Storage Systems Management

Guillermo Alvarez, Kim Keeton, Arif Merchant, Erik Riedel, and John Wilkes

Hewlett-Packard Labs, Storage Systems Program

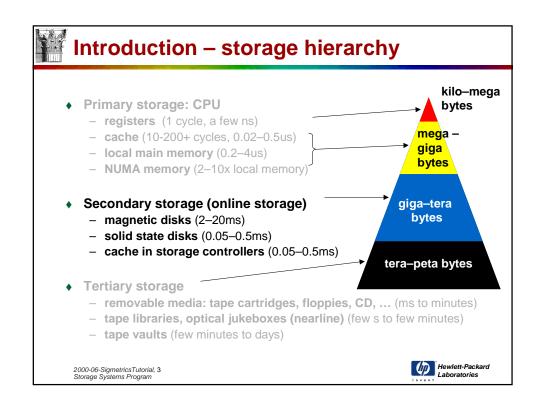
2000-06-SigmetricsTutorial

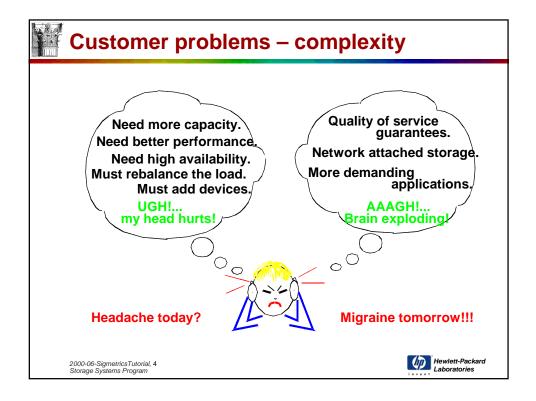
Copyright © 2000 Hewlett-Packard Company

Tutorial overview

- Introduction
 - Why storage is important
 - Customer problems
 - Case study DSS database server
 - The storage management market
- Storage Systems 101 the building blocks
- Major problems in storage management
- Current solutions
- Our vision
- Research challenges
- Conclusions

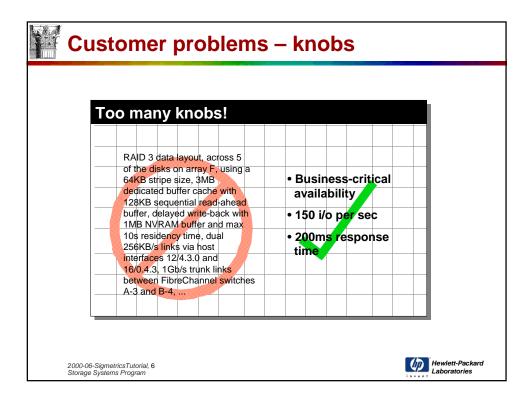
2000-06-SigmetricsTutorial, 1 Storage Systems Program

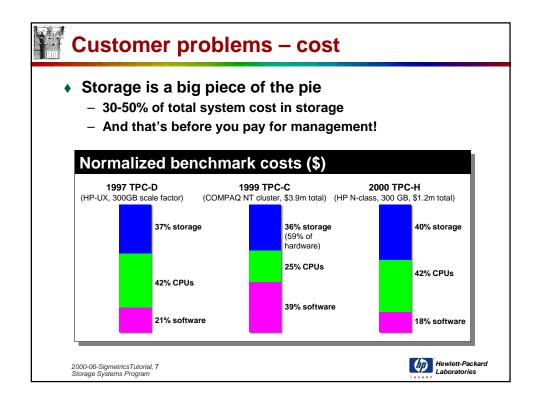



Introduction - why do we care?

- Storage systems
 - the place where persistent data is kept
 - the center of the universe!
- Why?
 - information (and hence storage) is key to most endeavors
 - storage is big business (tens of \$billion per year)
 - sheer quantities (hundreds of petabytes per year)
 - "Storage will dominate our business in a few years"
 - Compaq VP, 1998
 - "In 3 to 5 years, we will start seeing servers as peripherals to storage"
 - SUN Chief Technology Officer, 1998
 - "We'll plug into whatever servers you have"
 - IBM Versatile Storage Server ad, 1999

2000-06-SigmetricsTutorial, 2 Storage Systems Program




Customer problems - scale

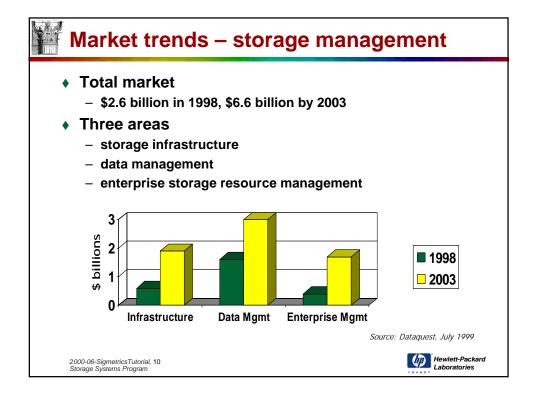
- System scale is exploding
 - Information density is dropping
 - text files >> DBMS >> data mining >> images >> email >> multimedia ...
 - Sheer numbers of applications, host systems, devices
 - Rate of growth
 - · sometimes wildly unpredictable
- Growing demands from business side
 - continuous availability
 - predictable, stable performance
 - lower costs
- Not enough skilled people

2000-06-SigmetricsTutorial, 5 Storage Systems Program

Case study – DSS database server

- Hewlett-Packard N-class TPC-H Server
 - HP 9000 N4000 Enterprise Server
 - Informix Extended Parallel Server database
 - 8 x 550 MHz PA-RISC processors
 - 32 GB memory
 - 3 SureStore E Disk Array FC60s
 - 28 x 18.2 GB disks each in RAID1 (mirrored)
 - · tables & indices
 - 4 SureStore E Disk System SC10s
 - 9 x 18.2 GB disks each in RAID0 (JBOD)
 - · temporary space
 - 2.1 TB total storage (111 disks)
 - \$1,154,133 total cost, \$457,984 storage cost
 - 1,592 QphH@300GB, \$973 / QphH@300GB

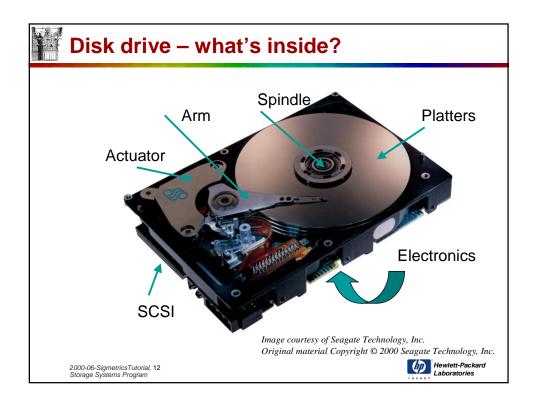
2000-06-SigmetricsTutorial, 8 Storage Systems Program

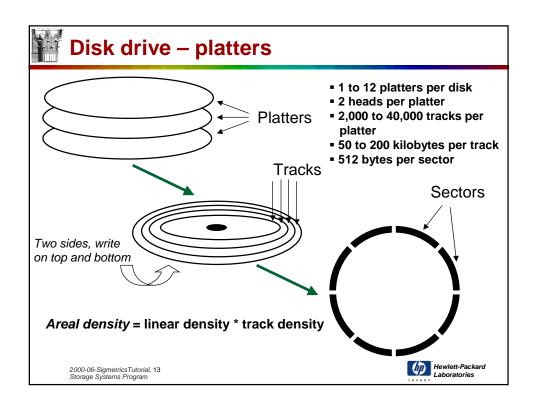


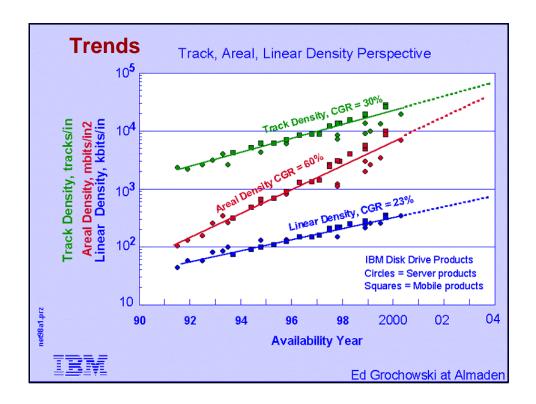
Storage management market (DataQuest)

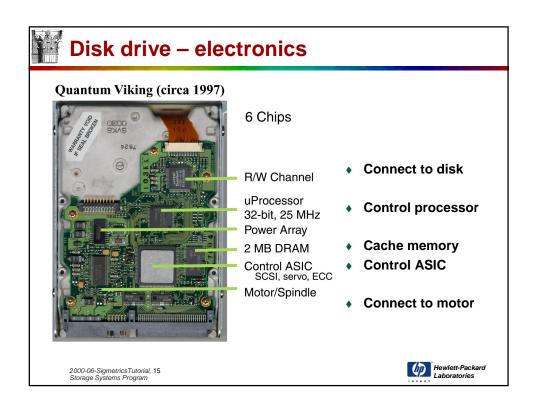
- Storage infrastructure
 - basic data organization
 - file systems, volume mgmt, physical replication
 - who: various OS file systems (everyone does it), Veritas
- Data management
 - backup, restore, archive, HSM
 - who: Legato, IBM ADSM/Tivoli™, HP, CA Unicenter™, EMC, Sun
- Enterprise storage management
 - everything else
 - "management of various storage resources on the network including [disk, tape]..."
 - who: IBM/Tivoli™, HP SureStore™, Compaq SANworks™,
 CA Unicenter™, HighGround, BMC, CommVault

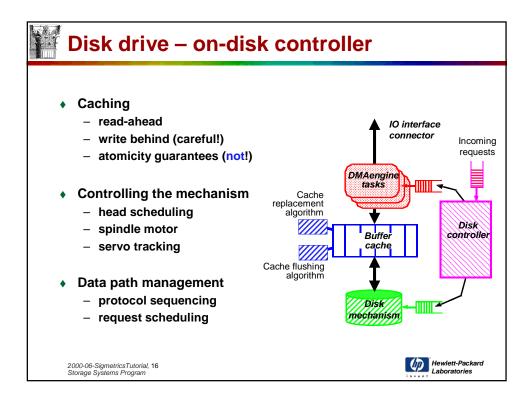
2000-06-SigmetricsTutorial, 9 Storage Systems Program

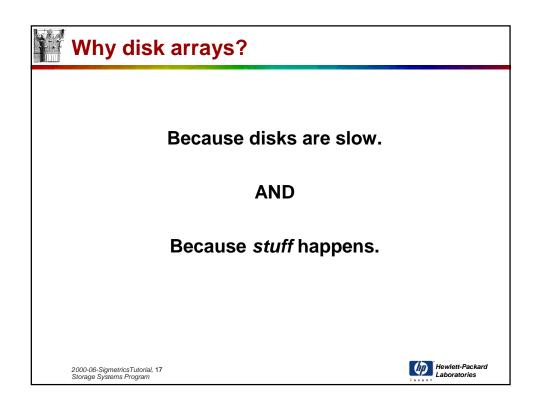


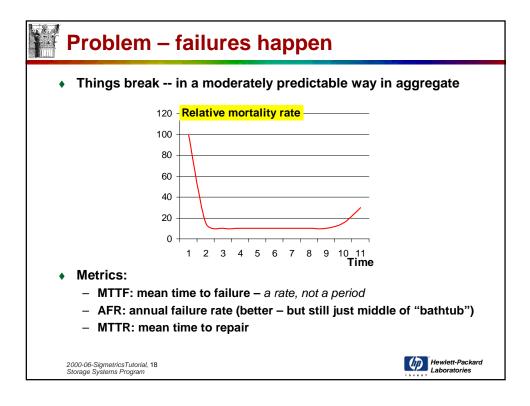

Outline

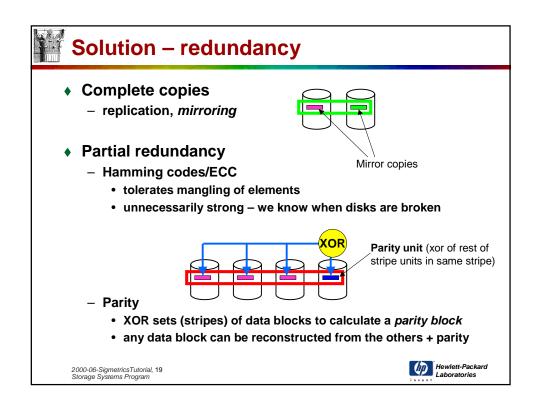

- **♦** Introduction
- Storage Systems 101 the building blocks
 - Disk drives
 - Disk arrays
 - Storage area networks (SANs)
 - Network-attached storage (NAS)
- Major problems in storage management
- Current solutions
- Our vision
- Research challenges
- Conclusions


2000-06-SigmetricsTutorial, 11 Storage Systems Program









How redundancy helps

- Individual disk drives
 - originally (mid-1980s), these were among the most unreliable components in a system
 - nowadays, they are one of the more reliable ones (AFR of 1 to 2%)
 - but failure rates are proportional to numbers ...
- Assumes independent failures

warning! danger! caution! error!

With no redundancy ...

With one degree of redundancy ...

$$AFR_{raid} \sim = AFR_{disks}(N_{disks}) * MTTR_{disk} * AFR_{disks}(N_{disks}-1)$$

2000-06-SigmetricsTutorial, 20 Storage Systems Program

Downsides of redundancy

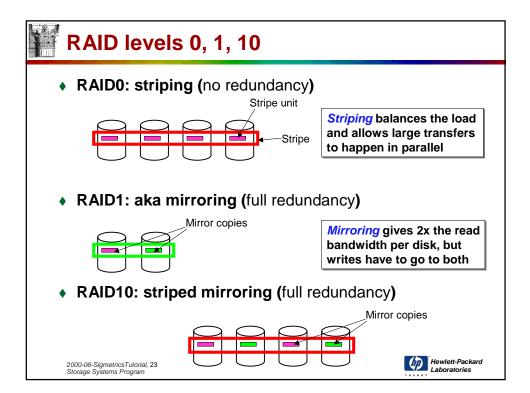
- Cost
 - replicating everything costs 2x as much storage
 - solution partial redundancy
- Slower updates
 - 2x as many copies to write to
 - ... even worse with partial redundancy
- Greater complexity
 - 80 90% of disk array firmware is error handling
 - lots and lots of configuration choices ...

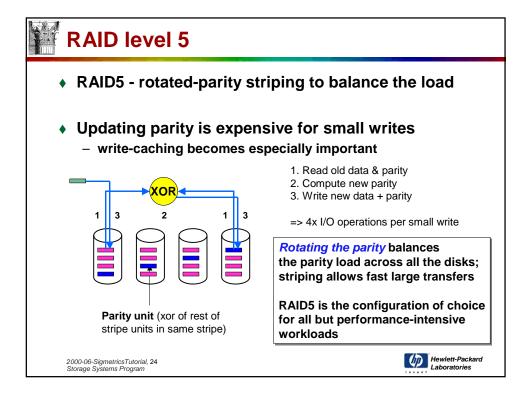
2000-06-SigmetricsTutorial, 21 Storage Systems Program

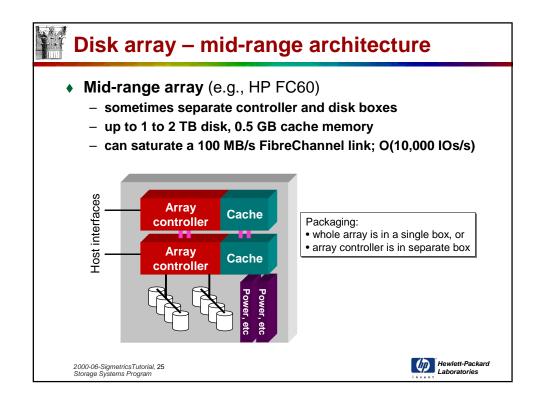
Disk array taxonomy

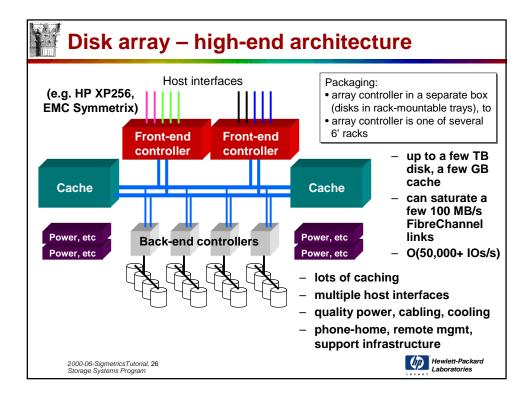
RAID = Redundant Arrays of Inexpensive Disks

Currently accepted RAID levels:

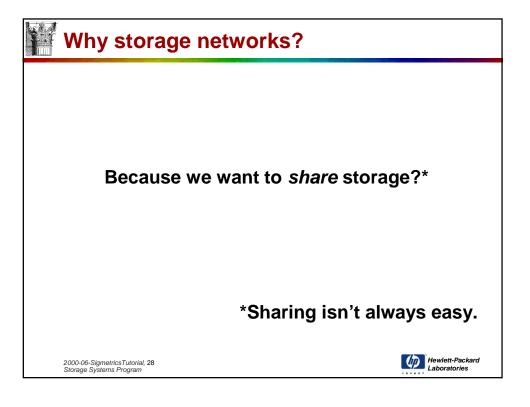

- 0: no redundancy (JBOD)
- 1: full copy (mirroring)
- 10: striped mirrors
- 2: Hamming-code/ECC (not used)
- 3: byte-interleaved parity
- 4: block-interleaved parity (more useful variant of RAID3)
- 5: rotated block-interleaved parity
- 6: double parity ("P+Q parity" -- rare)

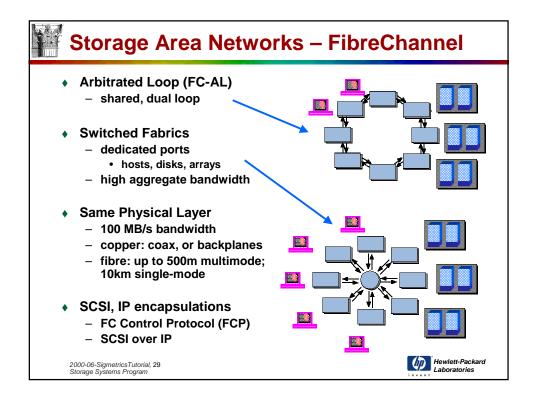

2000-06-SigmetricsTutorial, 22 Storage Systems Program

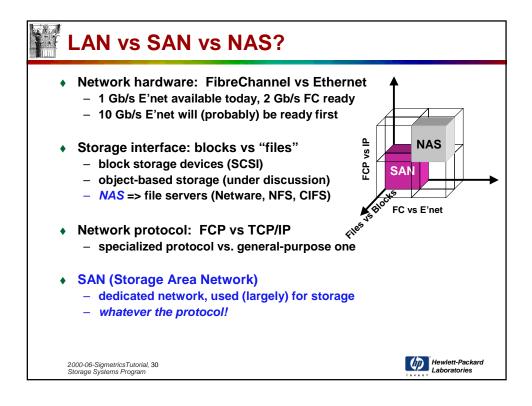


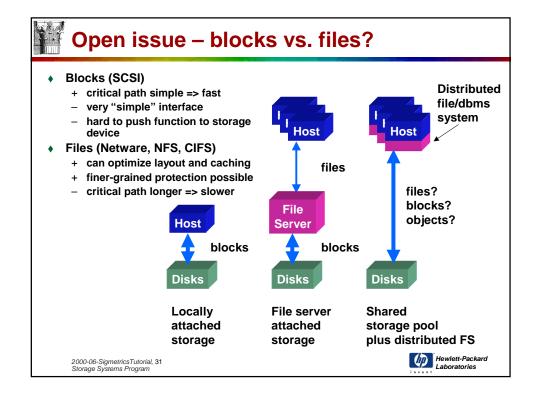

Note: not really

levels, just a list




Disk arrays - logical units


- Arrays provide multiple LUNs (SCSI Logical UNits)
 - basic unit of control, management
 - one or more disk drives bound together into a common layout (choose a RAID level)
 - different LUNs can have different sizes, different layouts
 - 8 to 32 LUNs at the mid-range
 - thousands of LUNs at the high-end
 - SCSI limit: 4096 LUNs, from a 12 bit LUN identifier
- A few common variations (there are many more)
 - parts of disks instead of whole disks
 - LUNs may be named relative to ports, not uniquely
 - LUNs can have different caching behavior


2000-06-SigmetricsTutorial, 27 Storage Systems Program

Outline

- ◆ Introduction
- Storage Systems 101 the building blocks
- Major problems in storage management
 - System design and configuration (device management)
 - Problem detection and diagnosis (error management)
 - Capacity planning (space management)
 - Performance tuning (performance management)
 - High availability (availability management)
 - Automation (self-managing storage)
- Current solutions
- Our vision
- Research challenges
- Conclusions

2000-06-SigmetricsTutorial, 32 Storage Systems Program

System design and device configuration

- How to decide which storage devices to buy
 - how many?
 - what kind?
 - · how fast, how big
 - how are they connected?
 - SCSI, FC-AL, switches, SAN, NAS
- How to set device configuration parameters
 - RAID level?
 - RAID0, RAID1, RAID10, RAID5
 - disks per stripe?
 - stripe size?
 - buffer management?
 - prefetch and writeback policies?
 - · aggressive, conservative

2000-06-SigmetricsTutorial, 33 Storage Systems Program

Problem detection and diagnosis

- What must be monitored to detect device failures?
 - across hosts, arrays, networks
 - across multiple vendors
 - across multiple operating systems
- What system information must be available to diagnose root cause?
 - isolate problems
- What capabilities must be available to correct problems?
 - redundancy (RAID levels)
 - multiple network paths
 - transparent failover
 - replacement parts (hot spares)

2000-06-SigmetricsTutorial, 34 Storage Systems Program

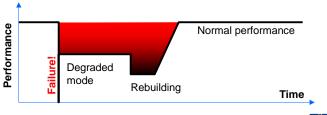
Capacity planning

- How to keep up with users' capacity demands?
 - tracking growth
 - predicting growth
 - acquiring additional storage
 - installing and configuring additional storage
 - identifying hot vs. cold data
 - often tied closely to performance
 - variance in usage patterns

2000-06-SigmetricsTutorial, 35 Storage Systems Program

Performance tuning

- How should the storage system be designed to maximize performance?
 - LUN design
 - logical volume design
 - file/database layout onto logical volumes
- What must be monitored to detect performance bottlenecks?
- How do we translate between different levels of abstraction?
 - LUNs vs. logical volumes vs. database table
 - blocks vs. files
- Service level agreements (SLA and QoS)
 - specify customer business requirements
 - "enforce" service levels


2000-06-SigmetricsTutorial, 36 Storage Systems Program

High availability

- What design must we use to avoid single points of failure?
- What RAID levels must be used to achieve desired availability?
- Reliability
 - R(t) = likelihood system up continuously from time 0 to time t
- Availability
 - A(t) = likelihood system will be up at time t
- Performability
 - P(t,p) = likelihood system will be providing performance p at time t

2000-06-SigmetricsTutorial, 37 Storage Systems Program

Automation

- How do we make all this happen with minimal human involvement?
 - remove the human from the loop whenever possible
- High-level goals
 - what to do, not how to do it
 - set and forget
- Manipulate device knobs
- Automatic performance analysis
- Service level agreements
- Grow/shrink as necessary
 - capacity and performance
- Transparently

2000-06-SigmetricsTutorial, 38 Storage Systems Program

Outline

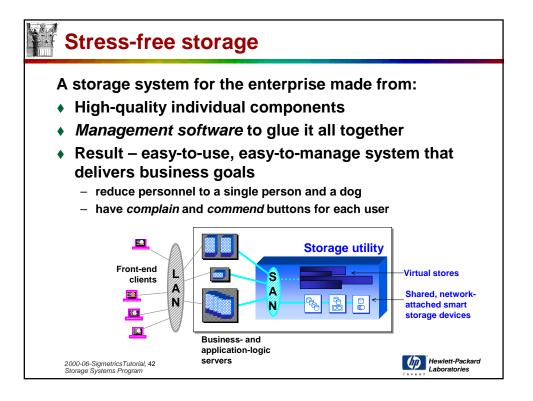
- **♦** Introduction
- ♦ Storage Systems 101: the building blocks
- Major problems in storage management
- Current solutions
 - Storage management products
- Our vision
- Research challenges
- Conclusions

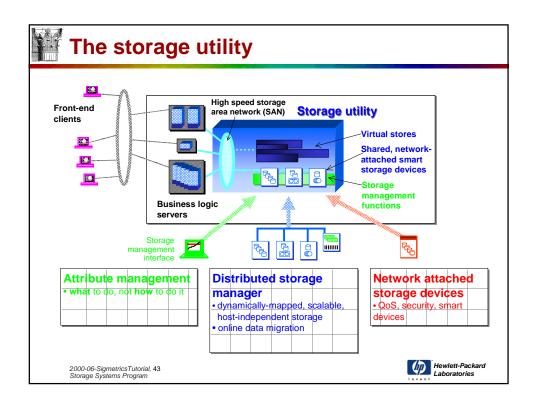
2000-06-SigmetricsTutorial, 39 Storage Systems Program

Storage management products

- Pre-sales tools
 - system design and device configuration
 - capacity planning
 - high availability
- **♦ IBM Tivoli**™
- ◆ Compag SANworks™
- ◆ HP SureStore™ SAN Manager
- ◆ CA Unicenter[™]
 - problem detection and diagnosis
 - high availability
- ♦ HighGround Storage Resource Manager™
- ◆ BMC Patrol[™]
 - problem detection and diagnosis
 - performance monitoring

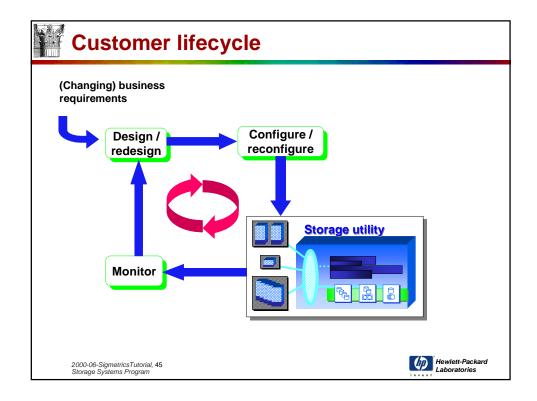
2000-06-SigmetricsTutorial, 40 Storage Systems Program

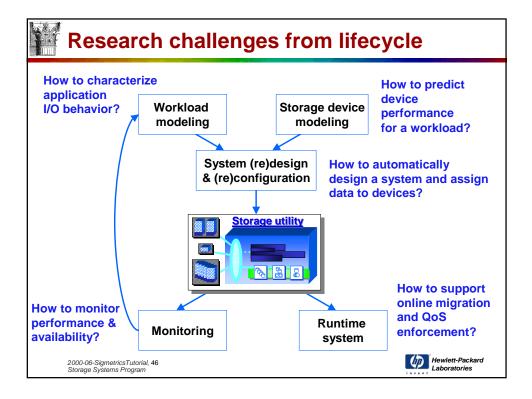


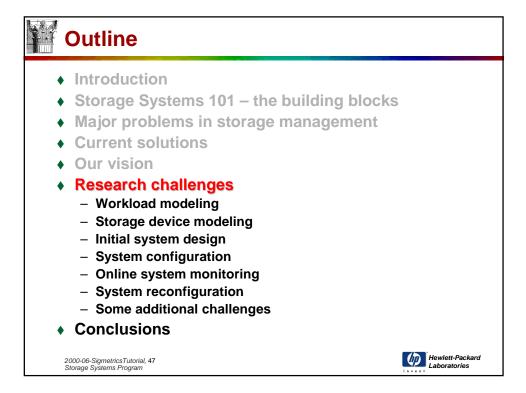

Outline

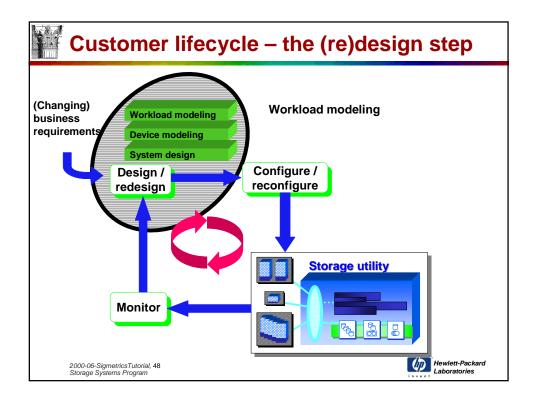
- **♦** Introduction
- ◆ Storage Systems 101 the building blocks
- ◆ Major problems in storage management
- Current solutions
- Our vision
 - Stress-free storage
 - The storage utility
- Research challenges
- Conclusions

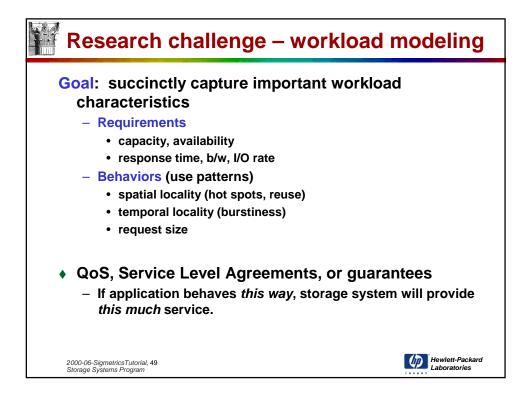
2000-06-SigmetricsTutorial, 41 Storage Systems Program

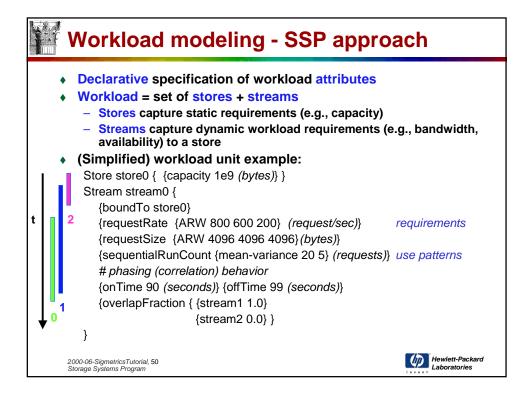

The storage utility – how is it done?

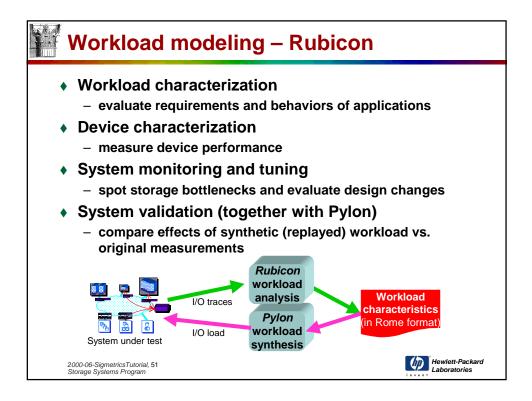

Just a few Big Ideas ...

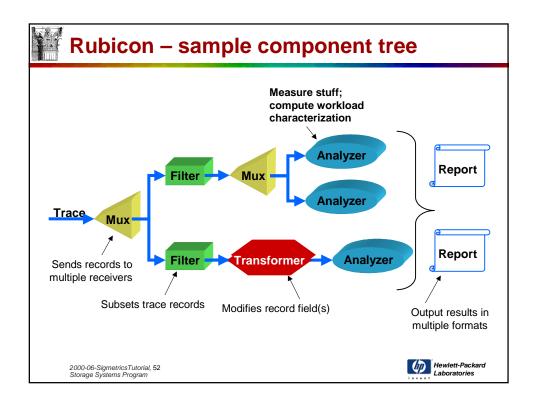

- Goal-directed self-management
 - specify what to do (goals), not how to do it (implementation)
- ♦ Automatic (re)design and (re)configuration
 - to reduce complexity & human effort
- Predictable behavior through guarantees
 - QoS = performance + availability + cost
- Software as the key differentiator


2000-06-SigmetricsTutorial, 44 Storage Systems Program

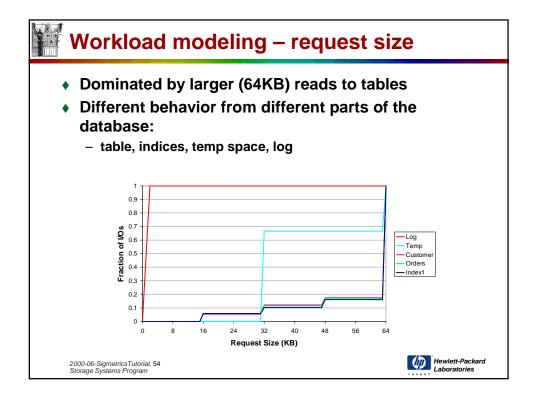


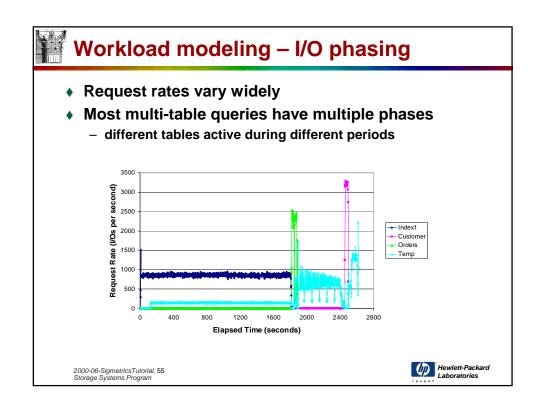


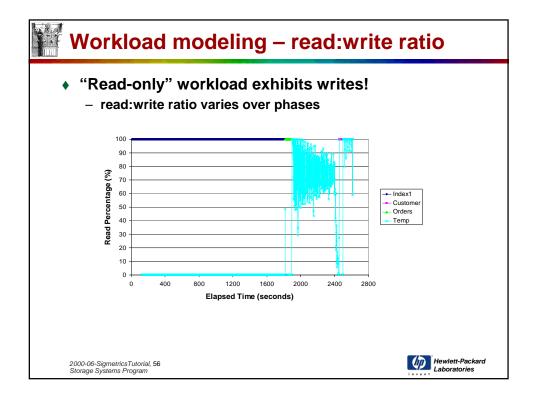




Workload modeling - case study


- Decision support (DSS) database
 - Oracle
 - 300 GB TPC-D database
 - Presentation focus: TPC-D Q5


Also examining:


- File system
- ◆ Email server
- Online transaction processing (OLTP) database
- Enterprise resource planning (ERP) database
- Scientific applications
- Web server

2000-06-SigmetricsTutorial, 53 Storage Systems Program

Workload modeling - lessons learned

- Lessons learned:
 - list of important characteristics is longer than you think
 - distributions, not averages, are important
- Some characteristics of interest:
 - request size distribution
 - request rate distribution
 - read:write ratio
 - spatial locality (e.g., sequentiality)
 - temporal locality (e.g., data re-references)
 - phased behavior
 - correlation between accesses to different parts of storage system
 - burstiness

2000-06-SigmetricsTutorial, 57 Storage Systems Program

Workload modeling - related work

Workload characterization case studies

- File system tracing
 - [Ousterhout85, Miller91, Ramakrishnan92, Baker91, Gribble98]
- Network tracing
 - [Caceres91, Paxson94, Paxson97]
- I/O tracing
 - [Bates91, Ruemmler93, Gomez98, Hsu99]

Tools

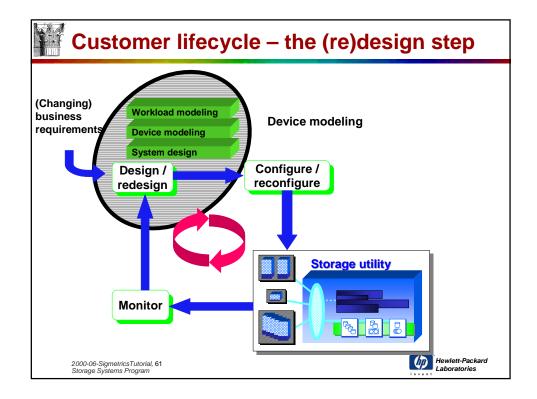
- Offline trace gathering, analysis and visualization
 - [Grimsrud95, IBM99]
- Extensible trace analysis
 - Tramp [Touati91]
- Network packet filters
 - [Mogul87, McCanne93]
- Trace visualization
 - [Heath91, Malony91, Hibbard94, Eick96, Aiken96, Livny97]

2000-06-SigmetricsTutorial, 58 Storage Systems Program

Issues in workload modeling

- What characteristics should we measure?
 - for workload regeneration
 - for QoS specification
 - for device performance prediction
- How to quantify these characteristics?
 - what metrics, and in how much detail?
 - ex: correlations, burstiness, spatial and temporal locality
- What's the relative importance of these properties?
- How to model the scaling behavior of applications?
 - ex: number of users, size of database
- How to provide semantic mapping between application operations and storage system requirements?

2000-06-SigmetricsTutorial, 59 Storage Systems Program



Issues in workload modeling (cont.)

- How much does behavior vary between different apps running same workload?
 - ex: Oracle vs. Informix vs. DB2 vs. SQLServer
 - ex: NFS vs. CIFS
- How to model distributed applications and their interactions?
- How does NAS file workload characterization differ from block-oriented I/O characterization?

2000-06-SigmetricsTutorial, 60 Storage Systems Program

Research challenge - device modeling

Goal: capture storage device characteristics in a predictive model:

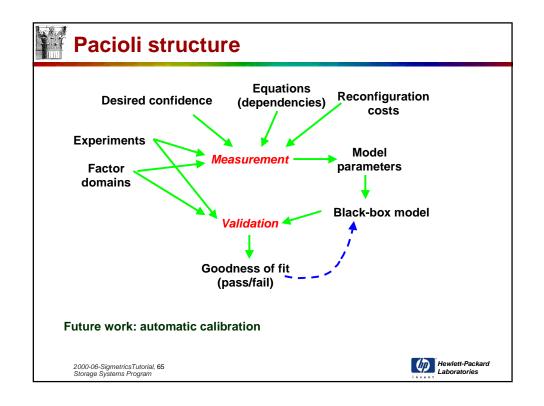
- Capabilities
 - · performance: transfer rate, positioning time, caching, ...
 - capacity
 - · failure model
- Configuration options
- Costs

2000-06-SigmetricsTutorial, 62 Storage Systems Program

Device modeling - SSP approach

- Fast, analytic models of device behavior
- Storage system = set of hosts + devices + fabric(s)
 - Hosts: where work is generated
 - · (probably) support logical volume manager
 - Storage devices
 - provide LUNs (onto which workload stores/shards get mapped)
 - have capabilities (performance, capacity, availability) + cost
 - Storage fabric: connects hosts to storage devices
- (Simplified) device model example:
 - available device capacity > Σ capacity_store,
 - available bandwidth > Σ requestRate_stream_i* requestSize_stream_i
 - · for streams that are "on" together

2000-06-SigmetricsTutorial, 63 Storage Systems Program



Device modeling - building the model

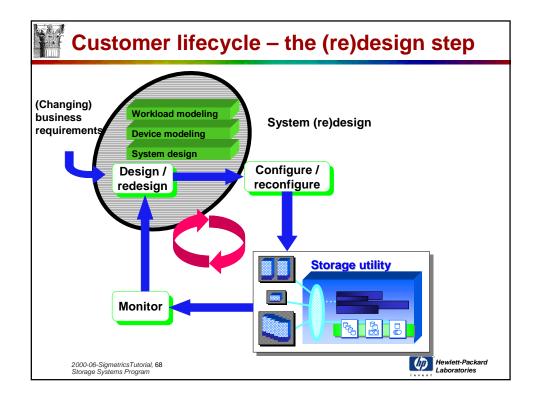
- How to deal with:
 - non-deterministic experiments
 - e.g. measuring cache IO/s bandwidth -> known error bars
 - desired results that aren't the outcome of any single experiment
 - · solve the system of equations to get results
 - reconfiguring a device between different experiments can be time-consuming
 - very long process -> failures must be tolerated (restart)
 - next point to consider may depend on outcomes of previous experiments
 - how good are a model's predictions?
- ♦ SSP approach: Pacioli
 - measurement of device-specific performance characteristics
 - validating complete models against the real system

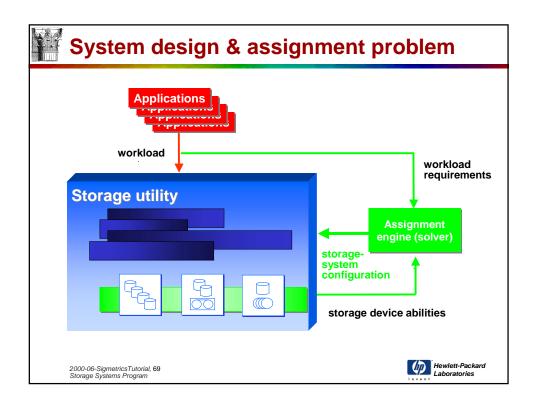
2000-06-SigmetricsTutorial, 64 Storage Systems Program

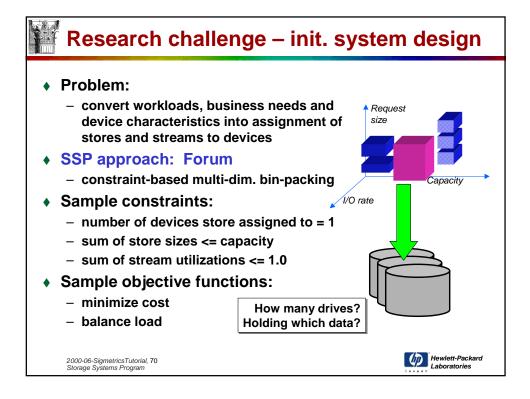
Device modeling - related work

- Ruemmler and Wilkes, 1993
 - accurate disk drive simulation model prioritized components
 - detailed characteristics for two disk drives
- Worthington, et al., 1995
 - Black-box techniques for empirically extracting SCSI disk parameters
- Shriver, et al., 1997
 - disk drive model creatable by composing models of individual components
 - performance prediction dependent on input workload and predictions of lower-level models
- Pythia [Pentakalos, et al., 1997]
 - automatically builds and solves analytic model of storage system
 - inputs: graphical representation of system and workload
 - Pythia/WK: uses clustering algorithms to characterize workloads
- Disk arrays
 - [Thomasian94 , Merchant96, Menon97]

2000-06-SigmetricsTutorial, 66 Storage Systems Program




Issues in device modeling


- What properties does the model need to capture?
 - to utilize workload characteristics
 - for accurate vs. fast predictions
- What's the relative importance of these properties?
- What's the right tradeoff between model accuracy and performance?
 - for simulations
 - for input to optimization
 - set of increasing fidelity device models
- Do we need to model hosts/servers to model storage system behavior adequately?
- (How) can we automatically extract model parameters?
- How to create device models that can use very complex workload characteristics?
 - ex: fractal characteristics
- How to incorporate availability/performability into models?
- How to model NAS devices?

2000-06-SigmetricsTutorial, 67 Storage Systems Program

Forum basics

- Concise workload models
 - sources:
 - · library of models for common workload types
 - automatically characterized from running workload (Rubicon)
- Fast, acceptable-fidelity device models
 - executed in inner loop of optimizer
 - source: library of storage-device characterizations
- Search-space exploration algorithms
 - heuristics for trying "what ifs?"
 - good news: simple ones work well
 - utility-based objectives, modulated by business goals
 - minimum cost, maximum availability, balanced load, greater growth space, ...

2000-06-SigmetricsTutorial, 71 Storage Systems Program

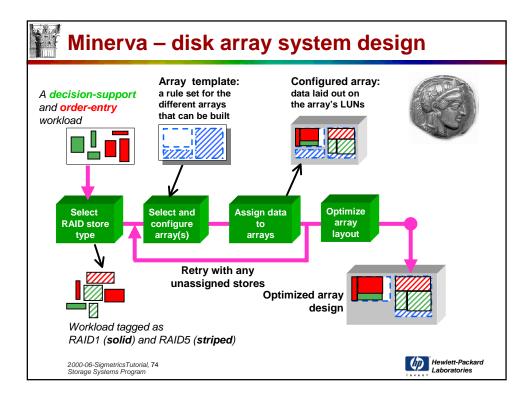
Initial system design – disk arrays

- Problem:
 - extending the single disk solution (Forum) to disk arrays
 - the space of array designs is potentially huge:
 - LUN sizes and RAID levels, stripe unit sizes, disks in LUNs, prefetch multiplier and water marks, cache page size, read/write cache, ...
 → more work needed before the Forum solver can run

SSP approach: Minerva

- Basic Minerva modules:
 - Tagger: tag stores with their type (RAID1, RAID5)
 - Allocator: estimate how many arrays needed to support this
 - Design procedure: configure each of the allocated arrays
 - Forum solver: map stores to LUNs [repeat until complete]
 - Cleaner: prune any unnecessary resources
 - Optimizer (Forum solver): can rearrangements decrease the cost or better balance the load?

2000-06-SigmetricsTutorial, 72 Storage Systems Program



Minerva - how the modules work

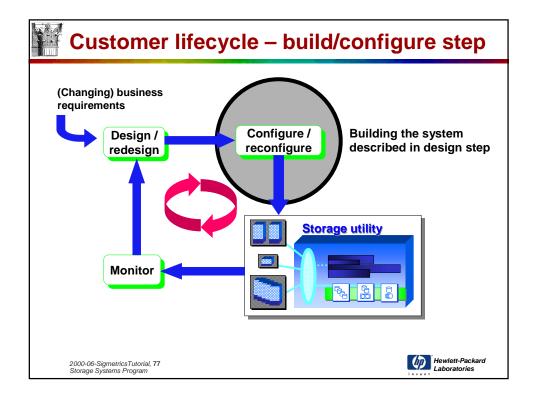
- Tagger: rules tag each store according to how it's accessed
 - if capacity-bound, RAID5
 - if read-mostly, RAID1/0
 - ...
- Allocator and designer: based on aggregate workload, buy and configure arrays that can do the job
 - find cheapest set that a priori may work
- Forum solver: assign stores to LUNs
- <u>Cleaner</u>: discard disks, cabinets, busses, ... that service only empty LUNs
- Optimizer: use Forum solver with different objective functions to generate alternative solutions; then pick best
 - mincost on final set: can cost be reduced further?
 - optimize load balancing (utilization)

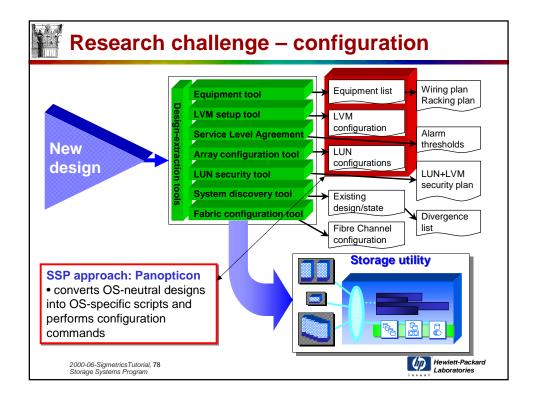
2000-06-SigmetricsTutorial, 73 Storage Systems Program

Initial system design - related work

- Storage management [Gelb89]
 - Logical view of data separate from physical device characteristics – simplifies management
- File assignment
 - Files placed on storage devices with aim of optimizing objective(s)
 - [Dowdy82, Wolf89, Pattipati90, Awerbuch93]
- Optimization algorithms
 - Bin-packing heuristics [Coffman84]
 - Toyoda gradient [Toyoda75]
 - Simulated annealing [Drexl88]
 - Relaxation approaches [Pattipati90, Trick92]
 - Genetic algorithms [Chu97]

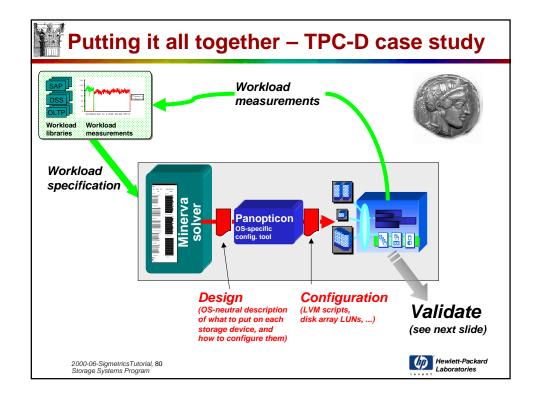
2000-06-SigmetricsTutorial, 75 Storage Systems Program

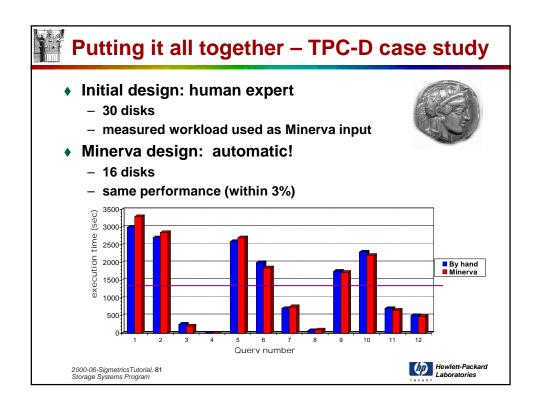


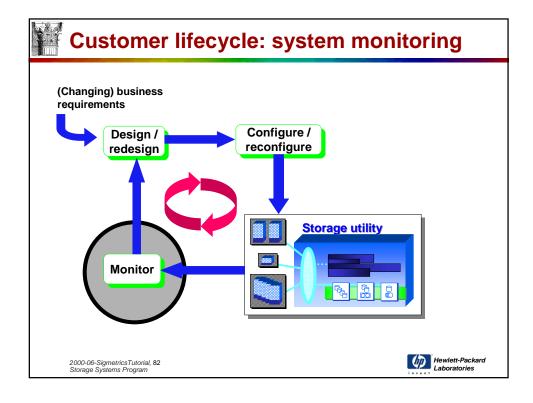

Issues in system design and allocation

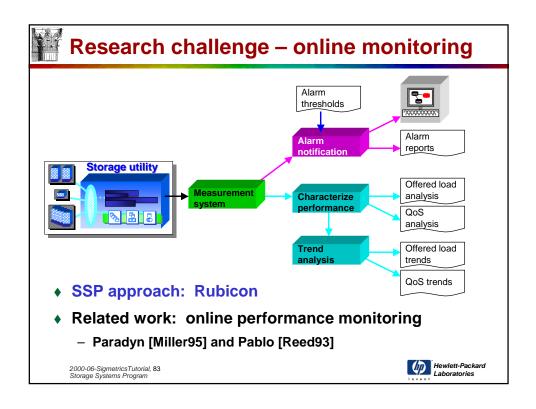
- What optimization algorithms are most effective?
- What optimization objectives and constraints produce reasonable designs?
 - ex: cost of reconfiguring system
- What's the right part of the storage design space to explore?
 - ex: RAID level vs. stripe unit size vs. cache mgmt parameters
- What are reasonable general guidelines for tagging a store's RAID level?
- What (other) decompositions of the design and allocation problem are reasonable?
- How to generalize system design?
 - for SAN environment
 - for host and applications

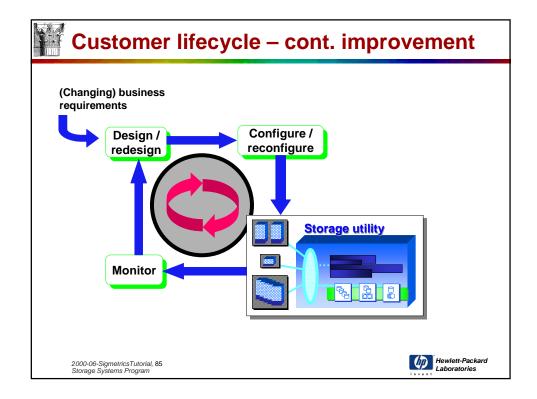
2000-06-SigmetricsTutorial, 76 Storage Systems Program

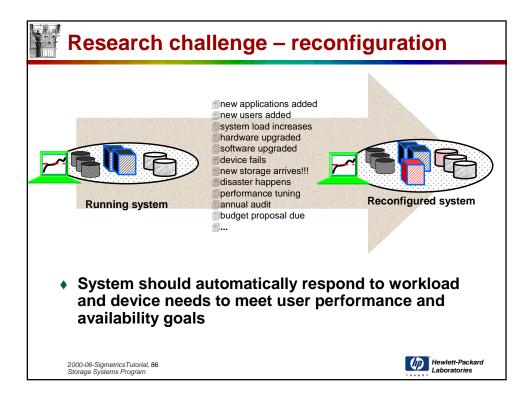


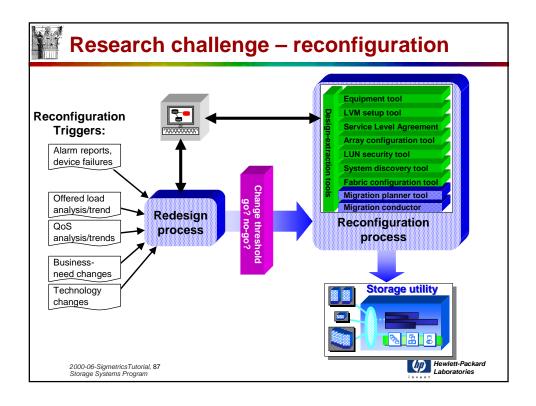

Issues in configuration

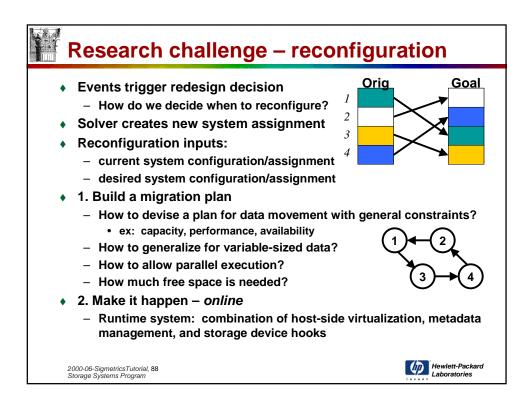

- How to do system discovery?
 - ex: existing state, presence of new devices
 - dealing with inconsistent information
 - in a scalable fashion
- How to abstractly describe storage devices?
 - for system discovery output
 - for input to tools that perform changes
- How to automate the physical design process?
 - ex: physical space allocation, wiring, power, cooling

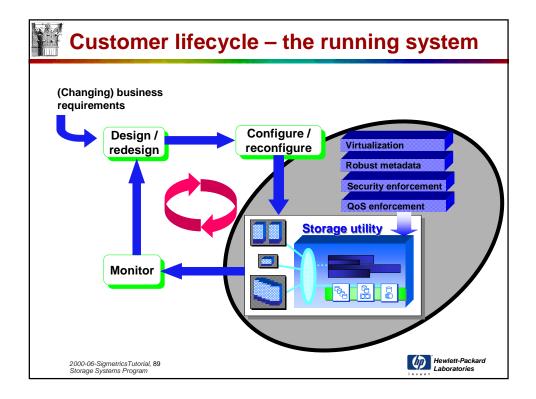

2000-06-SigmetricsTutorial, 79 Storage Systems Program

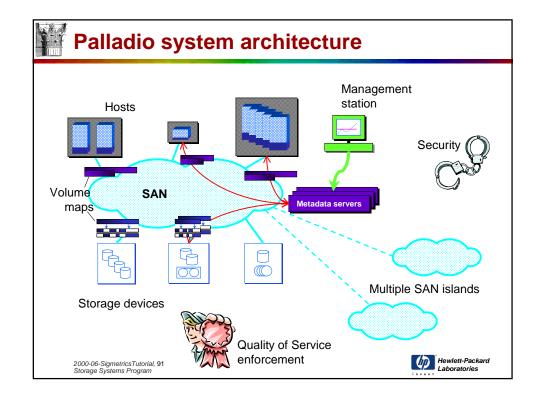



Issues in online monitoring


- What quantities must be monitored?
 - to detect component failures
 - to detect performance bottlenecks
 - to enforce QoS requirements/detect QoS violations
 - to detect performance trends
- How to monitor in a scalable fashion?
- How to monitor in a flexible fashion?
 - ex: attributes that are specific to one type of device
- How to translate between different levels of abstraction?
 - ex: LUNs vs. logical volumes vs. database tables
- What policies and thresholds should be used for generating alarms?


2000-06-SigmetricsTutorial, 84 Storage Systems Program





Palladio - SSP's runtime system approach

- Automatic responses to system load changes
 - goal-directed, not policy-based
 - mechanisms for attribute management
- Key issues
 - How to provide online data migration?
 - · "virtualization" of metadata
 - mechanisms for online data migration, replication
 - How to provide self-management?
 - · automatic inclusion of new resources
 - · automatic failure handling
 - How to recover from disasters?
 - · robust metadata management
 - · multiple site support
 - How to enforce security and QoS in shared environment?

2000-06-SigmetricsTutorial, 90 Storage Systems Program

Research challenge - runtime system

- Ensuring metadata is always available
 - Even in the face of network partitioning [Golding99]
- Managing concurrency at the large scale
 - Optimistic concurrency control protocols [Amiri00]
- Enforcing security in a multi-host environment
 - Has to be done directly at storage device in a shared-resource environment
 - Carnegie Mellon NASD [Gobioff99, Gibson98]
- QoS enforcement (e.g. Service Level Agreements)
 - How should these be specified?
 - What portions should be enforced by which component?
 - How can violations be detected? Handled? At what cost?
 - [Golubchik99, Bruno99, Wijayaratne00]

2000-06-SigmetricsTutorial, 92 Storage Systems Program

Runtime system related work

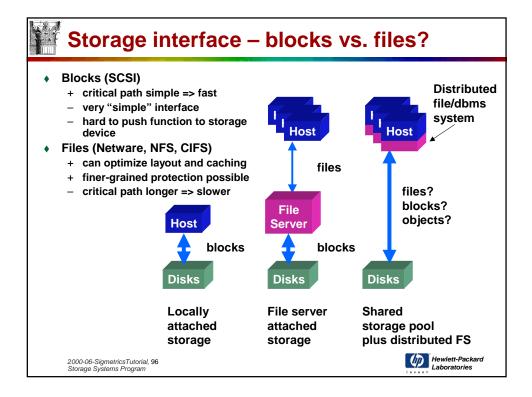
- CMU network-attached disks
 - disks present file-like objects
 - many disks aggregated to make system
 - [Gibson97, Gibson98]
- Distributed storage service
 - MIT Logical disks [deJonge93]
 - Compaq/DEC SRC Petal [Lee96]
 - U of Arizona Swarm [Hartman99]
- Distributed file systems
 - CMU Andrew FS [Howard88]
 - Berkeley Zebra [Hartman93]
 - Berkeley xFS [Anderson95]
 - Compaq SRC Frangipani (FS for Petal) [Thekkath97]

2000-06-SigmetricsTutorial, 93 Storage Systems Program

Additional research challenges

- How do we design SAN fabrics automatically?
- What's the right interface for storage?
 - files vs. blocks
 - NAS vs. SAN
 - how do we ensure secure storage?
 - how much does this matter for storage management?
- How can we exploit device intelligence to make storage management easier?
- How do we describe maintainability and availability?

2000-06-SigmetricsTutorial, 94 Storage Systems Program



SAN fabric design

- Problem description
 - given: flows betw. endpoints and SAN characteristics
 - return: set of internal nodes and node-node links (incl. flows)
 - must satisfy:
 - flow requirements, link and node constraints, connectivity constraints
- Current state of the art
 - designs are done by hand, using a few simple topologies
- Automation hasn't proven straightforward
 - degree-constraints seems unusual
 - divide-and-conquer seems unhelpful
- "Extra credit" items are very important
 - fault tolerance: designing for all possible failure cases
 - multiple layers of switches/hubs possible

2000-06-SigmetricsTutorial, 95 Storage Systems Program

Exploiting device intelligence

- Observations
 - processing capabilities, memory capacity, and networking ability of storage devices increasing
 - aggregate computational ability and aggregate bandwidth at devices are greater than at central processors
- Goal
 - use storage devices to run application code and improve performance of data-intensive applications
- Focus to date
 - file system functionality in devices
 - [Wilkes92, Cao93, Wang99]
 - database and data processing functionality in devices
 - [Keeton98, Riedel98, Acharya98, Uysal00, Riedel00]
 - revisits database machine work from late 1970s early 1980s
- Potential future work
 - storage management functionality in devices
 - · ex: data migration, resource discovery and mgmt, monitoring

2000-06-SigmetricsTutorial, 97 Storage Systems Program

Describing manageability & availability

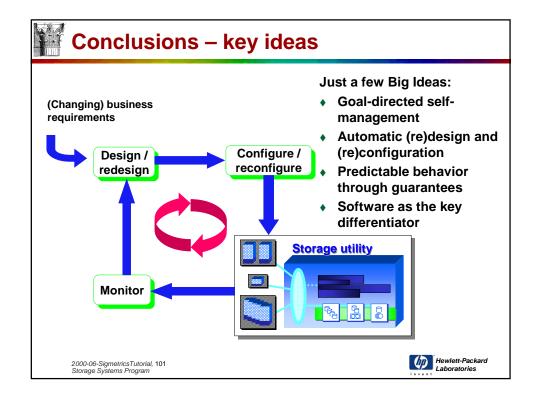
- Observations
 - computer architecture and operating systems community shift in research interest: non-performance topics
 - difficulty of maintaining large systems
- Goals
 - enumerate important factors in managing large systems
 - describe (quantitative) metrics for evaluating system manageability/maintainability
- Initial efforts
 - availability metrics [Brown00]

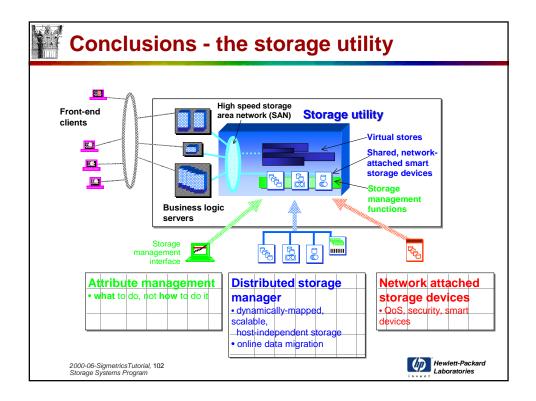
2000-06-SigmetricsTutorial, 98 Storage Systems Program

Summary – storage mgmt challenges

- Workload characterization/modeling
- Storage device modeling
- Initial system design
- System configuration
- Online system monitoring
- System reconfiguration
- Runtime system
- SAN fabric design
- Storage system interfaces
- Exploiting smart devices
- Describing/Quantifying manageability

2000-06-SigmetricsTutorial, 99 Storage Systems Program




Summary – underlying trends

- Commoditization of hardware
 - software+services are the real differentiators, not hardware
- Network upheavals (FC, Infiniband, 1-10Gb's Ethernet, IP)
 - Internet protocols becoming dominant ("when, not if")
 - block servers -> file abstractions (whether/when?)
- Cheap distributed CPU cycles
 - storage appliances, smart storage devices, function shipping
- Demands for predictability (aka QoS)
 - guarantees for availability, performance, security
- The services revolution
 - rent-a-Terabyte?

2000-06-SigmetricsTutorial, 100 Storage Systems Program

Conclusions

- Storage systems represent an interesting technical (and commercial) opportunity
 - data is important to people
 - large scale
 - very high performance
 - extreme availability/fault-tolerance needs
- Rich storage-related research topics
 - optimization problems
 - measurement and modeling problems
 - distributed systems problems

2000-06-SigmetricsTutorial, 103 Storage Systems Program

Acknowledgements

- SSP: Eric Anderson, Ralph Becker-Szendy, Michael Hobbs, Cristina Solorzano, Susan Spence, Ram Swaminathan, Simon Towers, Mustafa Uysal, Alistair Veitch
- ex-SSP: Liz Borowsky, Susie Go, Richard Golding, David Jacobson, Ted Romer, Chris Ruemmler, Mirjana Spasojevic
- Others:
 - Ed Grochowski (IBM Almaden)
 - David Nagle & Garth Gibson (Carnegie Mellon)
- ◆ To learn more:
 - www.hpl.hp.com/SSP

2000-06-SigmetricsTutorial, 104 Storage Systems Program

References - workload characterization

- Workload characterization
 - [Ousterhout85], [Mogul87], [Baker91] SOSP
 - [Miller91] IEEE Mass Storage
 - [Ramakrishnan92], [Gribble98] SIGMETRICS
 - [Caceres91], [Paxson94] SIGCOMM
 - [Paxson97] ACM Transactions on Networking
 - [Bates91] VAX I/O Subsystems
 - [Ruemmler93], [McCanne93], [Roselli00] USENIX
 - [Gomez98] Workshop on Workload Characterization
 - [Hsu99] UC Berkeley Tech Report
 - [Grimsrud95] IEEE Transactions on Computers
 - [Touati91], [Eick96] Software Practice & Experience
 - [Heath91], [Malony91] IEEE Software
 - [Hibbard94] IEEE Computer
 - [Aiken96] Int'l Conference on Data Engineering
 - [Livny97] SIGMOD

2000-06-SigmetricsTutorial, 105 Storage Systems Program

References - device modeling

- Device modeling
 - [Ruemmler93] USENIX
 - [Worthington95], [Shriver97] SIGMETRICS
 - [Shriver97] thesis, New York University
 - [Ganger95] thesis, University of Michigan
 - [Pentakalos97] Software Practice & Experience
 - [Thomasian94] ICDE
 - [Merchant96] IEEE Transactions on Computers
 - [Menon97] ICDCS

2000-06-SigmetricsTutorial, 106 Storage Systems Program

References – system design & allocation

- System (re)design and allocation
 - [Borowky98] Workshop on Software and Performance
 - [Gelb89] IBM Systems Journal
 - [Dowdy82] ACM Computing Surveys
 - [Wolf89] SIGMETRICS
 - [Pattipati90] ICDCS
 - [Awerbuch93] STOC
 - [Coffman84] in Algorithm Design for Computer System Design
 - [Toyoda75] Management Science
 - [Drexl88] Computing
 - [Trick92] Naval Research Logistics
 - [Chu97] Computers and Operations Research

2000-06-SigmetricsTutorial, 107 Storage Systems Program

References - monitoring & runtime

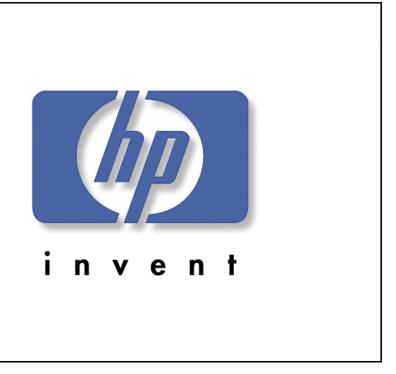
- Online monitoring
 - [Miller95] IEEE Computer
 - [Reed93] IEEE Scalable Parallel Libraries Conf.
- Runtime & distributed file system
 - [Lee96], [Gibson98] ASPLOS
 - [Gobioff99] thesis, Carnegie Mellon University
 - [Golding99] Symp. On Reliable Distributed Systems
 - [Borowsky97] Int'l Workshop on Quality of Service
 - [Bruno99], [Golubchik99] IEEE Int'l Conf. on Multimedia Computing
 - [Wijayaratne00] Multimedia Systems
 - [Gibson97] SIGMETRICS
 - [deJonge93], [Anderson95], [Thekkath97] SOSP
 - [Hartman99], [Amiri00] ICDCS
 - [Howard88] Transactions on Computer Systems

2000-06-SigmetricsTutorial, 108 Storage Systems Program

References – smart devices & availability

- Device intelligence
 - [Wilkes92] USENIX Workshop on File Systems
 - [Cao94] Transactions on Computer Systems
 - [Wang99] OSDI
 - [Keeton98] SIGMOD Record
 - [Riedel98] VLDB
 - [Acharya98] ASPLOS
 - [Uysal00] HPCA
 - [Riedel00] SIGMOD
- Describing manageability and availability
 - [Brown00] USENIX

2000-06-SigmetricsTutorial, 109 Storage Systems Program



Sources for additional information

- Our web page <u>www.hpl.hp.com/SSP</u>
- **♦** HP SureStore <u>www.enterprisestorage.hp.com</u>
- Storage Network Industry Assoc. <u>www.snia.com</u>
- Disk/Trend <u>www.disktrend.com</u>
- **♦ IDC** <u>www.idc.com</u>
- ♦ IBM Storage <u>www.storage.ibm.com/technolo/grochows/grocho01.htm</u>
- ◆ CMU Parallel Data Lab <u>www.pdl.cs.cmu.edu</u>
- ◆ Tioga, The Holy Grail of Data Storage Management
- Farley, Building Storage Networks
- Gray & Reuter, Transaction Processing
- ▶ Bates, VAX I/O Subsystems: Optimizing Performance

2000-06-SigmetricsTutorial, 110 Storage Systems Program

