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Abstract

Storage system configuration, even at the enterprise
scale, is traditionally undertaken by human experts us-
ing a time-consuming process of trial and error, guided
by simple rules of thumb. Due to the complexity of the
design process and lack of workload information, the re-
sulting systems often cost significantly more than neces-
sary, or fail to perform adequately.

Our solution to this problem is to automate the design
and configuration process using a tool we call Hippo-
drome. It can explore the design space more thoroughly
than humans, and implement the design automatically,
thereby eliminating many tedious, error-prone opera-
tions.

Hippodrome is structured as an iterative loop: it analyzes
a workload to determine its requirements, creates a new
storage system design to better meet these requirements,
migrates the existing system to the new design. It re-
peats the loop until it finds a storage system design that
satisfies the workload’s I/O requirements. This paper de-
scribes the Hippodrome loop and demonstrates that our
prototype implementation converges rapidly to appropri-
ate system designs.

1 Introduction

Enterprise-scale storage systems are extremely difficult
to manage. The size of these systems, the thousands
of configuration choices, and the lack of information
about workload behaviors raise numerous management
challenges. Users’ demand for larger data capacities,
more predictable performance, and faster deployment of
new applications and services exacerbate the manage-
ment problems. Worse, administrators skilled in design-
ing, implementing and managing these storage systems
are expensive and in short supply. It is estimated that
the cost of managing storage is several times the pur-
chase price of the storage hardware [1, 25]. These dif-
ficulties are beginning to cause enterprise customers to
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Figure 1: The stages of the iterative storage management loop.
The loop can be bootstrapped using capacity information and
optional performance estimates as input to the design stage.

out-source their storage needs to Internet data centers
and storage service providers, such as Exodus [18], who
will lease networked storage. The growing importance
of this storage model implies that the ability to accu-
rately provision storage systems to meet workload needs
will become even more critical in the future.

Storage management challenges include designing and
implementing the storage system, adapting to changes in
workloads and device status, designing the storage area
network [32], and backing up the data [27]. In this pa-
per, we concentrate on the important problem of storage
system configuration: designing and implementing the
storage system needed to support a particular workload,
before the storage system is put into production use.

Given a pool of storage resources and a workload, we
want to determine how to automatically choose stor-
age devices, determine the appropriate device configura-
tions, and assign the workload to the configured storage.
These tasks are challenging because the large number of
design choices may interact with each other in poorly
understood ways. To make reasonable design choices,
administrators need detailed knowledge of applications’
storage behavior, which is difficult to obtain. Once a



design has been determined, implementing the chosen
design is time-consuming, tedious and error-prone. A
mistake in any of the implementation operations is dif-
ficult to identify, and can result in a failure to meet the
performance requirements of the workload.

Storage system configuration is naturally an iterative
process, traditionally undertaken by human experts us-
ing “rules of thumb” gained through years of experience.
They start with a first design based on an initial under-
standing of the workload, and then successively refine
the design based on the observed behavior of the system.
Figure 1 illustrates this iterative loop. Unfortunately,
the complexities of the systems being designed, cou-
pled with inadequate information about the true work-
load requirements, mean that the resulting systems are
often over-provisioned so that they are too expensive, or
under-provisioned so that they perform poorly.

In this paper, we describe Hippodrome, a system that
automates the iterative approach to storage system con-
figuration shown in Figure 1. Hippodrome analyzes a
running workload to determine its requirements, calcu-
lates a new storage system design, and migrates the ex-
isting system to the new design. Hippodrome makes
better design decisions by systematically exploring the
large space of possible designs. Hippodrome decreases
the chance of human error by automating the configura-
tion tasks. As a result, Hippodrome frees administrators
to focus on the applications that use the storage system.

We show that Hippodrome generates storage system
configurations that employ near minimal resources to
satisfy workload requirements, and that it converges to
the final system design in a small number of iterations.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the automation of storage system config-
uration, including its goals and challenges. Section 3 in-
troduces our solution, Hippodrome, and its components.
Section 4 describes our experimental methodology and
presents our results on random-access workloads and the
PostMark filesystem benchmark. Section 5 discusses re-
lated work, Section 6 summarizes our results, and Sec-
tion 7 describes directions for future research.

2 Problem statement

2.1 Iterative storage system design

The iterative approach to system management shown in
Figure 1 is applicable to many levels of the system, in-
cluding the block-level array subsystem, the filesystem
and the application itself. We focus on the block-level
storage, as it provides a potential benefit to all applica-
tions that store data, including those that use the filesys-

tem and those that use the raw block interface directly.

We define the three stages of the iterative storage man-
agement loop as follows:

� Design new system: Design a system to match the
current workload requirements. This stage includes
choosing which storage devices to use, selecting
their configurations, and determining how to map
the workload’s data onto the configured devices.
The requirements may come from observations of
the workload behavior in previous iterations.

� Implement design: Configure the disk arrays and
other storage system components, enable access to
the storage resources from the hosts, and migrate
the existing application data (if any) to the new de-
sign.

� Analyze workload: Analyze the running system
to learn the workload’s behavior. This information
can then be used as input to the design stage in the
next iteration.

We want to remove the human administrators from the
loop as much as possible, by automating the iterative
loop, to the point where all that is required at the be-
ginning is workload capacity information. The loop will
then learn the performance requirements across multiple
iterations of the loop.

In order to be considered successful, the automated loop
must meet two goals. First, it must converge on a viable
design that meets the workload’s requirements without
over- or under-provisioning. Second, it must converge
to a stable final system as quickly as possible, with as
little input as possible required from its users.

2.2 Definitions

A workload is the set of requests observed by the storage
system. A particular workload may be generated by one
or more applications using the storage system. We de-
scribe a workload in terms of stores and streams. A store
is a logically contiguous chunk of storage. A stream
captures information about the I/O accesses to a single
associated store, such as average request rate and aver-
age request size. Section 3.1 describes the characteris-
tics of streams. Expressing a workload in terms of stores
and streams decouples the specification of the workload
from the application(s) that generate that workload. As a
result, our workload specification and assignment tech-
niques are applicable to a broad range of applications.

Disk array storage is divided into logical units (LUs),
which are logically contiguous arrays of blocks exported
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Figure 2: Storage and workload concepts. Stores and streams
characterize the workload. LUs are containers for data. A store
is implemented as a logical volume, which is used to map the
store onto one or more LUs.

by a disk array. LUs are usually constructed by binding
a subset of the array’s disks together using RAID tech-
niques. LU sizes are typically fixed by the array config-
uration, and so are unlikely to correspond to application
requirements.

Logical volumes add flexibility by providing a level of
virtualization that enables the server to split the (large)
LUs into multiple pieces or to stripe data across multi-
ple LUs. A logical volume provides the abstraction of a
virtual disk for use by a filesystem or database table.

We implement a store as a logical volume in our system.
Figure 2 illustrates the relationships between stores,
streams, LUs and logical volumes.

3 Hippodrome

Hippodrome is our iterative design tool for storage sys-
tems. This section describes the components of the Hip-
podrome loop in more detail, and explains how the com-
ponents interact to design a storage system iteratively.

The Hippodrome components are the most recent ver-
sions of our group’s ongoing research into storage sys-
tem modeling and configuration [2, 3, 4, 5, 6, 10, 26, 30,
31, 32]. The goal of this paper is to show how the dif-
ferent components can work together to automate stor-
age management. Therefore, this section summarizes
the techniques used in Hippodrome. The details on each
component may be found in the paper on that topic.

Hippodrome uses four interdependent components to

implement the iterative loop shown in Figure 1. The an-
alyze workload stage summarizes a workload’s behav-
ior. This summary is used to predict the workload’s re-
quirements in the next iteration. Two components co-
operate to implement the design new system stage: per-
formance models for the storage devices, and a design
engine, or solver. The performance models predict the
utilization of storage devices under a candidate work-
load. The solver designs a new storage system using the
performance models to guarantee that no device in the
design is overloaded. The implement design stage mi-
grates any existing system to the new design.

The different components share the responsibility for the
correct operation of the loop. Collectively, they provide:

� Accurate resource estimation. The analysis and
model components cooperate to accurately predict
the utilizations of arbitrary candidate configura-
tions. These utilizations are computed relative to
the maximum performance capabilities of the de-
vices, with utilizations at or above 100% indicating
that the system is unable to support the desired per-
formance of the workload, and utilizations under
100% indicating that the system can support the de-
sired workload performance. The models and anal-
ysis encapsulate the physical performance charac-
teristics of the devices and workloads, allowing the
solver to concentrate on the optimization task.

� Minimal designs. The solver is responsible for
choosing a design that uses the least resources
among the set of candidate valid designs: ones that
meet the performance requirements of the work-
load and ensure that all of the components in the
design are under 100% utilized. It should perform
this search quickly.

� Balanced designs. The solver is responsible for
finding balanced designs: ones that have the min-
imal utilization variation across the storage system
resources. Balanced designs allow the system to
grow more quickly in each loop iteration, because
they afford more opportunity for incorporation of
new resources as the loop iterates.

� Short migration time. The migration component
is responsible for converting the existing system
into the new proposed system. It should perform
this migration efficiently, without requiring signifi-
cant temporary storage.

Accurate resource estimation and minimal designs result
in correctly provisioned systems. Balanced designs and
short migration time enable the loop to configure storage
systems quickly.



We describe these components and their inputs/outputs
in the sections below, focusing on how each component
contributes to the operation of the Hippodrome loop.

3.1 Analysis component

The analysis component takes as input a detailed block-
level trace of the workload’s I/O references and a de-
scription of the storage system (LU and logical volume
layouts). It outputs a summary of the trace in terms of
stores and streams [31]. The analysis component cap-
tures enough properties of the I/O trace in the streams to
enable the models to make accurate performance predic-
tions.

The analysis component models an I/O stream as a se-
ries of alternating ON/OFF periods, where I/O requests
are only generated during ON periods. More specifically,
we define the minimum duration of an ON period, mi-
nOnTime, as 0.5 seconds, and the minimum duration of
an OFF period, minOffTime, as at least two seconds of
inactivity.

During an ON period, we measure six parameters for
each stream: the mean read and write request rates; the
mean read and write request sizes; the run count, which
is the mean number of sequential requests; and the queue
length, which is the mean number of outstanding I/O re-
quests. Because streams can be ON or OFF at different
times, we also capture inter-stream phasing and correla-
tions using the overlap fraction, which is approximately
the fraction of time that two streams’ ON periods over-
lap. (The formal definition is slightly more involved and
is described in [10].) Table 1 provides a summary of all
of the stream attributes.

We choose to trace the I/O activity and analyze it later
(or on another machine) to minimize the interference
with the workload. Capturing I/O trace data results in
a CPU overhead of 1-2% and an increase in I/O load of
about 0.5%. Even day-long traces are typically only a
few gigabytes long, which is a negligible storage over-
head as the trace only has to be kept until the analysis
is run. The duration of tracing activity is workload de-
pendent, as it has to cover the full range of workload
behavior. For simple workloads, a few minutes may be
sufficient. For complex workloads, it may take a few
hours.

3.2 Performance model component

The performance model takes as input a workload sum-
mary from the analysis component, and a candidate stor-
age system design from the solver. The candidate design
specifies both the parameters for the storage system and
the layout of stores onto the storage system. It outputs
the utilization of each component in the storage system.

The model component needs to predict storage system
performance quickly and accurately. We implement this
component using table-based models [3]. The models
use the stream information collected during the analy-
sis stage to differentiate between sequential and random
behavior, read and write behavior and ON-OFF phasing
of disk I/Os. All of the properties shown in Table 1 are
used, because we have found that ignoring any of them
leads to inaccurate predictions. Models are used because
simulating an I/O trace would be too slow for the solver
to be able to examine a sufficient number of candidate
configurations.

The performance models have three complementary
parts:

1. Inter-stream adjustments. The input queue
length and sequentiality are first adjusted to take
into account the effect of interactions between
streams on the same LU using the techniques de-
scribed in [30]. For example, the sequentiality is
decreased for two streams that are on simultane-
ously, because the overlap will cause extra seeks,
while the queue length is increased because there
will be more outstanding I/Os, which gives the disk
array more opportunity for request re-ordering to
improve performance.

2. Single-stream prediction. The utilization of each
stream is calculated using a table of measurements
[3]. The model looks up the nearest table entries
to the specified input values for the stream, and
then performs a linear interpolation to determine
the maximum request rate at those values. The uti-
lization is the mean request rate of the stream di-
vided by the maximum request rate.

3. Utilization combination. The model calculates
the utilization of each LU by combining the esti-
mated stream utilizations using the phasing algo-
rithms found in [10]. The algorithms ensure that
the utilization of two streams is proportional to the
fraction of time that they overlap.

3.3 Solver component

The solver [5] reads as input the workload description
generated by the analysis component, and outputs the
design of a system that meets the workload’s perfor-
mance requirements. The output specifies a number of
disk arrays, the configuration of those arrays (e.g., num-
ber of disks, LU configurations, controller and cache set-
tings) and a mapping of the stores in the workload onto
the disk arrays’ LUs.



Attribute Description Units

request rate mean rate at which requests arrive at the device requests/sec
request size mean length of a request bytes
run count mean number of requests made to contiguous addresses requests
queue length mean size of the device queue requests
on time mean period when a stream is actively generating I/Os sec
off time mean period when a stream is not active sec
overlap fraction fraction of the “on” period when two streams are active simultaneously fraction

Table 1: Workload characteristics generated by Hippodrome’s analysis stage, and used by its models.

The solver efficiently searches the exponentially large
space of storage system designs to find a balanced, valid,
minimal design. The problem of efficiently packing a
number of stores, with both capacity and performance
requirements, onto disk arrays is similar to the problem
of multi-dimensional bin packing. Since bin-packing
is an NP-complete problem, exhaustive searches would
take too long. Therefore our solver builds on the best-fit
approaches found in [15, 21, 23] to produce initial so-
lutions, and adds backtracking to help the solver avoid
local minima in the search space of possible designs.

The solver algorithm has three phases:

1. Initial assignment. This phase attempts to find an
initial, valid solution. It first randomizes the list
of input stores, and then individually assigns them
onto a growable set of LUs. It assigns each store
onto the best available LU. Because the goal is to
minimize the cost of the system, the best available
LU is the one that is closest to being full after the
addition of the store. If the store does not fit onto
any available LU because the resulting utilization
or capacity would be over 100%, the solver expands
the storage system.

2. LU re-assignment. This phase attempts to improve
on the solution found in the first phase. The solver
uses randomized backtracking to avoid the local
minima that can result from the first phase. It then
randomly selects an LU from the current design,
removes all the stores from it, and re-assigns those
stores in a similar manner to the assignments done
in the first phase. This operation is repeated until
all of the LUs have been reassigned. At the end of
this phase, we have a near-optimal but potentially
unbalanced assignment of stores to LUs, using the
minimum necessary storage resources.

3. Store re-assignment. This phase load-balances
the best solution found in phase two. The load
is measured as the utilizations of the components
(e.g., LUs, disk-array controllers) predicted by the

models. The solver repeatedly selects a store at ran-
dom, removes it from the assignment and then re-
assigns it, but in this phase with the goal of pro-
ducing a more balanced solution. The solver has
already packed the stores tightly in the first two
phases, and guarantees that the balanced solution
does not increase in cost.

Experiments with this solver have found that it produces
near optimal solutions. The optimal solution is a bal-
anced valid design that meets the workload requirements
with minimal set of resources. For most cases where we
can prove optimality, the solver generates optimal solu-
tions. We have also compared the solver to an exhaus-
tive search algorithm on small cases, and again found
that the solver finds optimal solutions. We have hand de-
signed some pessimistic inputs (since the problem is NP-
complete, these must exist), and found that the solver
generates solutions about 10% worse than optimal on
those inputs. In comparisons with other solver algo-
rithms [2], we have found that our solver generates so-
lutions that are as good or better. More details on the
solver can be found in [5].

3.4 Migration component

The migration component takes as input the new design
of the storage system, and changes the existing con-
figuration to the new design. It configures storage de-
vices, copies the data between old and new locations,
and changes the parameters of the storage system to
match the parameters in the new design.

Migration operates in two phases. First a plan is gen-
erated for the migration and then the plan is executed.
The planning phase tries to minimize the amount of
scratch space used and the amount of data that needs
to be moved. The problem of migration planning for
variable-sized objects is NP-complete, as it is reducible
to subset sum [17]. We use a simple greedy heuristic that
moves stores to their final location. If no store can be
moved to its final location in a single step, the heuristic



chooses a candidate store (or set of stores, if the under-
lying device needs to be reconfigured) and moves all of
the stores blocking the move of the selected store into
scratch space. The heuristic selects the candidate store
to minimize the amount of scratch space needed. The
result is a sequential plan for the migration.

If the underlying logical volume manager allows indi-
vidual logical blocks to be moved, as opposed to an en-
tire volume (store), then more advanced algorithms [4]
that generate efficient parallel plans can be used.

Second, in the execution phase, the migration compo-
nent copies the stores to their destinations as specified by
the plan. The migration can be executed with the work-
loads either online or offline. Offline migration creates
a new logical volume, copies the data there, and deletes
the original volume. Online migration allows the work-
loads to continue executing. It uses the LVM to mirror
the volume to its new location, and then splits the mir-
ror, removing the old half. The techniques in [26] can be
used to minimize the performance impact on the work-
load.

An alternative method that works during initial system
configuration involves configuring the devices and then
copying the data from a “master copy” of the stores to
their final destinations. This approach works well if the
design is changing substantially between iterations, but
requires double the storage capacity to hold the master
copy.

3.5 Putting it all together

We now consider how the Hippodrome components
work together to find a storage system that supports
the user’s target workload so that the storage is not the
bottleneck resource (i.e., the predicted utilization of all
components is less than 100%). Since the performance
of this target is unknown, Hippodrome iteratively esti-
mates the target workload requirements by repeatedly
generating and implementing storage designs. The es-
timation is performed by running the workload against
the resulting system and monitoring and analyzing the
I/O behaviors (as described in Section 3.1) to develop a
new estimate of the workload requirements.

At each iteration of the loop, Hippodrome uses the new
workload estimate to develop a storage system design
to accommodate it. This design is created from scratch
based only on the current estimate of the workload’s re-
quirements.

In searching the space of possible configurations, the
solver will evaluate configurations with an increasing
amount of resources. If it determines that all designs
with the same amount of resources as in the current de-

sign would be over-committed, then we know that the
storage system was the bottleneck, and the solver will
find a design with more resources. If it determines that a
design with fewer resources is sufficient, then we know
that the storage system was under-utilized. Otherwise,
it will find a configuration with the same amount of re-
sources, and so we know that the loop has converged.

If the workload estimate was low because the storage
system was over-committed, the newly designed system
will contain more resources. The additional resources
will allow the application(s) to increase their I/O perfor-
mance, and hence increase the workload estimate. If the
workload estimate is still too low, the process will repeat,
until the workload appears to need no more resources.

For example, suppose the first iteration produces a de-
sign using 10 disk drives, based on only capacity in-
formation. Measurements from the first iteration might
show the workload achieving 1000 I/Os per second
(IOPS) on this configuration (because the bottleneck is
the disk drives, which can perform 100 IOPS each).
The second Hippodrome iteration might produce a de-
sign that incorporates 12 disk drives, because the Hippo-
drome models conservatively assume that the disk drives
can only achieve 90 IOPS, and so 12 disk drives are re-
quired to support 1000 IOPS. With this configuration,
the workload might then achieve 1200 IOPS, leading to a
design with 14 disk drives. Finally, when running on the
system with 14 disk drives, the workload might still run
at 1200 IOPS, because the storage system is no longer
the bottleneck. At this point Hippodrome has converged,
and no longer increases the available resources.

The time to converge is determined by how many loop
iterations must be performed and how long each itera-
tion takes. The number of loop iterations depends on
the size of the final system and the degree of mismatch
between the initial design and the final design neces-
sary to satisfy the workload’s target performance re-
quirements. Although Hippodrome performs well start-
ing only with capacity requirements, Section 4 shows
that Hippodrome can use an initial performance estimate
to converge faster. The time for each iteration is domi-
nated by running the application and implementing the
design. Application run times can range from minutes
to hours. Implementing the design can also take minutes
to hours, because it involves moving some fraction of
the (potentially sizeable) data in the system. Conversely,
analyzing the workload and generating the new design
takes seconds to minutes.

The number of iterations required may be influenced
by the explicit addition of headroom (resource slack) in
each step. For example, Hippodrome’s user can ask it to
keep the utilization level below 85%, rather than 100%.



This guideline will increase the likelihood that there will
be resource slack in the resulting system, thereby giv-
ing the workload a greater chance to express itself. This
opportunity may result in increased application I/O per-
formance and hence an increased workload estimate af-
ter the current iteration. In turn, this can reduce the
number of iterations needed to get to the target work-
load. Explicit headroom can be used to compensate for
optimistic errors in the performance models, where the
models predict that available performance is higher than
the actual performance (resulting in an under-estimate
of the resources needed to support a workload). Head-
room can also be implicitly added. If the models pre-
dict that the available performance is lower than the ac-
tual performance (i.e., they are pessimistic), the resulting
designs implicitly include resource slack. In addition,
solver designs that balance the load across the storage
devices provide the maximum room for growth (over im-
balanced designs), as no single part of the system will be
nearer to its utilization limits than any other.

Once the load has stabilized and the configuration con-
verged, retaining headroom may be of lesser value.
However, it can still be used to accommodate short-
term variations in the workload and to provide for fu-
ture growth. Ultimately, providing headroom is part of a
risk-cost decision: reducing the risk of a mis-configured
system comes at the cost of additional resources. In what
follows, we set the headroom to zero, because we wish
to evaluate Hippodrome in the most stringent conditions,
without any such resource slack.

We now turn to an evaluation of the Hippodrome system.

4 Experimental results

In this section we describe the experiments we ran to
evaluate Hippodrome. Our experiments are designed to
answer the following questions:

� Does Hippodrome converge? If so, how fast?

� Does Hippodrome allocate a reasonable amount of
resources for a given workload?

4.1 Experimental workloads

Our evaluation is based on three variants of a simple
fixed-size, random-access workload and a modified ver-
sion of the PostMark benchmark [22]. The random-
access workloads are useful for validating whether the
Hippodrome loop performs correctly, because we can
determine the expected behavior of the system. The
PostMark benchmark is useful because it lets us inves-
tigate how Hippodrome performs under a more realistic
workload.

Parameter Always on Phased

Store size (MB) 1024 1024
Number of stores 100 100
Request size (KB) 32 32
Request rate 12.5, 25 50
(IOPS/stream)
Request type read read
Request offset 1KB aligned 1KB aligned
Run count 1 (random) 1
ON/OFF periods (sec) always on 4.5 / 5.5
Correlated Groups n/a 2 groups
Arrival process 4-bounded 4-bounded

Poisson Poisson

Table 2: Common parameters for each stream in the random-
access workloads.

In our experiments, we use the workloads shown in Ta-
ble 2 with fixed-size, random requests; generating a load
that ranges from 12.5 to 50 I/Os per second (IOPS)
for each individual stream. We also use workloads
that exhibit complex phasing behavior where groups of
streams have correlated ON/OFF periods. We generate
these workloads using a synthetic load generator capable
of controlling the access patterns of individual streams.
For each stream, it generates an access pattern from the
given request rate, request size, sequentiality (specified
by the run count), maximum number of outstanding re-
quests and the duration of ON/OFF periods. We used a
modified Poisson arrival process in the random-access
workloads that restricted each stream to having no more
than 4 requests outstanding at a given time.

We also use the PostMark benchmark, which simulates
an email system, in our experiments. The benchmark
consists of a series of transactions, each of which per-
forms a file deletion or creation, together with a read or
write. Operations and files are randomly chosen. Using
the default parameters, the benchmark fits entirely in the
array cache, and exhibits very simple workload behav-
iors, so we have scaled the benchmark to use 40 sets of
10,000 files, ranging in size from 512B to 200KB. This
provides both a large range of I/O sizes and sequential-
ity behavior. In order to vary the intensity of the work-
load, we run multiple identical copies of the benchmark
simultaneously on the same filesystem. The data for the
entire PostMark benchmark has been sized to fit within a
single 50 GB filesystem. Hippodrome treats the filesys-
tem as a single store, accessed by a single stream.

For each workload, we let Hippodrome generate an ini-
tial system design based solely on the capacity require-
ments and then iteratively improve the system design un-



til it converges to support the workload. We do not ex-
pect the loop to converge in a single step, because the
workload may not be able to run at full speed on the ini-
tial capacity-only design. However, we show that the
loop converges quickly and that providing initial perfor-
mance estimates can speed up the convergence.

The migration step for the random-access workloads
simply re-creates the logical volumes in the new loca-
tions. Those workloads accept arbitrary data in the logi-
cal volumes. The migration step for the PostMark work-
load copies the data from a master copy. Migrating the
data would require reading and writing it from the same
array since there is only a single store. Copying the data
from the master speeds up our experiments because the
array used for the experiments is only writing data dur-
ing the migration.

4.2 Experimental infrastructure

Our experimental infrastructure consists of an HP FC-60
disk array [20] and an HP 9000-N4000 server. The FC-
60 array has sixty 36 GB Seagate ST136403LC disks,
spread evenly across six disk enclosures. The FC-60
has two controllers in the same controller enclosure with
one 40 MB/sec Ultra SCSI connection between the con-
troller enclosure and each of the six disk enclosures.
Each controller can access all of the SCSI buses, and
has 512 MB of battery-backed cache (NVRAM). Dirty
blocks are mirrored in both controller caches, to prevent
data loss if a controller fails. Each controller of the FC-
60 is connected to a Brocade Silkworm 2800 switch via
a 1 Gb/sec FibreChannel link. A particular LU can only
be efficiently accessed through a single controller at a
time, although each controller can access all of the LUs.

Our HP 9000-N4000 server has eight 440 MHz PA-
RISC 8500 processors and 16 GB of main memory, and
runs HP-UX 11.0. It uses a separate FibreChannel inter-
face to access each of the controllers in the disk array.

We configured each of the LUs in the system as a six
disk RAID-5 LU with a 16 KB stripe unit size. This
configuration allowed us to avoid a multi-hour array re-
configuration time during each iteration, at the cost of
restricting the solver to a subset of the possible array
configurations. Although Hippodrome is capable of al-
locating physical resources in smaller units (e.g., differ-
ent numbers of disks in an LU), and it already consid-
ers controller and bus resource limitations in its alloca-
tion, the restriction to fixed-size LUs is convenient for
experimental purposes. The restricted design space also
helped us determine whether Hippodrome had found the
correct configuration, as it allowed us to analyze all the
possible designs. We report the resources Hippodrome
allocates in units of LUs; the reader can also think of this
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Figure 3: (a) Target and achieved average request rates at each
iteration of the loop for the random-access workloads with a
target aggregate request rate of 2500 req/sec. (b) Number of
LUs used during each iteration.

as “groups of six disks”.

4.3 Random-access workloads

We start with fixed-size, random-access workloads so
that it is easy to understand the behavior of the loop. We
present two sets of results, one where all streams are ON

at the same time (Section 4.3.1), and one where streams
have correlated ON and OFF periods (Section 4.3.2). We
compare our results to the target request rate to deter-
mine whether the system designed by Hippodrome has
met the workload’s requirements. However, this practice
is for illustration only. Hippodrome has no knowledge of
these target rates.



4.3.1 Always ON workloads

Figure 3(a) shows the target I/O rate and the achieved
I/O rate for the random-access workloads at each itera-
tion of the loop. The figure illustrates two sets of exper-
iments with different input assumptions: one using only
capacity information (labeled “cap only”), and one us-
ing an initial under-estimate of the performance (labeled
“underest”). For the capacity-only design, we see that
Hippodrome’s storage system design converges within
five loop iterations to achieve the target I/O rate of the
workload (2500 requests per second). We also see that
the initial guess cuts the convergence time down to two
iterations.

Figure 3(b) shows the number of LUs allocated by Hip-
podrome at each loop iteration to achieve the target I/O
rate. The system converges in five loop iterations start-
ing from only capacity requirements. In the first four
iterations, the LUs are over-utilized, and Hippodrome
allocates new LUs, increasing the system size to better
match the target request rate. As more LUs are added,
a smaller fraction of the LUs’ capacity is used for the
workload’s data. As a result, the seek distances got
shorter and the disk positioning times are reduced. How-
ever, our performance models were calibrated using the
entire disk surface, and therefore slightly under-estimate
the performance of the LUs when a fraction of an LU is
used. As a result, Hippodrome allocates two more LUs
at the fifth iteration, even though the application could
achieve its target rate without this.

Iterations for the random-access workloads are ex-
tremely quick. We run the workload generator for 5 min-
utes. The analysis and solver take at most a few minutes.
The implementation takes a few minutes to re-build the
logical volumes, but as the synthetic generator does not
have any data, we skip the step of copying data onto the
logical volumes.

These results show that Hippodrome can rapidly con-
verge to the correct system design, using only capacity
information as its initial input.

Figure 4 shows that Hippodrome uses the minimal num-
ber of resources necessary to satisfy the workload’s per-
formance requirements. The target request rate for both
workloads is 1250 requests per second, which can be
achieved using only five LUs. Given only capacity re-
quirements as a starting point, the loop converges to the
target performance and correct size in three iterations.
Given an initial (incorrect) performance estimate that
the aggregate request rate is 2500 requests per second
(twice the actual rate), the loop initially over-provisions
the system to use 10 LUs, easily achieving the target
performance. The analysis of the actual workload be-
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Figure 4: (a) Target and achieved average request rates at each
iteration of the loop for the random-access workloads with a
target aggregate request rate of 1250 req/sec. (b) Number of
LUs used in each iteration.

havior in the first iteration produces workload require-
ments that Hippodrome can accommodate with fewer re-
sources, and Hippodrome scales back the system to use
five LUs in the second iteration.

4.3.2 Phased workloads

We also ran experiments where groups of streams had
correlated ON/OFF periods. In these experiments, we
used two stream groups, with all of the streams in the
same group active simultaneously and only one group
active at any time. Each group has an IOPS target of
2500 requests per second during its ON period, requir-
ing all 10 LUs available on the disk array. Clearly, the
storage system could not support the workload if both
of the stream groups were active at the same time, but
since the groups become active alternately, it is possible
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Figure 5: (a) Target and achieved average request rates at each
iteration of the loop for the phased random-access workloads
with two correlated stream groups with a target aggregate re-
quest rate of 2500 req/sec. (b) Number of LUs used in each
iteration.

for the storage system to support the workload. Figure 5
shows the average request rate achieved. We can see that
the behavior of this workload is similar to the earlier al-
ways ON workload.

We now look at the distribution of the stores across the
LUs. There are 100 stores in total; 50 in each group.
What we expect is that each of the 10 LUs will end
up containing 5 stores from group 1 and 5 stores from
group 2. The imbalance of an LU is therefore the abso-
lute value of the difference between the number of group
1 and group 2 stores on that LU. The relative imbalance
over the entire storage system is then the sum of the im-
balance of each LU divided by the number of LUs. In
a balanced system, this metric should converge to zero.
Figure 6 illustrates the relative imbalance for the phased
workload. This figure shows that the solver correctly
puts an equal number of stores from each group on each
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Figure 6: Relative imbalance of the two stream groups over
the storage system for the phased workload.

LU for the phased workload; the imbalance goes to zero
once the storage design has sufficient LUs.

4.4 PostMark

We ran the PostMark benchmark with a varying number
of simultaneously active processes, which allows us to
see the effect of different load levels on the behavior of
the loop. Unlike the previous workloads, which issued
requests at a fixed rate when correctly provisioned, Post-
Mark is designed to issue requests at the peak rate the
I/O configuration can sustain, given sufficient resources
at the clients. By using multiple PostMark processes,
we can effectively simulate greater client resources, and
a higher load. In order to determine what the achievable
performance was in practice, we first ran a set of exper-
iments with the PostMark filesystem split over a vary-
ing number of LUs. Figure 7 shows how the PostMark
transaction rates change as a function of the number of
LUs and processes used. As can be seen, the system is
limited primarily by the number of LUs. In all cases,
the performance continues to increase as resources are
added, although with diminishing returns. We presume
that the performance will eventually level off, due to host
software limitations, but we did not observe this for any
except the one process case.

Ideally, Hippodrome would exhibit two properties with
this workload. First, it should converge to a stable num-
ber of LUs, and not keep trying to indefinitely expand
its resources. Second, the final system should be near
the inflection point of the performance curve: i.e., in-
creasing the number of LUs beyond this point would
not result in significant performance increases. Table 3
shows that Hippodrome satisfies both of these proper-
ties, converging in all cases to a system that has perfor-
mance close to the maximum achievable, using a reason-
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number of rate
processes LUs achieved iterations time

1 2 84% 2 1:13
2 4 87% 4 2:20
3 5 89% 5 2:53
4 7 96% 5 2:57
5 8 99% 5 2:59

Table 3: LUs, transaction rate achieved (as a percentage of the
maximum observed for nine LUs), number of loop iterations
and time to converge (hours and minutes) for the PostMark
workload under varying numbers of processes.

able number of resources.

The wall clock time required for the loop to converge
depends upon the number of iterations. Within each it-
eration, the majority of the time is spent copying the data
from a master copy to the correct location in the new de-
sign, and takes between 20 and 40 minutes for the 50GB
dataset, depending upon the number of LUs involved.
The remaining time in each iteration is spent running
the application, which takes roughly five to ten minutes.
The analysis and the solver take a few minutes.

4.5 Summary

The experiments show that, for all workloads explored,
Hippodrome satisfies the experimental goals. First, the
system converges to the correct number of LUs in only
a small number of loop iterations: at most four or five,
and sometimes only one or two. Second, the designs
that the system converges on are correctly provisioned;
that is, the storage system contains the minimum number
of LUs capable of supporting the offered workload. Fi-
nally, Hippodrome can leverage initial performance es-

timates (even inaccurate ones) to find the correct storage
configuration more quickly.

These properties mean that Hippodrome can be used
to perform storage system configuration automatically.
The system administrators need only provide capacity
information on the workload, and can then let Hippo-
drome handle the details of configuring the rest of the
system resources, with the expectation that this configu-
ration will happen in an efficient manner. In particular,
administrators do not have to invest time and effort in
the difficult task of deciding how to lay out the storage
design; nor do they have to worry about whether the sys-
tem will be able to support the application workload.

In the future, we would like to experiment with us-
ing more complex enterprise-scale workloads, such as
a large database system. For such workloads, it is more
difficult to tell if the loop did the “right thing”, as we
cannot easily a priori tell how good the design is, unlike
the random-access and Postmark workloads. The appli-
cability of Hippodrome to such systems is an ongoing
research effort.

5 Related work

The EMC Symmetrix [14] and HP SureStore E XP512
Disk Arrays [19] support configuration adaptation to
handle over-utilized LUs. They monitor LU utilization
and use thresholds, set by the administrator, to trigger
load-balancing via data migration within the array. The
drawback is that they are unable to predict whether the
move will be an improvement. Hippodrome’s use of per-
formance models allows it to evaluate whether a pro-
posed migration would conflict with an existing work-
load.

HP’s AutoRAID disk array [33] supports moving data
between RAID5 and RAID1. AutoRAID keeps current
data in RAID1 (since it has better performance), and
uses an LRU policy based on write rate and capacity to
migrate infrequently accessed data to RAID5, which has
higher capacity. Hippodrome correctly places data based
on the usage patterns, and expands the storage system if
necessary to support increases in the workload.

Teradata [9] is a commercial parallel shared-nothing
database that uses a hash on the primary index of a
database table to statically partition the table across clus-
ter nodes. This data placement allows data parallelism
and improves the load balance. In contrast, Hippodrome
dynamically reassigns stores based on observed device
utilizations.

River [8] is a cluster-based I/O architecture that uses
credit-based back pressure and graduated declustering



(GD) to distribute work in a manner proportional to
the speed of the recipient nodes. However, River re-
quires modifying the application, and it makes short-
term load-balancing decisions, and does not handle
long-term changes in the workload. Conversely, Hippo-
drome makes long-term decisions and does not require
application modification.

A few other, automated tools exist that are useful to ad-
ministrators of enterprise class systems. The AutoAd-
min index selection tool [12] can automatically “de-
sign” a suitable set of indexes, given an input workload
of SQL queries. It has a component that intelligently
searches the space of possible indexes, similar to Hip-
podrome’s design component, and an evaluation com-
ponent (model, in Hippodrome terms) to determine the
effectiveness of a particular selection based on the esti-
mates from the query optimizer.

LEO, IBM DB2’s “learning optimizer” [29], uses a feed-
back loop to enhance query optimization performance
estimates based on observed past performance. It mon-
itors previously executed queries and compares the op-
timizer’s cost estimates with the actual performance at
each step in the query execution plan, and then adjusts
the cost estimates and statistics that may be used in fu-
ture query optimizations. Although it does not currently
do so, Hippodrome could use such feedback from ob-
served system performance to improve the quality of its
storage device performance models.

Océano [7] focuses on managing an e-business comput-
ing utility without human intervention, automatically al-
locating and configuring servers and network intercon-
nections in a data center. It uses simple metrics for
performance such as number of active connections and
overall response time; it is similar in nature to the auto-
matic loop in Section 2 in its management of compute
and network resources.

Muse [11] controls server allocation and energy-
conscious, adaptive resource provisioning tool for Inter-
net hosting centers. It is also based on an iterative loop,
like Hippodrome, but it focuses on allocating compu-
tational resources. Its resource allocation framework is
based on an economic model that factors in the trade-
offs between the service quality and the cost.

Existing solutions to the file assignment problem [13,
34] use heuristic optimization models to assign files to
disks to get improvements in I/O response times. The
file allocation schemes described in [16, 28] will au-
tomatically determine an optimal stripe width for files,
and stripe those files over a set of homogeneous disks.
They then balance the load on those files based on a
form of “hotspot” analysis, and swapping file blocks be-

tween “hot” and “cold” disks. Hippodrome can expand
or contract the set of devices used, supports RAID sys-
tems, uses far more sophisticated performance models to
predict the effect of system modifications, and will iter-
atively converge to a solution which supports the work-
load.

6 Conclusions

In this paper we have introduced the Hippodrome loop,
our approach to automating storage system configura-
tion. Hippodrome uses an iterative loop consisting of
three stages: analyze workload, design system, and im-
plement design. The components that implement these
stages handle the problem of summarizing a workload,
choosing which devices to use and how their parameters
should be set, assigning the workload to the devices, and
implementing the design by setting the device parame-
ters and migrating the existing system to the new design.

We have shown that for the problem of storage system
configuration, the Hippodrome loop satisfies two impor-
tant properties:

� Rapid convergence: The loop converges in a small
number of iterations to the final system design.

� Correct resource allocation: The loop allocates
close to the minimal amount of resources necessary
to support the workload.

We have demonstrated these properties using fixed-
size, random-access workloads as well as the PostMark
filesystem benchmark.

7 Ongoing and future work

We are currently extending Hippodrome to automati-
cally manage the ongoing evolution of a storage system.
Production systems evolve in time to handle device fail-
ures, changes in the workload, devices becoming obso-
lete, or new devices and workloads being added. Hip-
podrome should be able to detect and respond to these
changes to keep the system appropriately provisioned
and configured at all times. Preliminary results, using
workloads similar to those described here, are promis-
ing. Using Hippodrome for on-line storage management
also opens interesting research questions in controlling
and/or maintaining quality of service, during both nor-
mal operation and while migration is taking place.

In the future, we plan to extend this work in several
ways. First, we will investigate the sensitivity of the Hip-
podrome loop to the quality of its components. For in-



stance, what information must be captured in the analy-
sis stage to sufficiently specify the performance require-
ments of the workload [24]? What is the sensitivity of
the loop to the quality of the model component’s pre-
dictions or to the quality of the solutions generated by
the design component? In addition, we will continue
to investigate how to build better loop components, for
example, higher accuracy models, and a solver that min-
imizes store motion across iterations.

Second, we plan to experiment with complex enterprise-
scale applications, highly variable workloads with load
spikes, and workloads with natural load cycles (e.g.
daily backups or monthly reports). How can we tell how
well Hippodrome does for more complex workloads,
given the difficulty of provisioning such large systems?
How should the analysis infrastructure differentiate tran-
sient load spikes from workload growth trends? Further-
more, how should Hippodrome incorporate information
about the cyclic nature of the workload to support all op-
erational modes, while not grossly over-provisioning the
system?

Third, we plan to extend Hippodrome to manage very
large scale, heterogeneous and widely distributed stor-
age systems. The experiments in this paper explored
workloads that could fit onto a single disk array. How
well does Hippodrome perform for workloads that re-
quire multiple disk arrays? How well does Hippodrome
handle multiple types of disk arrays?

Additional research questions include the following:

� How well does Hippodrome interact with optimiza-
tions at the application level, which may result in
changes to the I/O workload? For instance, how
would the automated storage loop interact with
database systems that automatically create indices
as needed [12] or tune query plans based on ob-
served performance [29]?

� How does Hippodrome fit into an overall end-
to-end optimization scheme? For instance, how
should Hippodrome cooperate with other solutions
for storage area network design [32] or quality of
service-preserving online migration [26]?

� What are the right evaluation metrics for the ef-
fectiveness of the automated loop? In addition to
convergence time, potential metrics might be the
number of errors, the overall system cost, the sys-
tem performance, and the cost/performance trade-
off. An additional meta-level question is how to
define “goodness” for each of these metrics.
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