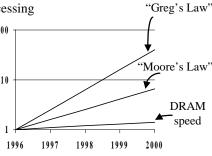
Exploiting Disk Intelligence for Decision Support Databases

Kimberly Keeton David A. Patterson

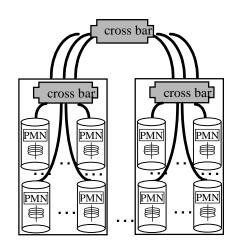

Hewlett-Packard Laboratories University of California at Berkeley kkeeton@hpl.hp.com Patterson@cs.berkeley.edu

Third Workshop on Computer Architecture Evaluation using Commercial Workloads (CAECW '00)

January 9, 2000

Motivation: Increasing I/O & Compute Needs

- **★** Greg's Law: Greg Papadopoulos, CTO, Sun Microsystems
 - DSS database I/O demand growth: 2X / 6-12 months
 - Storage capacity and associated processing
- **★** Contributing factors:
 - Collect richer data (more detailed)
 - "Just-in-time" inventory
 - Keep longer historical record
 - Increased data access via network
 - Business consolidation
- **★** Winter VLDB Survey (1997):
 - Telecomm., retail & financial DBs ~doubled from 1996 to 1997



Motivation: Architectural Trends

- * More sophisticated & modularized disk drives
 - Increased disk-resident memory, processing
 - Fast serial lines replacing busses
 - By 2001, Seagate estimates 100-200 MIPS, <= 64 MB memory
- * Communication trends
 - Switched networks overtake bus-based networks
 - Serial communication advances: Gbps serial I/O lines
- **★** Processor trends
 - Emergence of low cost, low power embedded processors
 - Embedded integer performance: ~ 1/2 desktop performance
 - Integrated logic and DRAM on same chip

3

Motivation: Intelligent Disks

- **★** Intelligent disk (IDISK):
 - Low cost, low power processor
 - Memory
- * Scalable, switch-based interconnect
- * Longer-term (5 to 10 years):
 - Sufficient processing, memory for no front-end host?

Motivation: Performance Feasibility

- **★** How well does IDISK perform for DSS workloads?
- ★ How does IDISK performance compare with that of other popular server architectures?
- **★** What's the limiting factor(s) for performance?
 - Disk bandwidth?
 - Processor speed?
 - Memory capacity?
 - Network bandwidth?

.

Outline

- * Motivation
- **★** Methodology
 - TPC-D measurements
 - Scaled hardware configurations
 - Analytic models
- **★** Case studies
 - Selection
 - Hash join
- * Conclusions

Approach

- * Analytic models of DSS queries
- ★ Calibrate models using measurements from full-scale (100 GB) TPC-D DSS system
- **★** Compare several DSS server architectures:
 - IDISK: thin-node cluster
 - Cluster of quad SMPs
 - Single large SMP
- **★** Scaled up hardware and data sets

7

Estimated Instruction Counts per I/O

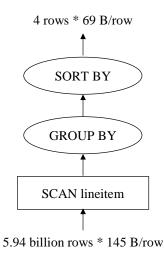
	1				
Database	Read vs.	Sequential vs.	Est. Inst.	Used in	
Operation	Write	Random (I/O size)	per I/O	analysis:	
Scan+select+project+ aggregate (simple)	Read	Sequential (64 KB)	800,000	Selection	
Scan+select+project+ aggregate (complex)	Read	Sequential (64 KB)	4,000,000	Selection	
Scan+select+project+ hash join (one-pass)	Read	Sequential (64 KB)	1,200,000	Hash join	
Index scan + nested loops join	Read	Random (4 KB)	280,000	Index nested loops join	
Write int. results to disk	Write	Random (8 KB)	400,000	Hash join	

- ★ Based on measurements of 100 GB TPC-D queries (single-stream)
 - 4-processor Pentium Pro-based server running Informix/NT 4.0
 - Simple scan (Q6), complex scan (Q1), simple hash join (Q4), complex hash join (Q5, Q8), simple index NL join (Q11)

Base Systems for Performance Study

Characteristic	NCR WorldMark 5200 w/ Teradata	HP 9000 V2500 Enterprise Server w/ Oracle8i
Processors per node	4 * 450 MHz	32 * 440 MHz
Mem. capacity per node	2 GB	32 GB
Disk capacity per node	40 * 9 GB	680 * 9.1 GB
Proc. interconnect B/W	120 MB/s	N/A
I/O interconnect B/W	264 MB/s (1 64b 33 MHz PCI)	2112 MB/s (8 64b 33 MHz PCI)
Nodes	32	1
Total processors	128	32
Total mem. capacity	64 GB	32 GB
Total disks	1280	680

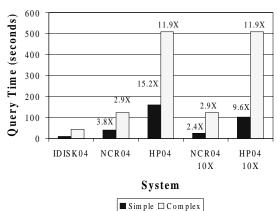
- ★ 1999 TPC-D 300 GB SF performance-leading configurations
- ★ Assumed Seagate Cheetah 9LP characteristics: 28.9 MB/s

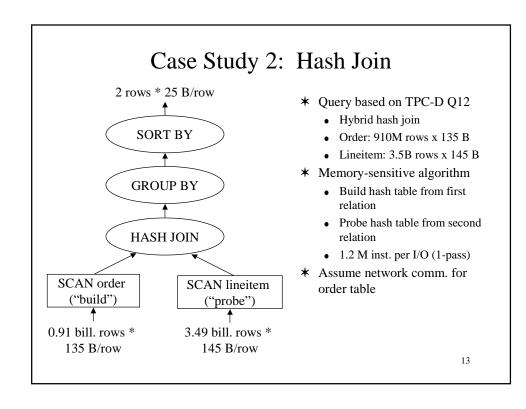

9

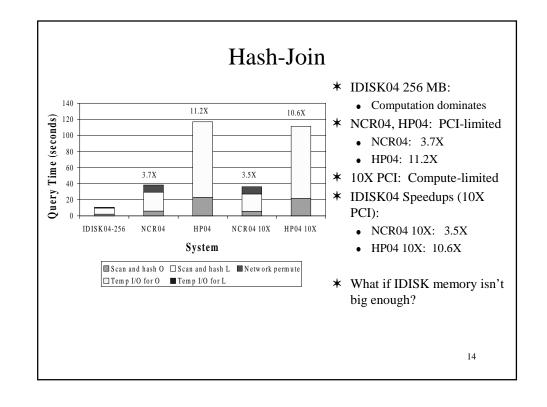
Back of the Envelope Benchmarks

Characteristic	IDISK04	"NCR04"	"HP04"
Processors per node	1 * 2500 MHz	4 * 4500 MHz	32 * 4400 MHz
Mem. capacity per node	32 – 512 MB	20 GB	320 GB
Disks per node	1	21	672
Proc. interconnect B/W	600 MB/s	600 MB/s	N/A
I/O interconnect B/W	N/A	800 MB/s (1 64b	6400 MB/s (8 64b
		100 MHz PCI)	100 MHz PCI)
Nodes	672	32	1
Total processors	672	128	32
Total mem. capacity	21.5 –344 GB	640 GB	320 GB
Total disks	672	672	672

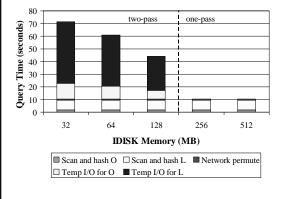
- ★ Projected 2004 systems based on today's configurations
- * All configurations have 672 disks:
 - Per disk: 95.4 GB, 154.6 MB/s
- **★** IDISK processor speed ~ 1/2 central processor speed
- **★** IDISK memory varied (128 256 MB typical)


Case Study 1: Selection

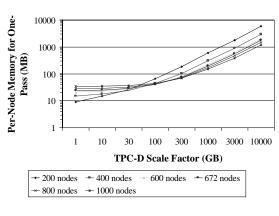

- * Scaled up data sets
 - 1000 GB scale factor data set
- * Query based on TPC-D Q1, Q6
 - Scan 6 billion 145 B rows
- * Assume sequential table scan used (no materialized views)
- * Computation per I/O
 - Simple: 0.8 M inst (Q6)
 - Complex: 4.0 M inst (Q1)


11

Selection



- **★** Embarrassingly parallel task
 - Simple: I/O-limited
 - Complex: compute-limited
- **★** What about faster interconnect?
 - Assume 10X the scaled speed
- * IDISK04 Simple Speedup (10X):
 - NCR04: 2.4X, HP04: 9.6X
 - Now also compute-limited
- ★ IDISK04 Complex Speedup (10X):
 - NCR04: 2.9X, HP04: 11.9X
 - (Same: compute-limited)
- ★ Scan/selection is best-case scenario for IDISK
 - Embarrassingly parallel
 - Streaming data access



- ★ Hash-join is memory-sensitive algorithm
 - "One-pass" if data fits in memory
 - "Two-pass" if data too big to fit into memory
- **★** Crossover point: ~200 MB
- **★** IDISK04 256 MB:
 - Computation dominates
- **★** IDISK04 128 MB:
 - Temp. I/O costs dominate
 - Performance within 15% of NCR04

15

Hash Join Two-Pass Crossover Points

- * How much memory required per node for our hash join query to be one pass?
 - Assume 8 KB comm. buffers
- * Small datasets (up to 30 GB SF)
 - Limited by size of communication buffers
- * Larger datasets (100 GB and above)
 - Limited by size of build relation

Conclusions

- **★** DSS database workloads present challenging I/O demands
- ★ Analytic modeling based on measurements of full-scale DSS system
- **★** IDISK system achieves high-performance and scalability for variety of DSS operations
 - Outperforms cluster and SMP systems with faster processors and higher aggregate memory capacity by 2X to 12X
 - Due to increased I/O parallelism & larger aggregate computation
- **★** IDISK can trade off disk I/O B/W for memory capacity
 - Two-pass hash join: ~15% slowdown over cluster system