# I/O Workload Characterization

Zachary Kurmas -- Georgia Tech kurmasz@cc.gatech.edu Kim Keeton -- HP Labs kkeeton@hpl.hp.com Ralph Becker-Szendy -- HP Labs

#### **Motivation**

- In traces, the ratio of information to bits is low
  - I Traces contain much more data than most people need
- The essence of workload characterization:
  - I Determine what information people need
  - I Figure out how to represent it
  - I Verify that the characterization does, in fact, capture all the important information

#### **Characterization for SSP**

- Want analytic model to predict workload performance for different configurations
- Want concise input for this model
- Thus, want characterization that contains only trace data that affect performance

#### Introduction

- We are developing an iterative method by which we learn how to characterize workloads
  - We are able to easily
    - I Test the quality of the characterization
    - I Isolate the effects of individual characteristics
      - to determine which information is missing
    - Add missing information to the characterizations

## Roadmap

- Motivation and Introduction
- Description of Method
- Results from first iterations
- Future Work
- Related Work
- Conclusions

#### **Verification**

- How do we know if we have enough information?
  - If any workload with the same characterization has the same performance (latencies)
  - If we can generate another workload with the same performance







#### **What Affects Performance?**

- Each I/O Request has four parameters:
  - Location, Request Size, Type (Read/Write), and Interarrival Time
- A workload is a sequence of requests
- Performance of a workload is determined by
  - Distribution of values for each parameter
  - Correlations within and between parameters' values
- "Useful" characterization must describe all "important" distributions and correlations

#### **Workload Generator**

- Each of four parameters has separate number generator
- Two kinds of generators
  - Replay (Reads values from a list)
  - Random (from given distribution)
- Replaying all four parameters replays trace
- Replay generators retain correlations, random generators remove them.
  - I Experiments use one random and three replay

## **Research Environment**

- Workload: Trace of Open Mail
  - e-mail application for 15,000 users
  - Mean request rate: 75.52 I/Os per second
  - Mean request size: 7115 bytes
  - Mean throughput: 524.5KB per second
- Storage System: FC-60 disk array
  - I Fast enough to handle Open Mail with out queues
  - Write-back cache
    - I Thus, writes are "free"





















## **Jump Distance**

- Two simple and naive attempts failed:
  - I Choosing location based on a distribution of jump distance rather than location; and
  - I Choosing a specified percentage of locations from the jump distance distribution and the rest from the location distribution.
- Because many threads are writing to each disk, we suspect that a per-process jump distance does not accurately account for the observed spatial locality.

#### **Future Work**

- Develop a better method of generating locations
- We suspect that Interarrival Time/ burstiness will be the next big issue.
  - I Much other research in this area
- Test our method on many different workloads

### **Related Work**

- Many people have studied one or two parameters:
  - Ganger -- Location and Interarrival Time
  - Faloutsos -- Interarrival Time / Burstiness
  - Gomez and Santonja -- Location
- We will consider how to incorporate these results into our framework.

#### **Conclusions**

- We presented a new methodology for characterizing a workload.
- Using this methodology we can easily
  - Verify that the characterization has captured all the "important" information
  - Isolate the effects of individual parameters
    and decide where to make improvements
  - Improve the characterization