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Summary 

 

Soft-decision decoding of linear error correcting codes, using a quantised or real 

number soft metric such as Euclidean distance, has been well understood for over 40 

years. The output of a minimum soft distance decoder is the codeword (in the case of 

a block code) or code sequence (for a convolutional code) closest in distance to the 

soft word or sequence received from the channel and input to the decoder. This is 

soft-in, hard-out (SIHO) decoding, and it can be implemented optimally by applying 

the Viterbi algorithm (VA) to the code trellis [1], for example. SIHO decoding 

minimises the average output block or sequence error rate. Conceptually, but not in 

practice except in the case of a rather simple code, the codeword or code sequence 

closest in soft distance to the received word is found by determining the soft distances 

between the received word and all the words or sequences in the code, and then 

selecting the closest.  

 

In many coding applications, however, it is desirable to have soft estimates of each 

symbol output from the decoder. This is soft-in, soft-out (SISO) decoding, which 

minimises the average decoded symbol error rate. Therefore the output of a SISO 

decoder will not necessarily be a word or sequence in the code. The soft values 

provide estimates of the confidence of each individual symbol output from the 

decoder, which can then be used as the soft inputs to another decoder, as is required 

when decoding concatenated, product or array codes, or for iterative decoding of 

turbo and low-density parity-check (LDPC) codes. There are several well known 

ways of obtaining these soft decoder output values, starting with Gallager’s 1962 

method for LDPC codes [2], which was later re-discovered by Tanner in 1981 [3], and 

including the BCJR two-way [4], the soft-output VA (SOVA) [5], the turbo iterative 

[6] and the one-sweep [7]  trellis-based algorithms, and the sum-product graph-based 

algorithms [8, 9, 10, 11], among others. All of these a posteriori probability (APP) 

and maximum a posteriori (MAP) algorithms are statistically based, using 

probabilities or log-likelihood ratios as the decoding metric, and requiring the actual 

value or a close estimate of the signal-to-noise ratio (SNR) at the decoder input. 

 

In contrast, the new SISO algorithm briefly presented here is non-statistical in nature, 

and  does not require  knowledge of the SNR  at the decoder input  [12-15].  The soft   

decoded  symbols  take values computed from the soft values of the received word or 

sequence  (the decoder input)  and  the  parity-check  constraints  of  the code,  using  

(squared) Euclidean distance as the soft decoding metric.  
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Conceptually, and assuming a binary linear block code, the basic idea of the algorithm 

is as follows. For a given  position in the block (the i
th

, say) we first compute the soft 

distances between the soft received (input) word and those codewords in the code 

which have a zero in the i
th

 position. Then these distance values are combined by 

taking minus the log of the sum of the anti-logs of the negative values of the squared 

distances. For example, the combination of squared soft distances A and B is given by: 

 

 C0 =  - log 2 ( 2
-A

 + 2
-B

 ). 

Any number of distances can be combined in this way, using a suitable base for the 

logarithms and antilogarithms. The above process is then repeated for those 

codewords which have a one in the i
th

 position, to obtain the combined value C1. If C0 

is less than C1 then the symbol in the i
th

 position is decoded as a zero, and vice-versa. 

The modulus of the difference between C0 and C1 indicates the confidence of the 

decoded (hard) value: high if relatively large and low if not. With suitable scaling to 

lie within an appropriate range (±1, for example) a single soft value of distance can be 

output from the decoder. Of course in practice this  process is too lengthy except for 

rather simple codes, so it is much more effective to use one of the trellis or graphical 

decoding structures and processes referenced above, appropriately amended to fit the 

new algorithm. In the case of a trellis structure and the two-way BCJR process [4], for 

example, the antilog-sum combination as above takes place between the soft distance 

values on the edges entering each node in the trellis.   

It is also possible to calculate the values of C as follows: 

 C = min{ A, B } – log 2 ( 1 +  2
-| A – B | 

). 

This expression consists of an approximation and a correction factor. The 

approximation is easily determined, and the correction factor can be stored in a pre-

calculated table of suitable size, thus much simplifying practical implementations of 

the antilog-sum algorithm [16, 17]. This feature also makes it easy to vary the base of 

the logarithm, since we have found that base 2 is appropriate for codes with rate ≤ ½ 

and base 4 for codes with rate > ½. 

It is perhaps not surprising that soft distances can be used for  SISO decoding of error-

correcting codes, since they can serve as representatives or proxies for likelihood 

ratios [18]. By analogy with the basic a posteriori probability (APP) decoding process, 

the antilogs of A and B can be thought of as pseudo-probabilities and the result of the 

combination as a pseudo log-likelihood ratio (LLR). Also, the soft distance 

combination process can be seen to be a generalisation of Hagenauer’s “box-plus” 

operation [19].         

What did surprise us, however, was the excellent performance of the new algorithm. 

So far, the results of iterative decoding simulations of binary block codes with a range 

of rates and lengths up to 2560 bits show that the antilog-sum decoding algorithm has 

a performance in additive white Gaussian noise (AWGN) which is almost identical to 

that of the most powerful  algorithms in current use, such as the sum-product and log-

sum-product algorithms. In addition, it seems that the complexity of the antilog-sum 

algorithm is significantly lower than that of the sum-product and BCJR algorithms. 

We also have preliminary results for the performances of some of these codes on the 

Rayleigh fading channel which are similarly close to that of the statistical algorithms.  
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The discovery of this non-statistical antilog-sum algorithm for SISO decoding of 

error-correcting codes has resolved a problem which I have contemplated for many 

years, and it has led to a number of new insights and ideas, which with my colleagues 

Jorge Castiñeira and Leonardo Arnone we are continuing to explore.  
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