
1000 Islands: Integrated Capacity and Workload Management for the Next
Generation Data Center

Xiaoyun Zhu, Don Young, Brian J. Watson, Zhikui Wang, Jerry Rolia, Sharad Singhal, Bret
McKee, Chris Hyser, Daniel Gmach†, Rob Gardner, Tom Christian, Lucy Cherkasova

Hewlett-Packard Laboratories, †Technical University of Munich (TUM)
{firstname.lastname, brian.j.watson}@hp.com, †daniel.gmach@in.tum.de

Abstract

Recent advances in hardware and software
virtualization offer unprecedented management
capabilities for the mapping of virtual resources to
physical resources. It is highly desirable to further
create a “service hosting abstraction” that allows
application owners to focus on service level objectives
(SLOs) for their applications. This calls for a resource
management solution that achieves the SLOs for many
applications in response to changing data center
conditions and hides the complexity from both
application owners and data center operators. In this
paper, we describe an automated capacity and
workload management system that integrates multiple
resource controllers at three different scopes and time
scales. Simulation and experimental results confirm
that such an integrated solution ensures efficient and
effective use of data center resources while reducing
service level violations for high priority applications.

1. Introduction

Data centers are inexorably growing more complex
and difficult for humans to manage efficiently.
Although virtualization provides benefits by driving
higher levels of resource utilization, it also contributes
to this growth in complexity. Data centers may include
both hardware- and software-level virtualization, such
as HP’s Virtual Connect [1] network virtualization
technology, as well as the hypervisor-based VMware
ESX Server [2], Citrix XenServer [3], and Virtual Iron
[4] products. Each technology offers different control
“knobs” for managing the mapping of virtual and
physical resources. Continually adjusting these knobs
in response to changing data center conditions can
minimize hardware and energy costs while meeting the
service level objectives (SLOs) specified by
application owners. This activity should be automated
to help avert the coming complexity crisis and more
fully realize the benefits of virtualization.

The purpose of our work is to enable both
application owners and data center operators to focus
on service policy settings, such as response time and
throughput targets, and not worry about the details of
where an application is hosted or how it shares
resources with others. These details are handled by our
resource management solution, so that system
administrators can “set it and forget it”.

This paper describes three key contributions. First,
we propose the 1000 Islands solution architecture that
supports automated resource management in a data
center. It exploits multiple control knobs at three
different scopes and time scales: short-term allocation
of system-level resources among individual workloads
on a shared server, medium-term live migration of
virtual machines (VMs) between servers, and long-
term organization of server clusters and groups of
workloads with compatible long-term demand patterns.
This architecture integrates multiple resource
controllers that are implemented using different
analytic techniques including control theory, bin
packing, trace-based analysis and other optimization
methods. The innovation is in leveraging each of these
independently and then combining their power.
Second, we define specific interfaces for coordinating
the individual controllers at run time to eliminate
potential conflicts. This includes interfaces for sharing
policy information, so that policies do not have to be
duplicated among controllers. Finally, we validate the
effectiveness of the integrated solution through a
simulation study, as well as experimental evaluation on
a testbed built from real systems.

Section 2 presents the 1000 Islands solution
architecture, and explains how its three controllers are
integrated. Section 3 describes the simulation
environment and the experimental testbed used to
validate the architecture. The performance evaluation
results from two case studies are shown in Section 4.
Section 5 discusses related work. In Section 6, we
conclude and discuss future research directions.

2. Our Solution
The 1000 Islands architecture (shown in Figure 1)

consists of three individual controllers operating at
different scopes and time scales:
• On the longest time scale (hours to days), pod set

controllers study the resource consumption
history of many workloads (WLs), which are
applications or their components, and which may
run in VMs. This controller determines whether
the data center has enough resource capacity to
satisfy workload demands, and places compatible
workloads onto nodes (servers) and groups nodes
into pods (workload migration domains). A pod
set can consist of multiple non-overlapping pods.

• On a shorter time scale (minutes), pod controllers
react to changing pod conditions by adjusting the
placement of workloads on nodes.

• On the shortest time scale (seconds), node
controllers dynamically adjust workload resource
allocations to satisfy SLOs for the applications.

The next three subsections describe the three
individual controllers, and the last subsection presents
how the three controllers are integrated.

2.1. Node controller
A node controller is associated with each node in a

pod. It manages the dynamic allocation of the node’s
resources to each individual workload running in a
VM. The node controller consists of two layers: a set
of utilization controllers (UCs) for the individual VMs,
and an arbiter controller (AC) for the node. Figure 2
shows this layered structure. In all the discussions that
follow, we use the term resource to refer to a specific
type of system resource (e.g., CPU) on a node,

although the algorithm can be generalized to handle
multiple resources (such as disk I/O or network
bandwidth) at the same time.

A utilization controller collects the average resource
consumption of each VM from a sensor (see “S” in
Figure 2), and determines the required resource
allocation to the VM such that a specified utilization
target can be achieved. This is done periodically with a
control interval of seconds. We define a VM’s
utilization as the ratio between its resource
consumption and resource allocation. For example, if a
VM’s measured average CPU consumption in a control
interval is 0.3 of a CPU, and the specified utilization
target is 75%, then the utilization controller will drive
the CPU allocation for the VM towards 0.4 of a CPU
in subsequent control intervals. The utilization target
for a workload is driven by its need to meet its
application-level SLO. For example, in order for an
interactive Web application to meet an average
response time goal of 1 second, the average CPU
utilization of the VM running the application may have
to be maintained at 60%. A feedback controller was
presented in [5] to automatically translate application-
level SLOs to VM-level utilization targets. This
enhanced controller will be integrated into the 1000
Islands architecture later.

All utilization controllers feed the desired resource
allocation for each VM (referred to as a request) into
the arbiter controller, which determines the actual
resource allocations (referred to as an allocation) to the
VMs. If the sum of all requests is less than the node’s
capacity, then all requests are granted. In addition, the
excess capacity is distributed among the VMs in
proportion to their requests. On the contrary, if the sum

Pod A
Other
nodes

WL WL
Node 1

WL WL
Node 2

Resource
Consumption and
Capacity Sensors

Add new nodes

Move nodes
between pods

Node Cont.
(seconds)

Application
Performance

Sensors

Resource
Allocation
Actuators

Workload (WL)
Migration
Actuators

Move WLs
between pods

Move WLs
within pods

Policies
Service Policies

Resource Demand Pod Performance Data

SLOs & WL
Priorities

Node, Pod, and Pod
Set Cont. Policies

WL Placement
Policies

Common User Interface

Pod Cont.
(minutes)

Pod Set Cont.
(hours or more)

Controllers
(timescale)

Managed
Resources

Sensors and
Actuators

Pod Set

Metrics
Actions
Integrations

Pod A
Other
nodes

WL WL
Node 1

WL WL
Node 2

Pod A
Other
nodes

WL WL
Node 1

WLWL WLWL
Node 1

WL WL
Node 2

WLWL WLWL
Node 2

Resource
Consumption and
Capacity Sensors

Add new nodes

Move nodes
between pods

Node Cont.
(seconds)

Application
Performance

Sensors

Resource
Allocation
Actuators

Workload (WL)
Migration
Actuators

Move WLs
between pods

Move WLs
within pods

Policies

Resource Demand Pod Performance Data

SLOs & WL
Priorities

Node, Pod, and Pod
Set Cont. Policies

WL Placement
Policies

Pod Cont.
(minutes)

Pod Set Cont.
(hours or more)

Controllers
(timescale)

Managed
Resources

Sensors and
Actuators

Pod Set

Metrics
Actions
Integrations

Pod A
Other
nodes

WL WL
Node 1

WL WL
Node 2

Resource
Consumption and
Capacity Sensors

Add new nodes

Move nodes
between pods

Node Cont.
(seconds)

Application
Performance

Sensors

Resource
Allocation
Actuators

Workload (WL)
Migration
Actuators

Move WLs
between pods

Move WLs
within pods

Policies
Service Policies

Resource Demand Pod Performance Data

SLOs & WL
Priorities

Node, Pod, and Pod
Set Cont. Policies

WL Placement
Policies

Common User Interface

Pod Cont.
(minutes)

Pod Set Cont.
(hours or more)

Controllers
(timescale)

Managed
Resources

Sensors and
Actuators

Pod Set

Metrics
Actions
Integrations

Pod A
Other
nodes

WL WL
Node 1

WL WL
Node 2

Pod A
Other
nodes

WL WL
Node 1

WLWL WLWL
Node 1

WL WL
Node 2

WLWL WLWL
Node 2

Resource
Consumption and
Capacity Sensors

Add new nodes

Move nodes
between pods

Node Cont.
(seconds)

Application
Performance

Sensors

Resource
Allocation
Actuators

Workload (WL)
Migration
Actuators

Move WLs
between pods

Move WLs
within pods

Policies

Resource Demand Pod Performance Data

SLOs & WL
Priorities

Node, Pod, and Pod
Set Cont. Policies

WL Placement
Policies

Pod Cont.
(minutes)

Pod Set Cont.
(hours or more)

Controllers
(timescale)

Managed
Resources

Sensors and
Actuators

Pod Set

Metrics
Actions
Integrations

Figure 1. The 1000 Islands solution architecture consisting of node, pod, and pod set controllers

of all requests exceeds the node’s capacity, the arbiter
controller performs service level differentiation based
on workload priorities defined in policies by data
center operators. In our current implementation, each
workload is assigned a priority level and a weight
within that level. A workload with a higher priority
level always has its request satisfied before a workload
with a lower priority level. Workloads at the same
priority level receive a percentage of their requests in
proportion to their weights. Finally, the allocations
determined by the arbiter controller are fed into the
resource allocation actuators (see Figure 1 or “A” in
Figure 2) for the next control interval.

UC_1

UC_n

AC

requests

allocations

priorities util_target_1

VM _1
(W L 1) A

S

VM _n
(W L n)

A

S

N ode

N ode
controller

util_target_n

consumption

Figure 2. Node controller architecture

2.2. Pod controller
The primary purpose of the pod controller is to react

to aggregate CPU requests exceeding a node’s
capacity, exploiting the fact that they will rarely exceed
total pod capacity. In the event that total pod capacity
is exceeded, high priority VMs should be favored over
low priority ones. The pod controller uses live
migration of VMs to move workloads between nodes
[6]. In our experiments, moving a 512MB VM takes
slightly over one minute from migration initiation to
completion, with only sub-second actual downtime.
This makes live migration effectively transparent to the
workload inside the migrated VM, though the nodes
experience transient CPU and LAN overheads. Next,
we describe two implementations of the pod controller
that are used in our experiments.

CF pod controller
The CF pod controller implementation [7] consists

of a simulated annealing algorithm that periodically
searches for VM to node mappings in accordance with
a node overload avoidance and mitigation policy.
Candidate mappings are generated by modeling the
effects of a succession of random VM migrations, and
are evaluated using a cost function that penalizes
mappings that lead to overload conditions on any node.
A node is defined as overloaded when the total CPU
request or memory consumption of its VMs, plus the
hypervisor and the DOM-0 overheads, exceeds the
available capacity of the node. Mappings with some

headroom are favored to avoid overload or SLO
violations. To mitigate overloads that do occur,
mappings with fewer high priority VMs per node
enable more effective service level differentiation by
the node controller. This is done with a non-linear
penalty on the count of high priority VMs per node.
The best mapping is turned into a migration list and fed
into workload migration actuators (see Figure 1).

TUM pod controller
The TUM pod controller [8] uses a fuzzy logic

feedback control loop. It continuously monitors the
nodes' resource consumptions for values that are too
low or too high. In our experiments, a node is
overloaded whenever its CPU or memory consumption
exceeds 85% or 95%, respectively. Furthermore, a pod
is lightly utilized if the average CPU or memory
consumption of all nodes drops below 50% or 80%,
respectively. Our justification for these thresholds is
beyond the scope of this paper, but appears in related
work [9]. After detecting a lightly utilized or
overloaded situation, the pod controller identifies
actions to remedy the situation, considering the load
situation of all affected nodes and workloads. If a node
is overloaded, it first determines a workload on the
node that should be migrated, and then searches for
another node to receive the workload. These rules also
initiate the shutdown and startup of nodes to help
reduce power usage within a pod.

2.3. Pod set controller
A pod set controller determines whether a data

center pod set has enough resource capacity to satisfy
all workloads, and periodically determines compatible
sets of workloads to place onto nodes within each pod.
Our pod set controller [10] supports capacity planning
for pod sets, as well as objectives that consolidate
workloads to a small number of nodes or balance
workloads across nodes. To accomplish this, it studies
the historical resource demands of each workload and
assumes that future demand patterns will be similar to
past demand patterns. The pod set controller simulates
the future resource demand behavior of alternative
workload placements and uses an optimization
heuristic to determine a placement expected to take
best advantage of statistical multiplexing among time-
varying workload demands.

2.4. Controller integration
One of our contributions is identifying necessary

interfaces between these three controllers, so that they
can work well together to achieve fully automated
capacity and workload management at a data center
scale. The red arrows in Figure 1 indicate these
integration points. First, the node controllers must
provide estimated resource demands to the pod

controller. Otherwise, the pod controller might
estimate resource demands that do not agree with the
node controllers. If the pod controller’s estimates are
too low, then it will pack too many workloads onto a
node, possibly causing application-level SLO
violations. On the other hand, estimates that are too
high could trigger an excessive number of overload
conditions, and would reduce the power savings that
could be achieved by consolidating workloads onto as
few nodes as possible.

Second, the pod controller must provide pod
performance data to the pod set controller so that the
latter can improve the compatibility of workloads it
places in each pod, and react to pod overload or
underload situations by adding or removing nodes.
Third, the pod set controller should provide hints to the
pod controller about what will happen in the near
future. If a workload’s resource demand is expected to
increase significantly at a particular time, then the pod
controller can prepare in advance by placing that
workload on a lightly loaded node. Finally, all three
controllers must be configurable through a single user
interface, and they must consider the other controllers’
configuration parameters. For example, the pod
controller needs to know the workload priorities used
by the node controllers, so that it does not group too
many high priority workloads onto the same node, thus
preventing effective service level differentiation. When
properly integrated, these controllers automate
resource allocation and hide the complexity of resource
management from data center operators.

3. Validation of the Solution

In order to validate the design of the proposed
architecture and to demonstrate the merits of the
integration approach, we have built both a host load
emulator and an experimental testbed to perform
workload consolidation case studies using real-world
resource consumption traces from enterprise data
centers. For the work described here, we have used the
experimental testbed for evaluating the integration of
the CF pod and node controllers in a small-scale pod,
and the emulator for evaluating the integration of the
pod set and TUM pod controllers in a large-scale pod
with a larger number of workloads. This section
describes the setup of these two environments.

3.1. Host Load Emulator
Predicting the long term impact of integrated

management solutions for realistic workloads is a
challenging task. We employ a simulation environment
to evaluate a number of management policies in a time
effective manner.

Figure 3. Simulation environment setup

The architecture for the host load emulator is
illustrated in Figure 3. The emulation environment
takes as input historical workload resource
consumption traces, node resource capacity
descriptions, pod descriptions, and the management
policy. The node resource capacity descriptions include
numbers of processors, processor speeds, and physical
memory size. A routing table directs the historical
time-varying resource consumption data for each
workload to the appropriate simulated node, which
then determines how much of its aggregate workload
demand can be satisfied and shares this time varying
information through the central pod sensor. The
management policy determines how controllers are
invoked. Controllers periodically poll the sensor and
decide whether to migrate workloads from one node to
another, which is initiated by a call to the central pod
actuator. In our emulation environment this changes
the routing table and adds an estimated migration
overhead to both the source and destination nodes for
the duration of the migration.

Our emulator gathers various statistics, including
the frequency and length of CPU and memory
saturation periods, node capacity used in terms of CPU
hours, and the number of workload migrations.
Different controller policies have different behaviors
that we observe through these metrics.

3.2. Experimental testbed
Our experimental testbed consists of eight VM

hosts, as well as several load generator and controller
machines, all interconnected with Gigabit Ethernet.
Each VM host is an HP Proliant server consisting of
dual 3.2GHz Pentium D processors with 2MB of L2
cache, 4GB of main memory, and SLES 10.1 with a
Xen-enabled 2.6.16 kernel. Storage for the VMs is
provided by an HP StorageWorks 8000 Enterprise
Virtual Array, and the nodes connect to the array via
Qlogic QLA2342 Fiber Channel HBA. Each VM is
configured with 2 virtual processors and 512MB of
memory, and runs SLES 10.1 for best interoperability
with the Xen hosts.

We use an Apache Web server (version 2.2.3) as the
test application inside each Xen VM. It serves CGI
requests, each doing some random calculation and
returning the result in HTML. Another eight physical
machines are used to generate workload demands on
the VMs. These "driver" machines are mostly dual
AMD Opteron servers with 1MB of L2 cache and 8GB
of main memory, each running Redhat AS4. Each
driver machine hosts two instances of a modified
version of httperf [11], which can continuously
generate a variable number of concurrent HTTP
sessions. Each session consists of a series of CPU-
intensive CGI requests. In order to reproduce the CPU
consumption from the real-world resource
consumption traces, we first ran experiments to
calibrate the average CPU time used by a CGI request,
and then we calculated the CGI request rate to produce
a given level of CPU consumption.

The Xen hypervisor interface exposes counters that
accumulate the CPU time (or cycles) consumed by
individual VMs. The counters are sampled at fixed
intervals, effectively yielding a sensor for CPU
consumption (i.e., resource consumption sensor in
Figure 1). Information on the completed transactions,
like URLs and response times, is collected on the client
side. Xen also exposes interfaces in Dom-0 that allow
run time adjustment of scheduler parameters such as
the CPU share for each VM (i.e., resource allocation
actuator in Figure 1). In our experiments, we use the
Credit Scheduler as the actuator for CPU allocation,
operated in the capped mode, which means that a VM
cannot use more than its share of the total CPU time,
even if there are idle CPU cycles. This non-work-
conserving mode of the scheduler provides a
straightforward guarantee on the CPU time allocated to
a VM and provides performance isolation among
workloads hosted by different VMs. Live VM
migration in Xen uses a bounded iterative pre-copy of
VM memory from node to node, followed by a stop
and copy of remaining or recently dirtied pages [6].
This increases the time between migration initiation
and completion, in favor of minimizing VM down time
when network connections might be lost.

4. Results from Case Studies
The following subsections discuss performance

evaluation results from two case studies. In the first,
we used the host load emulation environment to
evaluate the pod set and TUM pod controllers. The
second case study was done on our experimental
testbed using the node and CF pod controllers.

4.1. Integrated pod set and pod controller
In this study, we focus on the use of the pod set

controller within a single pod. The evaluation used

real-world load traces for 138 SAP enterprise
applications. The load traces captured average CPU
and memory consumption as recorded every 5 minutes
for a three month period. The host load emulator
walked forward through this data in successive 5
minute intervals. The nodes in the emulated pod had 8
2.93-GHz processor cores, 128 GB of memory, and
two dual 10 Gigabit Ethernet network interface cards
for network traffic and for virtualization management
traffic, respectively.

We note that the emulator did not implement a node
controller for these experiments. However, the original
CPU demands were scaled by 1.5 to reflect a desired
CPU allocation that corresponds to a utilization of
allocation of 66% typical to ensure interactive
responsiveness for enterprise workloads. This provided
an approximation of the impact of using a node
controller for this study. For scheduling, if aggregate
workload demand and migration-induced CPU
overhead exceeded the capacity of a node, then each
workload received capacity in proportion to the
number of workloads sharing the node. Any unsatisfied
demands were carried forward to the next interval.
Finally, migration overheads were emulated in the
following way. For each workload that migrated, a
CPU overhead was added to the source and the
destination nodes. The overhead was proportional to
the estimated transfer time based on the workload’s
memory size and the network interface card
bandwidth. In general, we found our results to be
insensitive to proportions in the range of 0.2 – 1.
Therefore, we chose a factor of 0.5 of a CPU to be
used throughout the transfer time.

Figure 4 shows the results of an emulation where
we used the pod set controller to periodically rearrange
the 138 workloads to minimize the time-varying
number of active nodes. For this scenario, we assumed
the pod set controller had perfect knowledge of the
future and chose a workload placement such that each
node was able to satisfy the peak of its aggregate
workload CPU and memory demands, which gives us a
theoretical baseline for comparison with algorithms
that have realistic assumptions. Figure 4 shows the
impact on capacity requirements of using the pod set
controller once at the start of the three months (i.e.,
Initial Rearrangement Only) and for cases where the
workload placement is recomputed every 4 Weeks, 1
Week, 1 Day, 4 Hours, 1 Hour, and 15 Minutes,
respectively. The x-axis shows the Total CPU Hours
used relative to the 4 Hours case. A smaller value
indicates lower CPU usage. CPU Hours includes busy
time and idle time on nodes that have workloads
assigned to them. The cases with more frequent
migrations incur greater CPU busy time, due to
migration overhead, but may have lower total time if

fewer nodes are needed. The figure shows that re-
allocating workloads every 4 Hours captures most of
the capacity savings that can be achieved. It requires
39% less CPU hours than the Initial Rearrangement
Only case (1.00 vs. 1.64) and 22% less CPU hours than
rearranging on a daily basis (1.00 vs. 1.28). It uses 9%
and 14% more CPU hours than rearranging every hour
(1.00 vs. 0.92) and 15 minutes (1.00 vs. 0.88),
respectively, but it has much better CPU quality, as we
discuss in the next paragraph. That is why we selected
the 4 Hours case as our baseline.

1 Minute

5 Minutes
(1 Epoch)

15 Minutes

1 Hour

4 Hours

1 Day

1 Week

3 Weeks

12 Weeks

0.80 1.00 1.20 1.40 1.60

M
ea

n
S

ta
rt-

to
-S

ta
rt

Ti
m

e
B

et
w

ee
n

C
P

U
 S

at
ur

at
io

n
E

ve
nt

s
(L

og
 S

ca
le

)

Total CPU Hours Relative to "4 Hours" Case

These four cases have
no CPU saturation events

Initial Rearrangement
Only (127)

4 Weeks
(388)

1 Week
(1572)

1 Day
(10871)

4 Hours
(61749)

1 Hour
(246234)

15 Minutes
(937821)

10

Better efficiency

B
et

te
r q

ua
lit

y

Mean time between events that are
1 epoch or longer (i.e., all events)

Mean time between events
that are 2 epochs or longer

Mean time between events
that are 10 epochs or longer

Total migrations

Figure 4. CPU quality vs. rearrangement periods

Even though we assume perfect knowledge of
workload demands, we did not include the CPU
overhead of migrations when conducting our workload
placement analysis. For this reason, even the ideal
cases can incur CPU saturation events. However, there
was no memory overhead for migrations, so there were
no memory saturation events for these cases. Figure 4
shows the frequency of CPU saturation events using a
vertical bar for each case. The y-axis is a logarithmic
scale for the mean period between saturation events,
which is calculated by dividing 12 weeks by the
number of events. The bottom tick on a bar
corresponds to a saturation event of one epoch (5
minutes) or longer (i.e., all saturation events). Each
tick upwards corresponds to two epochs (10 minutes)
or longer, three epochs or longer, as so forth. For the 4
Hours case, there are CPU saturation events lasting
five minutes or longer every three hours, ten minutes
or longer every day and a half, and fifteen minutes or
longer every three weeks. This is aggregated over all
138 workloads. One of the ticks in the 15 Minutes case
of Figure 4 is annotated with a “10” to indicate that it
corresponds with events lasting 10 epochs (50 minutes)
or longer. The careful reader will observe that it is
actually the ninth tick from the bottom. This is because

this case has no saturation events that are 9 epochs
long, so the tick for 9 epochs or longer would be in the
same position as the tick for 10 epochs or longer. This
notation is used more extensively in Figure 5 to reduce
clutter.

1 Minute

5 Minutes
(1 Epoch)

15 Minutes

1 Hour

4 Hours

1 Day

1 Week

3 Weeks

12 Weeks

0.95 1.00 1.05 1.10 1.15 1.20

M
ea

n
St

ar
t-t

o-
St

ar
t T

im
e

Be
tw

ee
n

C
PU

 S
at

ur
at

io
n

Ev
en

ts
(L

og
 S

ca
le

)

Total CPU Hours Relative to Ideal Case

10
20

40

60
80
100

120

140
150

10

20

44

Ideal
(59863)

Reactive
(59653)

Historical
(63496)

Pod Controller (PC)
(19998)

Hist. + PC
(75866)

194

Different run of
"4 Hours" case

30

50

(a) CPU quality vs. policy

1 Minute

5 Minutes
(1 Epoch)

15 Minutes

1 Hour

4 Hours

1 Day

1 Week

3 Weeks

12 Weeks

0.95 1.00 1.05 1.10 1.15 1.20

M
ea

n
St

ar
t-t

o-
St

ar
t T

im
e

Be
tw

ee
n

M
em

or
y

Sa
tu

ra
tio

n
Ev

en
ts

(L
og

 S
ca

le
)

Total CPU Hours Relative to Ideal Case

Ideal and PC have
no memory saturation events

10

40

47

48

69

10

47

Ideal
(59863)

Reactive
(59653)

Historical
(63496)

Pod Controller (PC)
(19998) Hist. + PC

(75866)

143

(b) memory quality vs. policy

Figure 5. Emulation results for different pod and
pod set controller policies

We now consider the impact of several different
pod set and pod controller policies for managing
workload migration. Figure 5 shows some results from
the emulations. The Ideal case corresponds to the 4
Hours case from Figure 4 that shows an ideal balance
of capacity and quality behavior. The Reactive case has
a pod set controller that considers resource
consumption from the previous four hours to predict
the next four hours. The Historical case has a pod set
controller that models the next four hours using data
for a similar time period from the prior week. We
expect the history based pod set controller to be

beneficial, as it anticipates future demands based on
past time-varying demands for a similar period. The
Pod Controller (PC) case introduces the TUM pod
controller. The pod set controller chooses an initial
workload placement but subsequently the TUM pod
controller works with 5 minute data to initiate
workload migrations and shutdown and startup nodes
as required. Finally, the Historical + PC case uses an
integration of both the TUM pod controller and the
Historical pod set controller.

The use of a Pod Controller (PC) alone is most
typical of the literature [12]. Figure 5 shows that the
use of a pod set controller in a Reactive mode performs
worse than the PC case in terms of quality. It
systematically underestimates capacity requirements. It
uses 13% and 3% less CPU hours than the PC case
(0.97 vs. 1.12) and the Ideal case (0.97 vs. 1.00),
respectively. However, it incurs CPU saturation events
with high frequency and length. In particular, the
Reactive case has longer saturation events occurring
more frequently than correspondingly long events in
the PC case. From detailed results, the Reactive case
repeatedly underestimates the capacity needed for
backups just past midnight each day. The Historical
pod set controller overcomes this issue, but it uses 4%
more CPU hours than the PC case (1.17 vs. 1.12) and
still incurs lower CPU quality than PC alone. We note
that the Historical case does not react to differences
between predicted and actual demands. By integrating
the Historical pod set controller and the Pod Controller
(PC), we use 5% more CPU hours than the PC case
(1.18 vs. 1.12), although this case does use 28% less
CPU hours than the Initial Rearrangement Only case
above (1.18 vs. 1.64). Also, it has significantly
improved CPU quality over all other cases in Figure 5,
excluding the theoretical Ideal case. The frequency of
CPU saturation events is lower and there are fewer
long events. The integrated controllers benefit from
predicting future behavior, as well as reacting to
current behavior in a timely manner. Figure 5(b) shows
that Historical + PC case incurs a five minute memory
saturation event every six weeks on average, where
memory demand exceeds supply on a node. These are
incurred after the pod set controller rearranges
workloads but before the pod controller reacts to
memory overload.

4.2. Integrated pod and node controller
Another case study was done on our experimental

testbed described in Section 3.2 to validate the
effectiveness of the integration between the node
controller and CF pod controller. We ran 16 Apache
Web servers in 16 Xen VMs on 4 physical nodes in a
pod. The workloads were driven using CPU
consumption traces from two Web servers, 10 e-

commerce servers and 2 SAP application servers from
various enterprise sites. The workloads are associated
with two classes of service, where eight of them belong
to the High Priority- (HP-) class and the other eight
belong to the Low Priority- (LP-) class. We start with a
semi-random initial placement of workloads, where
each node hosts four workloads, two in the HP-class
and two in the LP-class. We consider a resource
utilization target of 70% and 80% for HP-class and LP-
class workloads, respectively, to provide service level
differentiation between the two classes. During
resource contention on a node, the resource requests of
HP-class workloads are satisfied, if possible, before the
workloads in the LP-class get their shares.

We compare three workload management solutions
in this experimental study:
• Fixed Allocation (“no control”): Each VM (incl.

Dom-0) has a fixed 20% allocation of its node’s
CPU capacity. There are no VM migrations.

• Independent control: The CF pod and node
controllers run in parallel without integration.

• Integrated control: The CF pod and node
controllers run together with integration.

The first solution is one without dynamic resource
control, and it simply provides a baseline for the study.
The control intervals for the pod and node controllers
are 1 minute and 10 seconds, respectively.

Figure 6 shows a comparison of the resulting
application performance from using the three solutions.
From the client side, a mean response time (MRT) is
computed and logged every 10 seconds over the
duration of each experiment (5 hours). To better
illustrate the results, we consider a 2-sec MRT target
for the HP-class workloads and a 10-sec target for the
LP-class workloads. A cumulative distribution of the
MRT across all 16 workloads for the Fixed Allocation
case is shown with the dashed green line. No class of
service was considered in this solution. All the
workloads achieve the 2-sec target 68% of time and the
10-sec target 90% of time. The two blue lines represent
the MRT distributions for the independent control
solution. More specifically, the solid blue line and the
dashed blue line correspond to the HP-class and the
LP-class workloads, respectively. As we can see, the
HP-class workloads achieve the 2-sec target 73% of
time (a 5% improvement over Fixed Allocation), but
the LP-class workloads achieve the 10-sec target only
67% of time. With the integrated control solution, the
MRT distributions for the HP-class and the LP-class
workloads are represented by the solid red line and the
dashed red line, respectively. We see that the HP-class
workloads achieve the 2-sec target 90% of time, an
improvement of 22% and 17% over the no control and
independent control solutions, respectively. The

relative improvements in these two cases are 32%
(22/68) and 23% (17/73), respectively. The LP-class
workloads achieve the 10-sec target 70% of time,
similar to the no integration case.

Figure 6. Cumulative distributions of 10-second
mean response times for all the workloads from
using three workload management solutions - no
control (green), independent control (blue), and

integrated control (red)

Table 1. Comparison of migration events and
unsatisfied demand with and without integration

No. of migration
events

Unsatisfied demand
(% of total demand)

HP LP HP LP
Independent 17 14 15 12
Integrated 13 22 9 15

To explain the observed difference between the two
controller solutions, we recall that without integration,
the pod controller estimates workload resource demand
based on the observed resource consumptions only. In
contrast, when the two controllers are integrated, the
node controller determines the resource allocation each
workload needs to satisfy its performance goal, and
this information is provided to the pod controller as an
input. The results in Figure 6 clearly show that this
integration enables the pod controller to take into
account the performance-driven resource demands of
all the workloads, and therefore make better workload
placement decisions such that the HP-class workloads
have higher probabilities of achieving their service
level objectives.

In addition, we computed the statistics of system-
level metrics from the controller logs to see if they
demonstrate similar trends as seen in the response time
data. Table 1 shows a comparison of the two controller
solutions in terms of two metrics: the total number of
VM migrations that occurred and the total unsatisfied
demand (resource request) as a percentage of total

demand, for both the HP-class and LP-class workloads.
As we can see, the HP-class workloads experienced a
higher number of migrations using independent control
(17) than using integrated control (13). This is
consistent with our previous explanation that when
resource requests are considered instead of measured
consumptions, the HP-class workloads are less likely
to be migrated and consolidated, leading to better
performance. Similarly, the integrated control solution
resulted in a lower percentage of unsatisfied demand
(9%) compared to the independent control solution
(15%). Both statistics are consistent with the observed
response time data shown in Figure 6.

20 40 60 80 100 120
0

20

40

60

80

100

(x10) seconds

sh
a
re

s

(a) Resource with ind. controlers

Consumption
Request
Allocation

20 40 60 80 100 120
0

20

40

60

80

100

(x10) seconds

sh
ar

e
s

(b) Resource with int. controlers

Consumption
Request
Allocation

20 40 60 80 100 120
10

-2

10
-1

10
0

10
1

10
2

(x10) seconds

se
co

nd
s

(c) Performance with ind. controllers

20 40 60 80 100 120
10

-2

10
-1

10
0

10
1

10
2

(x10) seconds

se
co

nd
s

(d) Performance with int. controllers

Response Time Response Time

Figure 7. Time series of the resource consumption
(blue), request (green), and allocation (red), as well
as measured mean response time (bottom) for an

HP-class workload, with independent control in (a)
and (c), and integrated control in (b) and (d).

In Figure 7, we demonstrate the impact of controller
integration on a particular HP-class workload. The two
top figures show the measured CPU consumption, the
CPU request computed by the utilization controller,
and the actual CPU allocation determined by the
arbiter controller for this workload over a 20 minutes
interval. The two bottom figures show the resulting
response times. The two figures on the left represent
the independent control case. As we can see, the actual
allocation is below the request most of the time,
causing the VM hosting this workload to be overloaded
(in 7(a)), resulting in high response time for most of
the 20 minutes interval (in 7(c)). Note that the response
time drops off at around 900 seconds, which is due to
the reduced resource demand as we can see from 7(a).
In a few sampling intervals that follow, the allocation
is below the request but above the average
consumption, which means that the VM is less
overloaded and has a much lower response time. The
two figures on the right show the result for the
integrated control solution, where the CPU request is

mostly satisfied (in 7(b)), leading to much lower
response time (in 7(d)). The advantage of the
integrated control solution is that it made more
informed placement decisions that did not subject this
HP-class workload to an overload situation.

5. Related work
VMware’s VirtualCenter and DRS products [2] and

the management infrastructure from Virtual Iron [4]
provide alternatives to parts of our solution. Each
offers a degree of pod control for workloads in
hypervisor-based VMs. Our approach considers
additional metrics, like application service level
metrics (e.g., response time and throughput), and uses
long-term historical usage trends to predict future
capacity requirements. The commercial products could
possibly be integrated into our architecture.

The work in [13] integrates various sophisticated
aspects of power and performance management at the
node and the pod levels. It presents a simulation study
that optimizes with respect to power while minimizing
the impact on performance. The simulation results for
integrated control suggest that between 3% and 5% of
workload CPU demand is not satisfied, but unsatisfied
demands were not carried forward between simulation
periods. Our host emulation approach carries forward
demands and focuses more on the length of events
where performance may be impacted

Khana et al. solves the dynamic VM migration
problem using a heuristic bin-packing algorithm,
evaluated on a VMware ESX Server testbed [12].
Wood et al. consider black and grey box approaches
for managing VM migration using a combination of
node and pod controller in a measurement testbed [14].
They only consider resource utilization for the black
box approach, and add OS and application log
information for the grey box approach. They find that
the additional information helps to make more
effective migration decisions. Neither work takes
advantage of long-term demand patterns as we do
using the pod set controller.

Control theory has recently been applied to
performance management in computer systems [15]
through admission control [16][17] or resource
allocation [18][19][20], including dynamic resource
allocation in virtualized environments [21][22][5].
Compared with these prior solutions that only dealt
with individual non-virtualized or virtualized systems,
we have proposed an integrated solution for capacity
and workload management in a virtualized data center
through a combination of dynamic resource allocation,
VM migration, and capacity planning.

6. Conclusion and future work
In this paper, we introduce the 1000 Islands solution

architecture that integrates islands of automation to the
benefit of their managed workloads, as well as our first
steps toward an implementation of this architecture.

While all of the controllers achieve their goals
independently using different analytic techniques,
including control theory, meta-heuristics, fuzzy logic,
trace-based analysis, and other optimization methods,
there is power in leveraging each controller
independently and then combining them in this unified
architecture. In the emulations, the integrated pod set
and pod controllers resulted in CPU and memory
quality that approached that of the hypothetical ideal
case, while using only 18% more capacity. The testbed
showed that the integration of pod and node controllers
resulted in performance improvements of 32% over the
fixed allocation case and 23% over the non-integrated
controllers, as well as reduced migrations for high
priority workloads. In addition, service level
differentiation can be achieved between workload
classes with different priorities.

As a next step, we plan to scale our testbed to a
larger number of physical nodes so that they can be
divided into multiple pods. This will allow us to
evaluate the complete solution architecture that
consists of node, pod, and pod set controllers on real
systems, as well as study consolidation scenarios with
a much larger number of workloads.

We will also integrate with power [13] and cooling
[23] controllers, to better share policies and to offer a
more unified solution for managing both IT and facility
resources in a data center. For example, our node
controller can be extended to dynamically tune
individual processor P-states to save average power,
our pod controller can consider server-level power
budgets, and the thermal profile of the data center can
guide our pod set controller to place workloads in areas
of lower temperature or higher cooling capacity.

Ultimately, data center operators would like
application-level service level objectives (SLOs) to be
met without having to worry about system-level
details. In [24], workload demands are partitioned
across a two priorities to enable workload-specific
quality of service requirements during capacity
planning and runtime phases. This can be integrated
with node and pod controllers. In [25], application-
level SLOs are decomposed into system-level
thresholds using performance models for various
components being monitored. These thresholds can
potentially be used to drive our utilization controllers
at the VM level. However, this decomposition is done
over longer time scales (minutes). In [5], we have
developed a feedback controller for translating SLO-

based response time targets into resource utilization
targets over shorter time scales (seconds). These
approaches can be incorporated in our next round of
integration. Finally, a distributed management
framework is being developed for integrating all of
these components in a scalable manner, such that they
can potentially manage a data center of 10,000 nodes.

7. References
[1] HP Virtual Connect Enterprise Manager:

http://h18004.www1.hp.com/products/blades/components/ether
net/vcem/index.html

[2] VMware ESX Server: http://vmware.com/products/vi/esx/
[3] Citrix XenServer:

http://www.citrixxenserver.com/products/Pages/XenEnterprise.aspx
[4] Virtual Iron: http://www.virtualiron.com/products/
[5] X. Zhu, Z. Wang, and S. Singhal, “Utility-Driven workload

management using nested control design,” American Control
Conference (ACC’06), June, 2006.

[6] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach,
I. Pratt and A. Warfield, “Live migration of virtual machines,”
the 2nd Symposium on Networked Systems Design and
Implementation (NSDI '05), May 2005.

[7] C. Hyser, B. Mckee, R. Gardner, and B.J. Watson, “Autonomic
virtual machine placement in the data center,” HP Labs
Technical Report HPL-2007-189, 2007.

[8] S. Seltzsam, D. Gmach, S. Krompass and A. Kemper.
“AutoGlobe: An automatic administration concept for service-
oriented database applications,” the 22nd Intl. Conference on
Data Engineering (ICDE'06), Industrial Track, 2006.

[9] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi and
A. Kemper, "An integrated approach to resource pool
management: policies, efficiency and quality metrics,"
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN'08), 2008.

[10] J. Rolia, L. Cherkasova, M. Arlitt and A. Andrzejak. “A
Capacity Management Service for Resource Pools,” the 5th Intl.
Workshop on Software and Performance (WOSP'05), Spain,
2005.

[11] D. Mosberger and T. Jin, “Httperf—A tool for measuring Web
server performance,” Workshop on Internet Server
Performance, 1998.

[12] G. Khana, K. Beaty, G. Kar and A. Kochut, “Application
Performance Management in Virtualized Server
Environments,” IEEE/IFIP Network Operations &
Management Symposium (NOMS), April, 2006.

[13] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X.
Zhu, “No power struggles: Coordinated multi-level power
management for the data center,” ASPLOS 2008.

[14] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,
“Black-box and gray-box strategies for virtual machine
migration,” the 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI ’07), April, 2007.

[15] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback
Control of Computing Systems, ser. ISBN: 0-471266-37-X.
Wiley-IEEE Press, August 2004.

[16] A. Kamra, V. Misra, and E. Nahum, “Yaksha: A self-tuning
controller for managing the performance of 3-tiered web sites,”
International Workshop on Quality of Service (IWQoS), 2004.

[17] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage:
Performance isolation and differentiation for storage systems,”
International Workshop on Quality of Service (IWQoS), 2004.

[18] T. Abdelzaher, K. Shin, and N. Bhatti, “Performance
guarantees for web server end-systems: A control-theoretical
approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, 2002.

[19] Y. Lu, T. Abdelzaher, and A. Saxena, “Design,
implementation, and evaluation of differentiated caching
services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 5, May 2004.

[20] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic
provisioning of multi-tier internet applications,” International
Conference on Autonomic Computing (ICAC’05), 2005.

[21] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-based
control for dynamic sizing of resource partitions,” the 16th
IFIP/IEEE Distributed Systems: Operations and Management
(DSOM’05), October, 2005.

[22] P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.
Merchant, K. Salem, and K. Shin, “Adaptive control of
virtualized resources in utility computing environments,”
EuroSys2007, March 2007.

[23] C.E. Bash, C.D. Patel, R.K. Sharma, “Dynamic Thermal
Management of Air Cooled Data Centers”, Intersociety
Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems, 2006.

[24] L. Cherkasova and J. Rolia, “R-Opus: A composite framework
for application performability and QoS in shared resource
pools,” International Conference on Dependable Systems and
Networks (DSN'06), 2006.

[25] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai, “SLA
decomposition: Translating service level objectives to system
level thresholds,” 4th IEEE International Conference on
Autonomic Computing (ICAC’07), June 2007.

