulator 
walked forward through this data in successive 5 
minute intervals. The nodes in the emulated pod had 8 
2.93-GHz processor cores, 128 GB of memory, and 
two dual 10 Gigabit Ethernet network interface cards 
for network traffic and for virtualization management 
traffic, respectively.  

We note that the emulator did not implement a node 
controller for these experiments. However, the original 
CPU demands were scaled by 1.5 to reflect a desired 
CPU allocation that corresponds to a utilization of 
allocation of 66% typical to ensure interactive 
responsiveness for enterprise workloads. This provided 
an approximation of the impact of using a node 
controller for this study. For scheduling, if aggregate 
workload demand and migration-induced CPU 
overhead exceeded the capacity of a node, then each 
workload received capacity in proportion to the 
number of workloads sharing the node. Any unsatisfied 
demands were carried forward to the next interval. 
Finally, migration overheads were emulated in the 
following way. For each workload that migrated, a 
CPU overhead was added to the source and the 
destination nodes. The overhead was proportional to 
the estimated transfer time based on the workload’s 
memory size and the network interface card 
bandwidth. In general, we found our results to be 
insensitive to proportions in the range of 0.2 – 1. 
Therefore, we chose a factor of 0.5 of a CPU to be 
used throughout the transfer time.  

Figure 4 shows the results of an emulation where 
we used the pod set controller to periodically rearrange 
the 138 workloads to minimize the time-varying 
number of active nodes. For this scenario, we assumed 
the pod set controller had perfect knowledge of the 
future and chose a workload placement such that each 
node was able to satisfy the peak of its aggregate 
workload CPU and memory demands, which gives us a 
theoretical baseline for comparison with algorithms 
that have realistic assumptions. Figure 4 shows the 
impact on capacity requirements of using the pod set 
controller once at the start of the three months (i.e., 
Initial Rearrangement Only) and for cases where the 
workload placement is recomputed every 4 Weeks, 1 
Week, 1 Day, 4 Hours, 1 Hour, and 15 Minutes, 
respectively. The x-axis shows the Total CPU Hours 
used relative to the 4 Hours case. A smaller value 
indicates lower CPU usage. CPU Hours includes busy 
time and idle time on nodes that have workloads 
assigned to them. The cases with more frequent 
migrations incur greater CPU busy time, due to 
migration overhead, but may have lower total time if 



fewer nodes are needed. The figure shows that re-
allocating workloads every 4 Hours captures most of 
the capacity savings that can be achieved. It requires 
39% less CPU hours than the Initial Rearrangement 
Only case (1.00 vs. 1.64) and 22% less CPU hours than 
rearranging on a daily basis (1.00 vs. 1.28). It uses 9% 
and 14% more CPU hours than rearranging every hour 
(1.00 vs. 0.92) and 15 minutes (1.00 vs. 0.88), 
respectively, but it has much better CPU quality, as we 
discuss in the next paragraph. That is why we selected 
the 4 Hours case as our baseline. 
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Figure 4. CPU quality vs. rearrangement periods 

Even though we assume perfect knowledge of 
workload demands, we did not include the CPU 
overhead of migrations when conducting our workload 
placement analysis. For this reason, even the ideal 
cases can incur CPU saturation events. However, there 
was no memory overhead for migrations, so there were 
no memory saturation events for these cases. Figure 4 
shows the frequency of CPU saturation events using a 
vertical bar for each case. The y-axis is a logarithmic 
scale for the mean period between saturation events, 
which is calculated by dividing 12 weeks by the 
number of events. The bottom tick on a bar 
corresponds to a saturation event of one epoch (5 
minutes) or longer (i.e., all saturation events). Each 
tick upwards corresponds to two epochs (10 minutes) 
or longer, three epochs or longer, as so forth. For the 4 
Hours case, there are CPU saturation events lasting 
five minutes or longer every three hours, ten minutes 
or longer every day and a half, and fifteen minutes or 
longer every three weeks. This is aggregated over all 
138 workloads. One of the ticks in the 15 Minutes case 
of Figure 4 is annotated with a “10” to indicate that it 
corresponds with events lasting 10 epochs (50 minutes) 
or longer. The careful reader will observe that it is 
actually the ninth tick from the bottom. This is because 

this case has no saturation events that are 9 epochs 
long, so the tick for 9 epochs or longer would be in the 
same position as the tick for 10 epochs or longer. This 
notation is used more extensively in Figure 5 to reduce 
clutter. 
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(a) CPU quality vs. policy 
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(b) memory quality vs. policy 

Figure 5. Emulation results for different pod and 
pod set controller policies 

We now consider the impact of several different 
pod set and pod controller policies for managing 
workload migration. Figure 5 shows some results from 
the emulations. The Ideal case corresponds to the 4 
Hours case from Figure 4 that shows an ideal balance 
of capacity and quality behavior. The Reactive case has 
a pod set controller that considers resource 
consumption from the previous four hours to predict 
the next four hours. The Historical case has a pod set 
controller that models the next four hours using data 
for a similar time period from the prior week. We 
expect the history based pod set controller to be 



beneficial, as it anticipates future demands based on 
past time-varying demands for a similar period. The 
Pod Controller (PC) case introduces the TUM pod 
controller. The pod set controller chooses an initial 
workload placement but subsequently the TUM pod 
controller works with 5 minute data to initiate 
workload migrations and shutdown and startup nodes 
as required. Finally, the Historical + PC case uses an 
integration of both the TUM pod controller and the 
Historical pod set controller.  

The use of a Pod Controller (PC) alone is most 
typical of the literature [12]. Figure 5 shows that the 
use of a pod set controller in a Reactive mode performs 
worse than the PC case in terms of quality. It 
systematically underestimates capacity requirements. It 
uses 13% and 3% less CPU hours than the PC case 
(0.97 vs. 1.12) and the Ideal case (0.97 vs. 1.00), 
respectively. However, it incurs CPU saturation events 
with high frequency and length. In particular, the 
Reactive case has longer saturation events occurring 
more frequently than correspondingly long events in 
the PC case. From detailed results, the Reactive case 
repeatedly underestimates the capacity needed for 
backups just past midnight each day. The Historical 
pod set controller overcomes this issue, but it uses 4% 
more CPU hours than the PC case (1.17 vs. 1.12) and 
still incurs lower CPU quality than PC alone. We note 
that the Historical case does not react to differences 
between predicted and actual demands. By integrating 
the Historical pod set controller and the Pod Controller 
(PC), we use 5% more CPU hours than the PC case 
(1.18 vs. 1.12), although this case does use 28% less 
CPU hours than the Initial Rearrangement Only case 
above (1.18 vs. 1.64). Also, it has significantly 
improved CPU quality over all other cases in Figure 5, 
excluding the theoretical Ideal case. The frequency of 
CPU saturation events is lower and there are fewer 
long events. The integrated controllers benefit from 
predicting future behavior, as well as reacting to 
current behavior in a timely manner. Figure 5(b) shows 
that Historical + PC case incurs a five minute memory 
saturation event every six weeks on average, where 
memory demand exceeds supply on a node. These are 
incurred after the pod set controller rearranges 
workloads but before the pod controller reacts to 
memory overload. 

4.2. Integrated pod and node controller 
Another case study was done on our experimental 

testbed described in Section 3.2 to validate the 
effectiveness of the integration between the node 
controller and CF pod controller. We ran 16 Apache 
Web servers in 16 Xen VMs on 4 physical nodes in a 
pod. The workloads were driven using CPU 
consumption traces from two Web servers, 10 e-

commerce servers and 2 SAP application servers from 
various enterprise sites. The workloads are associated 
with two classes of service, where eight of them belong 
to the High Priority- (HP-) class and the other eight 
belong to the Low Priority- (LP-) class. We start with a 
semi-random initial placement of workloads, where 
each node hosts four workloads, two in the HP-class 
and two in the LP-class. We consider a resource 
utilization target of 70% and 80% for HP-class and LP-
class workloads, respectively, to provide service level 
differentiation between the two classes. During 
resource contention on a node, the resource requests of 
HP-class workloads are satisfied, if possible, before the 
workloads in the LP-class get their shares.  

We compare three workload management solutions 
in this experimental study: 
• Fixed Allocation (“no control”): Each VM (incl. 

Dom-0) has a fixed 20% allocation of its node’s 
CPU capacity. There are no VM migrations. 

• Independent control: The CF pod and node 
controllers run in parallel without integration. 

• Integrated control: The CF pod and node 
controllers run together with integration. 

The first solution is one without dynamic resource 
control, and it simply provides a baseline for the study. 
The control intervals for the pod and node controllers 
are 1 minute and 10 seconds, respectively. 

Figure 6 shows a comparison of the resulting 
application performance from using the three solutions. 
From the client side, a mean response time (MRT) is 
computed and logged every 10 seconds over the 
duration of each experiment (5 hours). To better 
illustrate the results, we consider a 2-sec MRT target 
for the HP-class workloads and a 10-sec target for the 
LP-class workloads. A cumulative distribution of the 
MRT across all 16 workloads for the Fixed Allocation 
case is shown with the dashed green line. No class of 
service was considered in this solution. All the 
workloads achieve the 2-sec target 68% of time and the 
10-sec target 90% of time. The two blue lines represent 
the MRT distributions for the independent control 
solution. More specifically, the solid blue line and the 
dashed blue line correspond to the HP-class and the 
LP-class workloads, respectively. As we can see, the 
HP-class workloads achieve the 2-sec target 73% of 
time (a 5% improvement over Fixed Allocation), but 
the LP-class workloads achieve the 10-sec target only 
67% of time. With the integrated control solution, the 
MRT distributions for the HP-class and the LP-class 
workloads are represented by the solid red line and the 
dashed red line, respectively. We see that the HP-class 
workloads achieve the 2-sec target 90% of time, an 
improvement of 22% and 17% over the no control and 
independent control solutions, respectively. The 



relative improvements in these two cases are 32% 
(22/68) and 23% (17/73), respectively. The LP-class 
workloads achieve the 10-sec target 70% of time, 
similar to the no integration case. 

 
Figure 6. Cumulative distributions of 10-second 
mean response times for all the workloads from 
using three workload management solutions - no 
control (green), independent control (blue), and 

integrated control (red) 

Table 1. Comparison of migration events and 
unsatisfied demand with and without integration 

No. of migration 
events 

Unsatisfied demand 
(% of total demand) 

 

HP LP HP LP 
Independent 17 14 15 12 
Integrated 13 22 9 15 

To explain the observed difference between the two 
controller solutions, we recall that without integration, 
the pod controller estimates workload resource demand 
based on the observed resource consumptions only. In 
contrast, when the two controllers are integrated, the 
node controller determines the resource allocation each 
workload needs to satisfy its performance goal, and 
this information is provided to the pod controller as an 
input. The results in Figure 6 clearly show that this 
integration enables the pod controller to take into 
account the performance-driven resource demands of 
all the workloads, and therefore make better workload 
placement decisions such that the HP-class workloads 
have higher probabilities of achieving their service 
level objectives.  

In addition, we computed the statistics of system-
level metrics from the controller logs to see if they 
demonstrate similar trends as seen in the response time 
data. Table 1 shows a comparison of the two controller 
solutions in terms of two metrics: the total number of 
VM migrations that occurred and the total unsatisfied 
demand (resource request) as a percentage of total 

demand, for both the HP-class and LP-class workloads. 
As we can see, the HP-class workloads experienced a 
higher number of migrations using independent control 
(17) than using integrated control (13). This is 
consistent with our previous explanation that when 
resource requests are considered instead of measured 
consumptions, the HP-class workloads are less likely 
to be migrated and consolidated, leading to better 
performance. Similarly, the integrated control solution 
resulted in a lower percentage of unsatisfied demand 
(9%) compared to the independent control solution 
(15%). Both statistics are consistent with the observed 
response time data shown in Figure 6. 
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Figure 7. Time series of the resource consumption 
(blue), request (green), and allocation (red), as well 
as measured mean response time (bottom) for an 

HP-class workload, with independent control in (a) 
and (c), and integrated control in (b) and (d). 

In Figure 7, we demonstrate the impact of controller 
integration on a particular HP-class workload. The two 
top figures show the measured CPU consumption, the 
CPU request computed by the utilization controller, 
and the actual CPU allocation determined by the 
arbiter controller for this workload over a 20 minutes 
interval. The two bottom figures show the resulting 
response times. The two figures on the left represent 
the independent control case. As we can see, the actual 
allocation is below the request most of the time, 
causing the VM hosting this workload to be overloaded 
(in 7(a)), resulting in high response time for most of 
the 20 minutes interval (in 7(c)). Note that the response 
time drops off at around 900 seconds, which is due to 
the reduced resource demand as we can see from 7(a). 
In a few sampling intervals that follow, the allocation 
is below the request but above the average 
consumption, which means that the VM is less 
overloaded and has a much lower response time. The 
two figures on the right show the result for the 
integrated control solution, where the CPU request is 



mostly satisfied (in 7(b)), leading to much lower 
response time (in 7(d)). The advantage of the 
integrated control solution is that it made more 
informed placement decisions that did not subject this 
HP-class workload to an overload situation. 

5. Related work 
VMware’s VirtualCenter and DRS products [2] and 

the management infrastructure from Virtual Iron [4] 
provide alternatives to parts of our solution. Each 
offers a degree of pod control for workloads in 
hypervisor-based VMs. Our approach considers 
additional metrics, like application service level 
metrics (e.g., response time and throughput), and uses 
long-term historical usage trends to predict future 
capacity requirements. The commercial products could 
possibly be integrated into our architecture. 

The work in [13] integrates various sophisticated 
aspects of power and performance management at the 
node and the pod levels. It presents a simulation study 
that optimizes with respect to power while minimizing 
the impact on performance. The simulation results for 
integrated control suggest that between 3% and 5% of 
workload CPU demand is not satisfied, but unsatisfied 
demands were not carried forward between simulation 
periods. Our host emulation approach carries forward 
demands and focuses more on the length of events 
where performance may be impacted 

Khana et al. solves the dynamic VM migration 
problem using a heuristic bin-packing algorithm, 
evaluated on a VMware ESX Server testbed [12]. 
Wood et al. consider black and grey box approaches 
for managing VM migration using a combination of 
node and pod controller in a measurement testbed [14]. 
They only consider resource utilization for the black 
box approach, and add OS and application log 
information for the grey box approach.  They find that 
the additional information helps to make more 
effective migration decisions.  Neither work takes 
advantage of long-term demand patterns as we do 
using the pod set controller. 

Control theory has recently been applied to 
performance management in computer systems [15] 
through admission control [16][17] or resource 
allocation [18][19][20], including dynamic resource 
allocation in virtualized environments [21][22][5].  
Compared with these prior solutions that only dealt 
with individual non-virtualized or virtualized systems, 
we have proposed an integrated solution for capacity 
and workload management in a virtualized data center 
through a combination of dynamic resource allocation, 
VM migration, and capacity planning. 

6. Conclusion and future work 
In this paper, we introduce the 1000 Islands solution 

architecture that integrates islands of automation to the 
benefit of their managed workloads, as well as our first 
steps toward an implementation of this architecture.  

While all of the controllers achieve their goals 
independently using different analytic techniques, 
including control theory, meta-heuristics, fuzzy logic, 
trace-based analysis, and other optimization methods, 
there is power in leveraging each controller 
independently and then combining them in this unified 
architecture. In the emulations, the integrated pod set 
and pod controllers resulted in CPU and memory 
quality that approached that of the hypothetical ideal 
case, while using only 18% more capacity. The testbed 
showed that the integration of pod and node controllers 
resulted in performance improvements of 32% over the 
fixed allocation case and 23% over the non-integrated 
controllers, as well as reduced migrations for high 
priority workloads. In addition, service level 
differentiation can be achieved between workload 
classes with different priorities. 

As a next step, we plan to scale our testbed to a 
larger number of physical nodes so that they can be 
divided into multiple pods. This will allow us to 
evaluate the complete solution architecture that 
consists of node, pod, and pod set controllers on real 
systems, as well as study consolidation scenarios with 
a much larger number of workloads. 

We will also integrate with power [13] and cooling 
[23] controllers, to better share policies and to offer a 
more unified solution for managing both IT and facility 
resources in a data center. For example, our node 
controller can be extended to dynamically tune 
individual processor P-states to save average power, 
our pod controller can consider server-level power 
budgets, and the thermal profile of the data center can 
guide our pod set controller to place workloads in areas 
of lower temperature or higher cooling capacity.  

Ultimately, data center operators would like 
application-level service level objectives (SLOs) to be 
met without having to worry about system-level 
details. In [24], workload demands are partitioned 
across a two priorities to enable workload-specific 
quality of service requirements during capacity 
planning and runtime phases. This can be integrated 
with node and pod controllers.  In [25], application-
level SLOs are decomposed into system-level 
thresholds using performance models for various 
components being monitored. These thresholds can 
potentially be used to drive our utilization controllers 
at the VM level. However, this decomposition is done 
over longer time scales (minutes). In [5], we have 
developed a feedback controller for translating SLO-



based response time targets into resource utilization 
targets over shorter time scales (seconds). These 
approaches can be incorporated in our next round of 
integration. Finally, a distributed management 
framework is being developed for integrating all of 
these components in a scalable manner, such that they 
can potentially manage a data center of 10,000 nodes. 
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