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and Rates of Change
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Abstract—Understanding the nature of media server workloads
is crucial to properly designing and provisioning current and fu-
ture media services. The main issue we address in this paper is
the workload analysis of today’s enterprise media servers. This
analysis aims to establish a set of properties specific to the enter-
prise media server workloads and to compare them to well-known
related observations about the web server workloads. We parti-
tion the media workload properties in two groups: static and tem-
poral. While the static properties provide more traditional and gen-
eral characteristics of the underlying media fileset and quantitative
properties of client accesses to those files (independent of the access
time), the temporal properties reflect the dynamics and evolution
of accesses to the media content over time. We propose two new
metrics characterizing the temporal properties: 1) the new files im-
pact metric characterizing the site evolution due to new content
and 2) the life span metric reflecting the rates of change in accesses
to the newly introduced files. We illustrate these new metrics with
the analysis of two different enterprise media server workloads col-
lected over a significant period of time.

Index Terms—Access patterns, content evolution, dynamics, en-
terprise media servers, locality, sharing patterns, static and tem-
poral properties, workload analysis.

I. INTRODUCTION

STREAMING media represents a new wave of rich Internet
content. Recent technological advancements in video cre-

ation, compression, bandwidths, caching, streaming, and other
content delivery technologies have brought audio and video to-
gether to the Internet as rich media. Products for still (JPEG) and
motion (MPEG) pictures are also available in consumer mar-
kets. This enables potentially anyone to be a producer of rich
media content that can be easily distributed and published over
the Internet. There are predictions that rich media will add sig-
nificantly to the user experience and will be the Internet’s next
“killer app.”

Video from news, sports, and entertainment sites is more
popular than ever. Media servers are being used for educational
and training purposes by many universities. The use of the
media servers in enterprise environment is catching momentum
too. Enterprises are using more and more rich media to attract
prospective customers, improve the effectiveness of online

Manuscript received April 4, 2002; revised December 4, 2003; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor M. Crovella.

L. Cherkasova is with Hewlett-Packard Laboratories, Palo Alto, CA 94303
USA (e-mail: cherkasova@hpl.hp.com).

M. Gupta is with the College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332 USA (e-mail: minaxi@cc.gatech.edu).

Digital Object Identifier 10.1109/TNET.2004.836125

advertising, web marketing, customer interaction centers, col-
laboration, and training.

Recently, there have been several studies attempting to under-
stand the multimedia workload characteristics. However, most
of the studies are devoted to the analysis of workloads for ed-
ucational media servers [1]–[3], [13], [14], [17]. One recent
study [10] characterizes the workload of a media proxy of a
large university. Our paper presents and analyzes the enterprise
media server workloads based on the access logs from two dif-
ferent media servers at Hewlett-Packard Corporation. Both logs
are collected over a long period of time (2.5 years and 1 year
9 months). The duration of the logs makes the studied workload
unique and allows us to discover typical and specific client ac-
cess patterns, media server access trends, and the dynamics and
evolution of the media workload over time.

We partition the media workload properties in two groups:
static and temporal. While static properties provide more tradi-
tional and general characteristics of the underlying media fileset
and quantitative properties of client accesses to those files (in-
dependent of the access time), the temporal properties, studied
in this paper, aim to reflect the dynamics and evolution of ac-
cesses to the media content over time.

Web workload studies have identified different types of lo-
cality in web traffic [4], [5] that strongly influence the traffic ac-
cess patterns seen by the web servers. One goal of our analysis is
to characterize the locality properties in media server workloads
and to compare them with traditional web workloads character-
ization.

The other questions we address in this paper are tightly re-
lated to new trends observed in the evolution of the Internet in-
frastructure such as content distribution networks (CDNs) and
overlay networks. CDNs are based on a large-scale distributed
network of servers located closer to the edges of Internet for
efficient delivery of digital content including various forms of
streaming media. The emergence of CDNs has brought a new set
of questions about the client-side characterization. Since CDNs
deal with delivering content and services at the “edge,” band-
widths available to clients and their access and viewing patterns
are important considerations.

Access patterns and dynamics of the site have to be taken into
account when making a decision about using caching or content
distribution systems. For example, if the site is very dynamic,
i.e., a large portion of the client requests are accessing new con-
tent (news web sites being a prime example), then CDNs are
clearly a good choice to handle the load, because traditional
caching solutions will be less efficient in distributing the load
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due to the time involved in propagating the content through
the network caches. Thus, the other question we address in this
paper is how to characterize the dynamics and evolution of ac-
cesses at media sites. The first natural step is to observe the in-
troduction of new files in the logs and to analyze the portion
of all requests targeting those files. We define a new files im-
pact metric that aims to characterize the site evolution due to
new content. It is obtained by computing the ratio of the ac-
cesses targeting the new files over time. The definition of “new
files” depends on the time scale at which information changes
and might be different for different sites. We propose a second
metric, called the life span metric, to measure the rate of change
in the access pattern of the site.

We have developed a tool called MediaMetrics that char-
acterizes a media server access profile and its system resource
usage in both a quantitative and qualitative way. It extracts and
reports information that could be used by service providers to
evaluate current solutions and to improve and optimize relevant
future components.

Key new observations from our analysis include the fol-
lowing.

1) Despite the fact that the two studied workloads had
significantly different file size distribution (one set had
well-represented groups of short, medium, and long
videos, while the other set was skewed in long videos
range), the client viewing behavior was similar for both
sets: 77%–79% of media sessions were less than 10-min
long, 7%–12% of the sessions were 10–30 min, and
6%–13% of sessions continued for more than 30 min.
Additionally, this reflects the browsing nature of client
accesses in the enterprise workloads under study. Similar
browsing access patterns were observed in [2].

2) Most of the incomplete sessions (i.e., terminated by
clients before the video was finished) accessed the initial
segments of media files. The percentage of sessions
with interactive requests (such as pause, rewind, or fast
forward during the media session) was much higher for
medium and long videos.

3) Like web workloads, both the media workloads exhibit a
high locality of accesses: 14%–30% of the files accessed
on the server account for 90% of the media sessions and
92%–94% of the bytes transferred and were viewed by
96%–97% of the unique clients.

4) While there was a significant number of files that were
rarely accessed (16% to 19% of the files are accessed only
once), these numbers are somewhat lower compared to
web server workloads.

5) In tune with the findings in [2], we observed that the
overall distribution of clients accesses to the media files
does not follow a Zipf distribution. However, noteworthy
is that the time scale plays important role in this approx-
imation. We considered 1-month, 6-month, 1-year, and a
whole log duration as a time scale for our experiments. For
one workload, distribution of clients accesses to media
files on a 6-month scale starts to fit Zipf-like distribution.
While for the other workload, file popularity on a monthly
basis can be approximated by Zipf-like distribution. For a

longer time scale in the same workloads, the file access
frequency distribution does not follow Zipfian distribu-
tion.

6) Accesses to the new files constitute most of the accesses
in any given month. Also, the bytes transferred due to
the accesses to new files are dominant in both workloads.
It makes the access pattern of the enterprise media sites
under study resemble the access patterns of the news web
sites where most of the client accesses target new infor-
mation. We introduce the new files impact metric to mea-
sure the site dynamics due to the new files. Moreover, we
observed that for the studied enterprise media servers, the
tendency of the number of accesses to be increasing or de-
creasing in nature is strongly correlated with the number
of newly added files.

7) For both workloads, 51%–52% of the accesses to media
files occur during the first week of their introduction. The
first five weeks of a file’s existence account for approx-
imately 70%–80% of all the accesses. We define a life
span metric to reflect the rates of change in accesses to the
newly introduced files. The life span metric also reflects
the timeliness of the introduced files. The lower rates of
change in file accesses reflect that the media content on a
site is less timely and has a more consistent access pattern
over a longer period of time.

The remainder of the paper is organized as follows. We re-
view related work in Section II. Section III briefly describes the
sites we used in our study and provides a short description of the
media server log formats. Section IV characterizes static prop-
erties of the media files. While Section V is devoted to temporal
workload properties and introduces two new metrics to reflect
them. Finally, Section VI presents conclusion and future work.

II. RELATED WORK

While web server workloads have been studied extensively
[4]–[6], [9], [11], relatively fewer papers have been written
about multimedia workloads. Acharya et al. [1] characterized
nonstreaming multimedia content stored on the web servers.
In their later work [2], the authors presented an analysis of
a 6-month trace data from the multicast Media on Demand
(mMOD) system which had a mix of educational and enter-
tainment videos. They observed a high temporal locality of
accesses, a client preference to preview the initial portion of
the videos, and that the rankings of video titles by popularity
do not fit a Zipfian distribution.

Studies of client accesses to the MANIC system audio content
[17] and the low-bit rate videos in the Classroom2000 system
[14] analyze the accesses to educational media servers in terms
of daily variation in server loads, distribution of media session
durations, and client interactivity.

Extensive analysis of educational media server workloads is
done in [3]. Their study is based on two media servers (eTeach
and BIBS) in use at major public universities in the United
States. The authors provide a detailed study of the client session
arrival process; the client session arrival in the BIBS workload
can be characterized as Poisson, while arrivals in the eTeach
workload are closer to a heavy-tailed Pareto distribution. They
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also observed that the media delivered per session depends on
the media file length. They discovered different client interac-
tivity patterns for frequently and infrequently accessed files. In
particular, each video segment is equally likely to be accessed
for frequent files, while access frequency is higher for earlier
segments in the infrequent videos.

While all the above papers used media server logs, the study
by Chesire et al. [10] analyzed the media proxy workload at
a large university. The authors presented a detailed characteri-
zation of session duration (most media streams were less than
10 min long), object popularity (78% of the objects were ac-
cessed only once), server popularity, and sharing patterns of the
streaming media among the clients.

As the number of Internet users continues to grow and as the
high-speed access methods become more ubiquitous, streaming
media starts to occupy a sizable fraction of the Internet’s band-
width. A few recent papers [15], [16], [22] analyze the impact
of streaming media on the Internet traffic and the performance
of popular Internet real-time streaming technologies.

Our paper extends the existing work in a number of signif-
icant ways. To our knowledge, this paper is the first study of
enterprise media server workloads. Our data is collected over a
significant period of time, which makes it unique. The duration
of the data allowed us to analyze dynamics and evolution of the
media workload over time and to propose two new metrics to
measure these properties.

III. MEDIA WORKLOADS UNDER STUDY

A. Data Collection Sites

We used access logs from two different servers.

• HP Corporate Media Solutions server (HPC) hosts
diverse information about HP: video coverage of major
events, keynote speeches, addresses and presentations,
meetings with industry analysts, promotional events,
product introduction, information related to software and
hardware products, and demos illustrating the products
usage. Additionally, it hosts some training and educa-
tional information. The logs cover almost 2.5 years of
duration from the middle of November 1998 to the middle
of April 2001. This site is supported by a media server
cluster. For our analysis, we combined several access logs
collected at this cluster. The HPC content is delivered by
the Windows Media Server [23].

• HPLabs Media server (HPLabs) provides information
about HP Laboratories; in particular, it hosts videos of
monthly HPLabs-wide meetings, videos of prominent
presentations, seminars, and meetings, some of the HP
wide business related events, promotional materials, and
some training and educational information. The logs
cover 1 year and 9 months of duration from the middle
of July 1999 to the middle of April 2001. It is an internal
server available only for access to HP employees. The
HPLabs content is delivered by the RealServer G2 [18].

B. Media Server Log Formats

The media access logs record information about all the re-
quests and responses processed by the media server. Each line

TABLE I
STATISTICS SUMMARY FOR THE TWO SITES

of the access logs provides a description of the user request for
a particular media file.

Windows Media Server and RealNetworks Media Server
have different log formats, but the typical fields contain in-
formation about the IP-address of the client machine making
the request, the time stamp of the request, the filename of the
requested document, the advertised duration of the file (in
seconds), the size of the requested file (in bytes), the elapsed
time of the requested media file when the play ended (a play
is ended prematurely when the client hits the stop button), the
average bandwidth (kilobytes per second) available to the user
while the file was playing, the number of bytes sent by the
server, and the number of bytes received by the client (for more
details on media log formats see [8]).

A client can pause, rewind, fast forward, or skip to a prede-
fined point using a slide bar while viewing the requested media
file. We define each such interaction as a “request.” A session
is a sequence of client requests corresponding to the access of a
particular file. There can be multiple requests corresponding to
the same session, due to client’s interactivity.

Windows Media Server logs contain a separate entry for each
client request. Thus, a single session may be comprised of mul-
tiple entries in the server access logs. Each log entry has a start
position, the place where the client started viewing the file; du-
ration is length of time the client watched the file for; and client
action is pause/stop/rewind/fast/forward. This is useful infor-
mation for the analysis of clients’ interactive behavior during
the media sessions.

RealServer log format allows for similar fields, but unfor-
tunately, in the HPLabs server, the relevant options were not
switched on. Thus, HPLabs workload contains only informa-
tion about client sessions and not about client requests. There is
one entry for each client session in these logs. As a result, the
client interactivity data are not available for HPLabs workload.

C. Summary Statistics

The overall workload statistics for the HPC and HPLabs
media servers are summarized in Table I.

In HPC, 471 files corresponded to live streams, while the
others were stored content. Since most of the fields reflecting
client and server activities are not defined or are not applicable
to a multicast session (i.e., most of the fields are either “0” or “-”
in the log’s entry), we excluded the log records corresponding
to live streams from further analysis.

A glance at the basic statistics shows that the HPC media
server witnesses more activities and reaches larger client pop-
ulation than the HPLabs server. The HPLabs server clearly tar-
gets more a specific smaller research community at HP and as
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Fig. 1. CDF of file (video) durations and client sessions to them for (a) HPC and (b) HPLabs.

Fig. 2. Six classes of file durations and percentage of client sessions to each of them for (a) HPC and (b) HPLabs.

a result has a very different “modest” profile. The HPC work-
load represents a reasonably busy media server with 300–800
client sessions each week day and occasional peaks reaching
12 000 sessions. The HPLabs server witnesses a lighter load.
By noticing this very obvious difference, it becomes even more
interesting whether we can find common properties for the con-
sidered enterprise media workloads.

D. Static and Temporal Properties of Media Workloads

We partition media workload properties in two groups: static
and temporal.

1) Static properties provide the characteristics of the un-
derlying media file set, reflect the aggregate quantitative
properties of client accesses, and present the properties of
individual file accesses. Static properties include:

a) file and session duration characteristics;
b) file encoding bit rates and session bandwidths;
c) characterization of completed, aborted, and interac-
tive sessions;
d) workload locality characterization;
e) file access popularity;
f) client characterization.

2) Temporal properties characterize the evolution of media
site content and rate of changes of accesses to media con-
tent over time. To reflect temporal properties we introduce
two new metrics:

a) new file impact metric;
b) file life span metric.

Sections IV and V describe the static and temporal properties
of studied media workloads in more detail.

IV. STATIC PROPERTIES

A. File and Session Characteristics

In this section, we provide the basic characterization of the
media files referenced in the logs and the corresponding client
sessions.

The advertised duration of the media file reflects the total
length of the video. First, we analyze the distribution of the du-
rations of stored videos and the distribution of the client sessions
to the corresponding files. Fig. 1 shows the cumulative density
function (CDF) of the stored videos and the CDF of the corre-
sponding accesses to them over the advertised media duration
for both workloads.

To simplify further analysis, we created six classes of the
videos based on duration, including three groups of short videos:
1) less than 2 min; 2) 2–5 min; 3) 5–10 min; one group of
medium size videos: 4) 10–30 min; and two groups of long
videos: 5) 30–60 min; and 6) longer than 60 min. Fig. 2 shows
the percentage of stored videos for each of the six classes and
the percentage of corresponding sessions to them.

Fig. 2(a) shows that for the HPC workload the content is well
represented by videos of different durations: 42% of files belong
to the short video group (less than 10 min), 23% of files are in
the medium video group, and 34% of files belong to the long
video group. The HPLabs workload is strongly skewed in favor
of long videos as shown in Fig. 2(b); only 7% of videos are in
the medium group, while 79% of files belong to the long video
group.

Even though the two workloads have different distribution of
short, medium, and long videos, it is interesting to note that the
percentage of client accesses to the files in each of the duration
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Fig. 3. Session duration characterization.

categories is proportional to the percentage of files in each of
them for both workloads! This implies that each of the duration
groups is equally likely to be accessed by clients. This property
is very useful for synthetic workload generation, since it pro-
poses a simple model of defining a media file duration distri-
bution and percentage of corresponding client accesses to those
files.

During the media session, the client can stop viewing or
downloading the file by hitting the stop button before the
video is finished; or browse the video through a sequence of
pause, rewind, fast forward; or jump to specific sections of the
video by using the slide bar. We define a session duration as
the actual client viewing time. When we analyzed the actual
duration for which clients viewed the videos, the statistics
change dramatically for both workloads. As shown in Fig. 3,
for both workloads, 50%–60% of the media sessions were less
than 2 min long. The statistics presented in this graph reflect the
overall client viewing time distribution, and it is not correlated
with the actual distribution of the duration of the media files.

Another noteworthy fact from Fig. 3 is that in spite of the
significant differences in the original file size distribution, the
distribution of the actual durations for which the clients viewed
the videos was similar for both logs: 77%–79% of the media
sessions were less than 10 min long, 7%–12% of the sessions
were 10–30 min, and only 6%–13% of sessions continued for
more than 30 min. Given that the decision to abort the session
is only partially influenced by the available bandwidth (we will
show this analysis in more detail in Section IV-C), the observed
access pattern highlights the browsing nature of the enterprise
client accesses. The knowledge of the approximate percentage
of “browsing” clients could help in estimating and predicting
the short term load on the media server.

B. Media File Encoding Rates and Session Bandwidths

Both servers, HPC and HPLabs, had videos encoded at dif-
ferent rates. Table II presents the statistics on file encoding rates
and their trends over time for both workloads. Videos stored at
the HPC server had most of the files (59%) encoded at a 56-kb/s
rate and lower. However, over the years, the trend showed that
more files at the HPC site were encoded at a higher rate: for
example, in 1999, only 4% of the videos were encoded at rates
128 kb/s and higher, while in 2001 this group of videos consti-
tuted 29% of the total. On the other hand, the HPLabs server had
most of the files encoded at high bit rates; 84% of all the files
were encoded at 128 kb/s and higher.

TABLE II
TRENDS IN FILE ENCODING RATES FOR BOTH WORKLOADS

TABLE III
TRENDS IN AVERAGE AVAILABLE BANDWIDTH PER SESSION

FOR BOTH WORKLOADS

Media access logs report the average bandwidth available to
the user session while the file was playing. The term “average
available bandwidth per session” is used in the description of
the media log format, and it deserves an explanation. This is the
number reported in the log for each client request retrieving a
stored video from the server. Typically, this metric does not re-
flect the overall bandwidth available to the client. Since each
video is encoded at a certain bit rate kb/s, the required band-
width to the client for an ideal transfer of the corresponding
video is kb/s. The network path between the client and the
server may have a higher available bandwidth than kb/s.
However, only the consumed bandwidth per media session is
reported in the log entry. Thus, for the case when the network
path between the client and the server has an available band-
width lower than kb/s, the achieved bandwidth per session is
correspondingly lower and this actually consumed bandwidth is
reported in the log entry.

Table III presents the statistics on available session band-
widths during the different time periods of logs: years 1999,
2000, and 2001. Overall, the HPC media sessions had higher
available bandwidths to the clients, with an increasing trend over
the years. For example, in 2001, 64% of sessions had an average
available bandwidth above 56 kb/s (we will call these sessions as
high-bandwidth sessions). For the HPLabs workload, in 2001,
the high-bandwidth sessions constituted only 22% of the total.

For the HPC workload, most of the file encoding bit rates
and the average available bandwidth per session show a good
alignment as shown in Fig. 4. Only the group of videos encoded
at rates 128 kb/s and higher could not meet the requirements.
While for the HPLabs workload, where the most of the files were
encoded at 128 kb/s and higher, the gap between the demand and
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Fig. 4. File encoding bit rates and average available bandwidth per session to those files: (a) HPC and (b) HPLabs.

achieved session bandwidth is very high. Most of the sessions
have a significant mismatch between the file encoding bit rates
and the available bandwidths.

The information on the file encoding bit rate versus average
achieved session bandwidth, provided by MediaMetrics, could
be used by the service providers for choosing the appropriate bit
rates during the file encoding.

Media access logs also report the number of bytes sent by
the server and the number of bytes received by the client. Our
tool uses this information to estimate the percentage of bytes
lost during the file transfer and to implicitly judge the quality of
service a client might have experienced.1 This simple technique
can produce useful results when data is transmitted over UDP,
because in that case the difference in sent and received bytes re-
flects the percentage of the bytes lost on the way to the client.
It might be less accurate when data is transferred over TCP be-
cause in the presence of congestion, the media server will re-
transmit part of the data to compensate for lost packets. If those
packets were received by the client in time, then the difference
in server sent-bytes and the client received-bytes will not result
in a worse QoS. As mentioned earlier, the HPC data were trans-
mitted using UDP, while the HPLabs data were transferred over
TCP.

In the HPC workload, the percentage of “good quality”
sessions with 0%–5% of byte loss was very high; 96.5% of
low-bandwidth sessions and 97.1% of high-bandwidth sessions
experienced the good quality. For the HPLabs workload, the
corresponding numbers were much lower; only 64.6% of
low-bandwidth sessions and 88.8% of high-bandwidth sessions
experienced 0%–5% of byte loss per session.

C. Characterization of Completed, Aborted, and
Interactive Sessions

We call a media session completed if during this session
the entire media file was transmitted to the client.2 For the
HPC workload, 29% of sessions were completed, while for

1While the byte loss metric does not directly translate into the perception
quality for the client, it is a useful indicator of networking conditions, where the
high loss rate can be used as an alarming event about degraded quality of the
viewed video. Typically, the discrepancies caused by the packet loss in the range
of 0%–5% can be successfully concealed by the error correction algorithms im-
plemented in the current media players [20], [21].

2We are able to determine whether a session was completed by comparing the
size of stored video to the number of bytes received by the client.

Fig. 5. (a) CDF of completed session by advertised duration of the
corresponding video. (b) Simplified distribution of completed sessions for six
duration classes.

the HPLabs workload, completed sessions accounted for only
12.6% of all the sessions. Fig. 5(a) shows the CDF of all the
completed sessions, where the axis represents the advertised
duration of the corresponding videos.

Fig. 5(b) presents a simplified view of the same distribution of
all the completed sessions via the six duration classes as defined
in Section IV-A. Media sessions with duration under 2 min ac-
count for 33% of all the completed sessions for both workloads.
While for the rest of the completed sessions, their durations re-
flect the corresponding distribution of media session durations
specific to considered workloads as shown in Figs. 1 and 2.

A reasonable question to ask is whether the completed ses-
sions had higher available bandwidths to the clients. In other
words, were the aborted sessions interrupted because of poor
available bandwidth?

Table IV presents the statistics on available bandwidths for
completed, aborted, and all the sessions for both workloads. For
HPC workload, the completed sessions had higher percentage
of high-bandwidth sessions. However, the difference in the
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TABLE IV
DISTRIBUTION OF AVAILABLE BANDWIDTH PER SESSION

FOR BOTH WORKLOADS

achieved session bandwidths is not high enough to assert that
the sessions were aborted because of the “poor bandwidth”
conditions. For the HPLabs workload, the bandwidth charac-
teristics of the completed and aborted sessions were similar,
which suggests that the clients perhaps watch the video only
while they are interested in the content of the video.

Another interesting observation is that most of the aborted
sessions were accessing the initial segments of media files. The
number of sessions which had incomplete accesses to any other
segments of the file other than the beginning depend on the size
of the video: less than 1.5% of sessions in short video group
accessed any segment of the video other than the beginning,
2.4% of sessions in a medium video group, and 4%–7% of ses-
sions in long video group. Clearly, such knowledge about the
client viewing patterns may be beneficial when designing media
caching strategies.

Windows Media Server log format has a separate entry for
each client request (recall that a client session may consist
of more than one request, where each request represents the
client’s interactivity). As a result, we were able to get infor-
mation about client activities such as pause, rewind, and fast
forward in the HPC workload. Unfortunately, similar data was
not available for HPLabs workload because the relevant option
was turned off in the RealServer used by HPLabs. Analysis
of these fields for HPC logs produced several intuitive but
interesting results. First of all, it revealed that 99.9% of the ses-
sions with interactive requests were high-bandwidth sessions
with available bandwidth greater than 56 kb/s. Second, the
percentage of sessions that accessed medium and long videos
had much higher interactivity.

Fig. 6 shows that only 15.3% of sessions with interactivity
were for the short video group, 22.6% of interactive sessions
were for the medium size videos, and 62.2% of sessions had
client interactivity for the long video group. Such statistic helps
in better understanding the clients’ viewing behaviors.

D. Locality Characterization

In this section, we will revisit a previously identified invariant
for the web server workloads. The authors in [5] identified that
the web traffic exhibits strong concentration of references: “10%
of files accessed from the server typically account for 90% of the
server requests and 90% of the bytes transferred.”

For the locality characterization of our logs, we used a table
of all files accessed along with their frequency (number of times
a file was accessed during the observed period) and the file sizes.
This table is ordered in the decreasing order of frequency.

Fig. 6. HPC workload: percentage of sessions with interactive requests for
videos of different duration classes.

Fig. 7(a) shows the locality of reference for the media server
access logs used in our study: 90% of the media sessions target
14% of the files for the HPC server and 30% of the files for the
HPLabs server. This shows a high locality of client accesses,
though lower than observed locality in the web workloads.

Fig. 7(b) shows the bytes transferred by the corresponding
media sessions: 94% for the HPC site and 92% for the HPLabs
site. The observed graphs for both workloads are remarkably
similar. Fig. 7(c) shows locality of clients for both workloads. It
can be interpreted in the following way: at the HPC server, 14%
of the most popular files (responsible for 90% of the accesses)
are accessed by 96% of clients. For the HPLabs site, 30% of the
most popular files are viewed by 97% of the clients.

We also analyzed the locality in the workload from a different
angle: what percentage of active storage did the most popular
files account for? Here, the active storage set is defined by the
combined size of all the media files accessed in the logs. As
shown in Fig. 8(a), for both workloads, we observed a high ac-
tive storage set locality: 80%–88% of all sessions are to the files
that constitute only 20% of the total active storage set. Similarly,
82%–92% of all the transferred (most popular) bytes are due to
files that constitute only 20% of the total active storage set, as
can be seen in Fig. 8(b).

This type of analysis helps in estimating the storage require-
ments and the potential bandwidth savings when using opti-
mizations for the popular portion of the media content. Since
these metrics are normalized with respect to the site’s active
storage set, it allows us to compare different workloads and to
identify the similarities inherent to those workloads, indepen-
dent of the absolute numbers for storage in each workload.

We also analyzed whether the locality characterization of the
workload significantly changes depending on the chosen time
scales. We found that both workloads exhibit a high locality of
client accesses independent of the duration (1-month, 6-month,
or 12-month durations); 90% of the media sessions target
10%–30% of the files for the HPC server during each duration
interval and 20%–35% of the files for the HPLabs server. This
reflects that a high locality of client accesses is an inherent
property of the enterprise media server workloads and is not
impacted by the choice of the time scale.

Complementary to the characterization of the most frequently
accessed files, it is useful to have statistics about the “opposites,”
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Fig. 7. Two workloads compared: (a) file set locality, (b) bytes-transferred locality, and (c) client set locality.

Fig. 8. Two workloads compared: (a) storage set locality and (b) bytes-transferred storage locality.

TABLE V
RARELY ACCESSED FILE STATISTICS

the percentage of the files that are requested only a few times and
the percentage of active storage these files account for.

As Table V shows, 16%–19% of the files are accessed only
once, and 47%–59% of the files are accessed less than ten
times. These rarely accessed files account for quite a significant
amount of storage: 34%–52% of total active storage set. These
numbers, however, are somewhat lower compared to the web
server workloads. For web server workloads, “onetimers” (files
accessed only once) may account for 20%–40% of the files and
the active storage.

The locality properties of the client references as well as the
knowledge about the rarely accessed files are very important in
designing the media proxy caching strategies and efficient con-
tent placement on distributed media servers and media proxies.
As part of our future work in this direction, we intend to explore
the temporal locality of client accesses as well as the degree of
file sharing among the clients. We expect that this information
will serve as a basis for using media delivery optimizations such
as multicast.

E. File Access Popularity

Previous studies on web servers and web proxies [7] led to al-
most a universal consensus that the web page popularity follows
a Zipf-like distribution, where the popularity of the th most

popular file is proportional to . For web proxies, the value
of is typically less than one, ranging from 0.64 to 0.83, while
for web servers the typical value of lies between 1.4–1.6. In
[10], devoted to the analysis of a media proxy workload, the
authors reported a Zipf-like distribution for the file access fre-
quencies with . In [3], the authors approximated the
educational media server daily workloads using the concatena-
tion of two Zipf-like distributions.

Since our workloads cover a significant period of time, we
decided to investigate whether the file access frequencies ex-
hibit the same behavior at different time scales. We considered
1-month, 6-month, 1-year, and the entire duration of the logs as
the time scales for our experiments.

In order to characterize the distribution of the file access fre-
quencies for our workloads, we ranked the files by popularity
(i.e., the number of accesses to each file) and plotted the results
on a log–log scale. Fig. 9(a) shows the file popularity over the
entire duration of the logs. Both workloads exhibit very similar
distributions: the HPLabs curve “follows” the HPC curve, but
on a lower scale. This can be explained by almost two orders
smaller number of accesses and files in the HPLabs workload.
However, both of these curves are far from fitting a straight line
of the Zipf-like distribution. Fig. 9(b) shows the file popularity
for the HPC and HPLabs workloads for one year (year 2000) as
well as 6-month intervals (the first half and the second half of
year 2000). The HPC curves (both 1-year and 6-month) are still
far from fitting a straight line of the Zipf-like distribution.

However, the 6-month curves for HPLabs fit reasonably well
with the straight line of Zipf-like distribution when the first 15
to 20 files are ignored (in [7], authors make similar assumptions
about ignoring the top 100 documents and a flat tail at the end
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Fig. 9. File popularity distribution for both workloads: (a) over the entire duration of the logs, (b) over year 2000, and the first and the second 6 months of year
2000, (c) 6-month periods for the HPLabs workload with the corresponding Zipf-like function fitting.

Fig. 10. File popularity distribution for the HPC workload: (a) monthly periods from 1 to 6 months, (b) monthly periods from 7 to 12 months, and (c) month 8
with the corresponding Zipf-like function fitting.

of the curve). A straight line on the log–log scale implies that
the file access frequency is proportional to . Using a least
square fitting, we obtained the values of ; for both the 6-month
curves works very well. Fig. 9(c) shows the file pop-
ularity distribution for the HPLabs workload corresponding to
the 6-month periods of 2000, approximated by a Zipf-like func-
tion with .

Finally, Fig. 10(a) and (b) shows the file popularity for the
HPC workload on a monthly basis. Most of the monthly curves
fit a straight line reasonably well when ignoring the first 10–15
files and last few files. For different months, the value of
ranges from 1.4 to 1.6. Fig. 10(c) shows the file popularity dis-
tribution for the HPC workload during August 2000, approxi-
mated by Zipf-like function with .

The observation that the file access frequencies for the media
server workloads under study can be approximated by Zipf-like
distribution is very useful for synthetic workload generation. An
important fact to keep in mind is that the time scale plays an
important role in this approximation.

In the recent work [19], where the authors used the same
traces (HPC and HPLabs) for a synthetic media workload gen-
erator design, a new generalized Zipf-like distribution is pro-
posed as a unified method to capture file popularity distribu-
tions of both Zipf-like and circular-curve shapes. For the tech-
nical details, we refer the readers to [19]. Here, we would like to
discuss some intuition behind the generalized Zipf distribution.
The reason that the original traces do not show perfectly straight
lines at the heads of the curves is that there is little differentia-
tion in the frequencies of the most popular files. This property is
tightly related to the nonstationary popularity of media accesses
(or the change of file popularity rank) defined by a file life span
introduced and discussed in detail in Section V-B as well as the

fact that a long-term trace can collect enough files with similar
high popularities over time and, thus, these files should be con-
sidered as a group (equivalence class) where a group rank is a
better reflection of the file popularities.

A Zipf-like distribution is a special case of the generalized
Zipf distribution [19]. Thus, the generalized Zipf distribution
can be used for the characterization of the file access frequencies
in both the long-term and short-term media workloads.

F. Client Characterization

The high locality of accesses in studied media workloads im-
plies that the popular files are widely accessed by many different
clients as shown in Fig. 11(a) and (b). For the HPC workload,
the first 70 files are accessed by more than 1000 unique clients,
with some frequent files accessed by as many as 10 000–12 000
unique clients. (Note that for better viewability we used a log
scale for file number/rank.)

For the HPLabs server, the degree of sharing is lower (it is
expected, because of the smaller clients population), but for the
most frequent files it is still very significant: the first 17 files are
accessed by 113–341 unique clients. The sharing exhibited by
the clients’ access patterns is essential for designing an efficient
caching infrastructure.

Our tool MediaMetrics provides information about the client
clustering by associating them with various autonomous sys-
tems (ASs). It also reports the corresponding number of client
sessions and percentage of bytes lost for those sessions for each
AS. Since HPLabs logs only had HP’s internal clients, they all
belong to the same AS and the results of per AS analysis are
not particularly interesting for this case. Here, we present some
statistics about the HPC workload.
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Fig. 11. Files sharing statistics: (a) HPC and (b) HPLabs.

Fig. 12. Clients and their sessions per AS.

For HPC logs, the client population was spread across 200
different ASs, with 82% of the clients being HP internal clients.
A total of 93% of all the sessions belonged to the internal HP
clients. About 45% of all the ASs had just one client (with 1–16
sessions). To show the client clustering by ASs, we plotted 20
ASs with the largest number of sessions excluding the AS that
represents HP.

Fig. 12 shows the number of clients and the corresponding
number of sessions for the 20 ASs with the largest number of
sessions. If we normalize this data, then the combined clients
from the first ten ASs account only for 1.6% of clients popula-
tion and 1.5% of all the sessions. Clearly, the client population
profile was dominated by HP internal clients and their activities.
For enterprise media servers, this might be a typical client char-
acterization (while it obviously depends on the type of material
hosted by the enterprise media server). Overall, with the spread
of CDNs and overlay network technologies, the understanding
of clients, the content they access, and their clustering will play
an essential role in deciding efficient placement of edge servers
and the content.

V. TEMPORAL PROPERTIES

A. New Files Impact in Dynamics and Evolution of Media Sites

In this section, we investigate specific file access patterns re-
flecting the dynamics and evolution of accesses to the media
content over time.

The first natural step is to observe the introduction of new
files in the logs and to analyze the portion of all the requests tar-
geting those files. We define a metric called new files impact to
characterize the site evolution due to the new content, by com-
puting the ratio of the accesses targeting these new files over
time. Figs. 13(a) and 14(a) show the two curves for HPC and
HPLabs workload, respectively. The curves show all the files
which were accessed in a particular month and all the new files
which were accessed in the same month.3 We define a file as
being new if it was never accessed before, based on the infor-
mation in the access logs.

The HPC site has an explicit growth trend with respect to
the total number of files accessed per month. A consistently
steady number of new files is added to the site during each
month. In general, the analysis of the HPC workload revealed
the following growth trends: 1) the total number of sessions in
each 6-month duration doubled over the duration of the logs and
2) the total number of unique clients accessing the media con-
tent in each 6-month duration also doubled over the duration of
the logs.

The growth of the total number of files accessed each month
for the HPLabs site is “negative.” Since this was unexpected, we
asked the team supporting this site whether there were specific
reasons for the trend we observed. Specifically, we wanted to
know if there was a significant number of new video files that
“nobody watched,” and hence the logs did not contain any infor-
mation about them or if the new media content at that site had
actually decreased over time. The media site support team ex-
plained that lately they had been adding only a limited number
of new files because they were working on a transition plan to
upgrade the entire site design and equipment. So, the “negative”
trend in the addition of new files to the site was observed cor-
rectly.

Figs. 13(b) and 14(b) show the number of all the sessions per
month and the number of sessions to the new files in the cor-
responding month for the HPC and HPLabs workloads, respec-
tively. These graphs reflect that the accesses to the new files con-

3We used one month as a time unit in our study for this metric because it
exhibited the observed trends in the most explicit way. Typically, a choice of a
“correct” time scale is impacted by: 1) a time scale when new content is added (if
new content is added every two months then the time unit should be two months
or longer and 2) the life span of the files discussed in detail in Section V-B.
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Fig. 13. HPC workload: (a) all and new files per month, (b) all sessions and sessions to new files per month, (c) all bytes transferred and bytes transferred due to
the accesses to the new files per month.

Fig. 14. HPLabs workload: (a) all and new files per month, (b) all sessions and sessions to new files per month, (c) all bytes transferred and bytes transferred due
to to the accesses to the new files per month.

Fig. 15. Unique clients per month: (a) HPC and (b) HPLabs.

stitute the most or a very significant portion of all accesses, ex-
cluding a few months that were exceptions. Figs. 13(c) and 14(c)
show very similar trends for the bytes transferred per month and
the bytes transferred due to the accesses to new files. Since the
number of new files added per month plays a crucial role in
defining the site dynamics, evolution, and growth trends, evalu-
ating the new files impact metric becomes very important.4

Figs. 15(a) and (b) show the number of unique clients
accessing each of the HPC and HPLabs sites per month, respec-
tively. Again, the trends in these graphs are correlated with the

4In the analysis of the logs, we only derive the observations without knowing
when and “how” the new files are added and when the old files are deleted
from the site. The information on access patterns to the hosted content might
be helpful in deciding whether it is the time to move and archive some of the
current content or whether it is still actively accessed by the users.

trends in the number of sessions to each site’s new files. Thus,
it appears that the client population at the enterprise media site
is correlated to the amount of new information regularly added
to the site.

In contrast, the enterprise web sites exhibits much more sta-
bility in terms of the accesses to the “old” documents. Only
about 2% of the monthly requests are to the new files added
that month as shown in [9]. The access pattern of the enterprise
media sites seems to resemble the access pattern of news web
sites, where most of the client accesses target the new regularly
added information.

B. File Life Span

In this section, we attempt to answer the following question:
how much does the popularity of a file and the frequency of
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Fig. 16. Days between the first and last file accesses.

file accesses change over time? The answer to this question is
critical to designing prefetching or server-push algorithms, as
well as for the design of efficient content distribution strategies
in the CDNs for media content.

As shown in Section IV-D, the media workloads under study
exhibit a high locality of references. We observed that 90% of
the media server sessions target only 14%–30% of the files.
Thus, a small set of files has a strong impact on the media site
performance and its access patterns. We define core 90% as the
set of most frequently accessed files that make up for 90% of all
the media sessions. From the performance point of view, the at-
tention of service providers should concentrate on efficient sup-
port for these core files because most of the accesses target the
core files. Along with the understanding of the dynamics of all
the files at the site, we would like to see whether the core files
exhibit some specific properties.

We define a life time of a particular file to be the time between
the first and the last access to this file in the given workload.

Fig. 16 shows the distribution of file life times for both work-
loads.The two curves in each of Fig. 16(a) and (b) represents a
life time distribution for all the files and for the core 90% files.
These graphs show that a high percentage of all the files have
a short life time; files that “live” less than a month constitute
37% of all the files in the HPC workload and 50% of all the files
in the HPLabs workload (this number is high in part because
16%–19% of all the files are accessed only once as reported in
Section IV-D ). A total of 73% of all the files for both workloads

Fig. 17. Percent of sessions on days between the first and last file accesses.

has a life time of less than six months. Only 10% of files for the
HPLabs site and 8% for the HPC site live longer than a year. As
for the most frequently accessed files, a much higher percentage
of them live longer compared to the life time of all the files. The
“short-lived” frequent files in the graphs are mostly the recently
introduced files.

We define a file life span as the normalized distribution of
file accesses (normalized with respect to the total number of
file accesses) since the file’s introduction at the site. This new
property characterizes the file access rate over the file existence
(file’s life time) at the site.

In order to characterize the “change in access rate” specific to
a particular subset of files at a site as well as to compare these
rates for different groups of files, we introduce a life span metric
which uses a CDF representation of the file life spans. In other
words, for a particular subset of files, the life span metric is de-
fined as a cumulative density function of accesses to these files
since their introduction at a site. The introduced life span metric
measures the change in access rates to the newly introduced files
and reflects the timeliness of the accesses to them.

Fig. 17 shows the life span of the file’s accesses for both
workloads. The axis represents the days since the introduc-
tion of the files and the axis represents the CDF of all the file
accesses up to a particular day (relative to the total number of
all the sessions over the entire duration of the logs).

For the HPC (HPLabs) workload, 52% (51%) of all the ses-
sions occur during the first week of files’ existence, 68% (61%)
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of all the sessions occur during the two weeks of the files’ ex-
istence, 74% (66%) during the three weeks of files’ existence,
77% (69%) during the four weeks of files existence, and 80%
(70%) during the five weeks of the files existence. Thus, the
HPLabs site has the rates of change in file accesses lower than
the HPC site.

The above statistics can be interpreted in a different way, re-
flecting the rates of change of accesses in a given workload:
52% (51%) of all the sessions occur during the first week of file
existence, followed by only 16% (10%) of accesses during the
second week, falling to 6% (5%) of accesses during the third
week, and only 3% (1%) of the accesses for fourth and fifth
weeks since the introduction of the files.

The life span of the core 90% files is almost identical to the
life span of all the files. It is not surprising, because by definition
the core 90% files are responsible for 90% of all the accesses to
the site. The properties of the core 90% files have a major impact
on the characteristics of the life span of the entire site. As for the
rest of the files (“noncore” files), their properties are different for
the HPC and the HPLabs workloads. For example, for the HPC
workload, 70% of the sessions to the noncore files occur during
first 42 days after the files’ introduction, while for the HPLabs
workload, 70% of corresponding sessions occur during the first
21 days after the introduction of the files.

The life span metric is a normalized metric. The files could
have been individually introduced at different times. This metric
reflects the rate of change in the file access pattern during the
files’ existence at the site. Moreover, the life span metric reflects
the timeliness of the introduced files. A lower rate of change in
file accesses reflects that the media information on a site is less
timely and has a more consistent access pattern over a longer
period of time. The life span metric can potentially interpolate
the intensity of the client accesses to the new and the existing
files for a future period of time.

We believe that the locality properties, the access patterns of
newly introduced files, and their life spans are critical metrics
in defining efficient caching infrastructures and content distri-
bution strategies for CDNs.

VI. CONCLUSION AND FUTURE WORK

Media server access logs are an invaluable source of informa-
tion not only in extracting business related information but also
for understanding traffic access patterns and system resource re-
quirements of the media site. Our tool MediaMetrics is specially
designed for system administrators and service providers to un-
derstand the nature of traffic at their media sites. Issues of work-
load analysis are crucial to properly designing a site and its sup-
port infrastructure, especially for large, busy media sites.

Our analysis aimed to establish a set of properties specific for
the enterprise media server workloads and to compare them to
the well-known related observations about the web server work-
loads. In particular, we observed a high locality of references in
media file accesses for both workloads. Similar to the previous
web workloads studies, our analysis of the video popularity dis-
tribution (collected over a relatively short time of 1–6 months)
revealed that it can be approximated by a Zipf-like distribution
with the parameter in the range 1.4–1.6. The interesting new

observation is that the time scale plays an important role in this
approximation. For longer time scales in the same workloads,
the file access frequency distribution does not follow a Zipfian
distribution.

We propose two new metrics characterizing temporal proper-
ties of the media workloads. We introduce the new files impact
metric for the media workloads and observe that in the studied
workloads, the accesses to the new files constitute most of the
monthly accesses as well as the bytes transferred due to the ac-
cesses to the new files account for most of the transferred bytes.
Also, we observe that the trend in the growth of the site accesses
directly depends on the number of the newly added files. We fur-
ther define a life span metric to reflect the rates of change in ac-
cesses to the newly introduced files. For the studied workloads,
51%–52% of the accesses to the media files occur during the
first week of their introduction. The access pattern of the enter-
prise media sites resembles the access pattern of the news web
sites, where most of the client accesses target the new regularly
added information. Understanding the new files impact and the
life span metrics is important for efficient resource management
and provisioning, especially for large busy sites.

Additionally, we also discovered some interesting facts
about the client viewing behaviors. Despite the fact that the
two studied workloads had significantly different file size
distribution, the client viewing behavior was very similar for
the both sets. We also found that the percentage of sessions
with interactive requests was much higher for medium and long
videos.

In our future work, we are planning to exploit the observed
media workload properties for synthetic workload generation as
well as in a design of the capacity planning tools for media sites.
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