
Chapter 3

TOWARDS A SIMPLIFIED DATABASE
WORKLOAD FOR COMPUTER ARCHITECTURE
EVALUATIONS

Kimberly Keeton1 and David A. Patterson
University of California at Berkeley
Computer Science Division
384 Soda Hall #1776
Berkeley, CA 94720-1776
{kkeeton,patterson}@cs.berkeley.edu

Abstract We propose and evaluate a simplified technique for studying the architectural
behavior of database workloads. This “microbenchmark” technique poses
simple queries of the database to generate the same dominant I/O patterns
exhibited in more complex, fully-scaled workloads. The potential benefits
from this microbenchmark approach include smaller hardware requirements,
less extensive workload parameter tuning, and simpler database parameter
tuning. We demonstrate that the microbenchmark workload exhibits processor
and memory system behavior relatively similar to that of the more complex
standardized benchmarks. We also enumerate several factors that impact the
representativeness of these microbenchmark workloads.

Keywords: Database, transaction processing, decision support, microbenchmark, and
performance evaluation.

1. INTRODUCTION

In the last five to ten years, several studies have explored the
architectural characteristics of online transaction processing (OLTP)
database workloads [3] [7] [8] [9] [16] [17] [18] [19] [22] [23] [24] [26] [27]

1 This work was performed as part of the author’s dissertation research. The author’s present
address is: Storage Systems Program, Hewlett-Packard Laboratories, 1501 Page Mill
Road, M/S 1U-13, Palo Alto, CA 94304-1126. Her current email address is
kkeeton@hpl.hp.com.

50

[33] and decision support (DSS) database workloads [3] [5] [15] [17] [18]
[23] [32]. These studies used standard workloads defined by the Transaction
Processing Performance Council (TPC), namely TPC-B and TPC-C for
OLTP [10] and TPC-D, TPC-H and TPC-R for DSS [10] [30] [31].
Although these benchmarks specify well-defined workloads, they pose
several challenges for the computer architects who attempt to use them in
performance evaluations.

First, studying full-scale TPC database performance requires large
hardware configurations, including at least tens or hundreds of disk drives
and gigabytes of main memory [28] [29]. Researchers hoping to measure the
performance of a real system must construct such a system, costing hundreds
of thousands to millions of dollars. If, instead, the researcher wishes to
simulate a full-scale system, he or she must simulate a large and complex
I/O subsystem, requiring considerable computational resources and time.

Second, the complexity of the TPC benchmarks requires that researchers
make many configuration choices, including whether data is accessed
through the file system or through the raw disk device interface, the layout
of data on disk to avoid access hot spots, and the choice of index creation to
improve performance. Running the benchmark workloads requires tuning
additional configuration parameters, such as database size (e.g., TPC-C’s
number of warehouses or TPC-D’s scale factor) and the number of simulated
OLTP clients.

Third, the database servers themselves pose both hardware and software
configuration challenges. Large hardware systems force the researcher to
decide on the number and speed of disks, I/O controllers, and I/O buses, and
the amount and configuration of physical memory. Commercially available
database servers have 75 to 200 initialization parameters to control runtime
management issues such as the buffer pool size and management strategy,
the degree of multithreading/processing, logging, and disk read-ahead. The
operating system also presents numerous configuration alternatives.
Although default values are often provided for these configuration
parameters, they do not necessarily match the requirements of the intended
workloads.

Few researchers have the resources to construct the large hardware
systems required for fully scaled TPC benchmark workloads, nor the
expertise to tune workload-specific and database-specific parameters so that
the workloads run efficiently. Although some computer architecture
researchers have found methods for working around many of the difficulties,
the barriers to studying database workloads still exist. Essentially, one must
have close industrial ties to study interesting configurations. As a result,
database workloads have been used in fewer than ten percent of the
performance evaluations reported in ISCA and ASPLOS over the last five

Towards a Simplified Database Workload 51

years. Computer system designers would benefit from simpler benchmarks
with more modest hardware requirements, to decrease the start-up cost for
studying database workload performance.

In this study, we evaluate a database microbenchmark workload that
poses simple queries to the database to generate the same I/O patterns that
dominate the complex workloads. OLTP behavior is approximated by a
random microbenchmark, which is based on an index scan. DSS
characteristics are approximated by a sequential microbenchmark, which is
based on a sequential table scan. The potential benefits from this
microbenchmark approach include smaller hardware requirements, less
extensive workload parameter tuning, and simpler database parameter
tuning. We demonstrate that the microbenchmark workload exhibits
processor and memory system behavior relatively similar to that of the more
complex standardized benchmarks. We also enumerate several factors that
impact the representativeness of these microbenchmark workloads.

This chapter is organized as follows. Section 2 discusses our initial
proposal for a microbenchmark workload, and reviews our experimental
methodology. Section 3 and Section 4 present the characterization of our
microbenchmarks, comparing their behavior with the behavior of the TPC
workloads. We outline related work in Section 5 and present conclusions and
future work in Section 6.

2. APPROACH: MICROBENCHMARKS TO
APPROXIMATE COMPLEX WORKLOADS

Our high-level goal is to simplify the task of studying fully scaled OLTP
and DSS workloads, by designing a simpler microbenchmark suite that
possesses characteristics similar to those of the more complex workloads.
We evaluate representativeness by comparing the processor and memory
system characteristics of the microbenchmarks with that of fully scaled
workloads running on similar hardware. We choose these metrics since most
fully scaled database servers are configured with enough disks to be CPU-
bound; hence processor and memory behavior are important factors in
determining database performance [3].

Folklore proposes that the behavior of common OLTP and DSS database
workloads can be approximated by their dominant I/O patterns. OLTP
workloads are dominated by small random I/O operations - both reads and
writes. DSS, on the other hand, is dominated by large sequential operations,
which are mostly reads. In subsequent sections, we will show that this
folklore is generally accurate.

52

2.1 Microbenchmark Design

Our approach is to pose simple queries against a database table whose
size is larger than the size of main memory, ensuring that the queries will
generate I/O requests. Sequential I/O patterns are performed by requesting a
sequential scan of the table (without using any indices). For the random I/Os,
we create a non-clustered index on the table. The term non-clustered means
that the order of the index data is not the same as the order of the table data
as it is stored on disk. Thus, reading the index in order will result in a series
of random read operations to retrieve the data pages from disk.

To ensure that output data processing (for example, the communication
of results between the server and client, and the formatting and presentation
of the data by the client program) does not dominate the I/O processing of
the queries, we compute aggregate functions, such as a count of the eligible
rows, on the output data. Thus, only a single number is passed between the
server and client, and formatted and displayed by the client. The use of
aggregates in the microbenchmark is representative of the more complex
workloads. DSS queries are designed to summarize data trends, and as a
result, most of the TPC DSS queries compute one or more aggregates instead
of returning large amounts of data to the user. In addition, OLTP workloads
are designed to retrieve or modify a small portion of the database, resulting
in a small amount of data returned to the client.

Figure 1 presents the database schema for our microbenchmark
workload. The table ubench has 100 byte records (rows), which are
fashioned after the AS^3AP benchmark schema [10]. To ensure that the
table is too big to fit into the 256 MB main memory of our machine, we
generate data for 10 million rows, for a total of 1 GB of data. For the random
experiment, we also create the non-clustered index ubench_ix.IR0 on
the IntRand0 column.

Towards a Simplified Database Workload 53

Figure 1. Microbenchmark database schema.

The most important column attributes for the majority of our experiments
are the IntOrd0, IntRand0, and IntConst0 attributes; the remaining
column attributes are added for follow-on experiments, including
manipulation of other data types. The table is organized on disk according to
the IntOrd0 attribute, which is a unique ordinal integer attribute with
values assigned sequentially from 0 to 9,999,999; it can be considered a row
identifier. We note that there is no primary key index on IntOrd0.
IntRand0 is a unique integer attribute whose values are assigned pseudo-
randomly, according to a permutation to ensure that index accesses require a
new random read for each row retrieved [25]. We use the following
permutation to assign each successive IntRand0 value to a new data page:

IntRand0
i
 = (IntOrd0

i
 % rowsPerPage) * numPages +

(IntOrd0
i
 / rowsPerPage)

Here rowsPerPage corresponds to the number of rows that can fit in
the page size dictated by the database. numPages is the number of pages

CREATE TABLE ubench {
IntOrd0 INTEGER(4) NOT NULL, /* unique; sequential */
IntRand0 INTEGER(4) NOT NULL, /* unique; permutation */
IntConst0 INTEGER(4) NOT NULL, /* constant value = 0 */
FloatOrd SMALLFLOAT NOT NULL,
DoubleRand0 FLOAT NOT NULL, /* unique; permutation */
DateOrd DATE YEAR TO SECOND NOT NULL,
DecimOrd DECIMAL(18,2) NOT NULL,
IntOrd1 INTEGER(4) NOT NULL, /* same as IntOrd0 */
IntRand1 INTEGER(4) NOT NULL, /* same as IntRand0 */
IntConst1 INTEGER(4) NOT NULL, /* same as IntConst0 */
DoubleRand1 FLOAT NOT NULL, /* same as DoubleRand0 */
Char2Const CHARACTER(2) NOT NULL,
DecimRand DECIMAL(18,2) NOT NULL,
IntOrd2 INTEGER(4) NOT NULL, /* same as IntOrd0 */
IntRand2 INTEGER(4) NOT NULL, /* same as IntRand0 */
IntConst2 INTEGER(4) NOT NULL, /* same as IntConst0 */
DoubleRand2 FLOAT NOT NULL, /* same as DoubleRand0 */
Char6Const CHARACTER(6) NOT NULL,

}

CREATE INDEX ubench_ix.IR0 ubench(IntRand0) BTREE

54

required to store the table. The operator % corresponds to a modulus
operation, and the operator / corresponds to integer division. Finally, the
IntConst0 attribute is assigned a constant value for all rows. We chose 0
as the constant value.

To generate sequential read accesses, we use the following query, which
will be called the “basic” sequential query in subsequent sections:

SELECT COUNT(*) FROM ubench WHERE IntOrd0 <
const;

In the absence of a primary index on the IntOrd0 column, the database
optimizer doesn’t know that the data is sorted by the IntOrd0 attribute.
As a result, this query requires that the IntOrd0 attribute for all of the
rows in the ubench table be examined; the database optimizer expresses
this query as a sequential table scan. We chose a const value of 1000.
Other research indicates that varying this const value, which varies the
selectivity of the query, may impact the observed architectural behavior [1].
We leave this experiment as future work.

We also present results for a follow-on query that performs more
computation per row than the basic query:

SELECT COUNT(*), SUM(DecimOrd), MAX(DecimOrd)
FROM ubench WHERE DecimOrd0 < const;

This query is dubbed the “compute”-intensive sequential query in
subsequent sections. To ensure that the same amount of computation is
performed for each row, we set const to 10,000,000, which has the effect
of selecting all of the rows for the aggregate computations.

The random read accesses are generated using the following “basic”
query:

SELECT COUNT(*) FROM ubench WHERE IntRand0 >=
minimum AND IntRand0 < maximum AND IntConst0 =
0;

Here the IntRand0 attribute is examined to prompt the database to use
the ubench_ix.IR0 index. We include the check on the value of
IntConst0 to ensure that the database retrieves the data page for the row -
thus generating a random read operation - rather than simply answering the
query from the index alone. On each successive run, we change the values of
minimum and maximum to ensure that new data is accessed, requiring new
random I/O operations. The [minimum...maximum] range impacts the
optimizer’s choice of minimum-cost query plan: for small ranges, the
optimizer chooses the index scan, which will generate a small number of

Towards a Simplified Database Workload 55

random I/O operations. For larger ranges, the optimizer determines that the
cost of many random I/Os will be too high, and instead chooses a sequential
table scan. Thus, we must strike a balance between minimizing the range for
the optimizer to choose the desired plan, and maximizing the range to
increase the query execution (and measurement) time. For our experiments,
we chose a [minimum...maximum] range of 150,000, or 1.5% of the total
rows.

Finally, we also present results for a random follow-on query that
includes a higher degree of multiprogramming and access to more cache
lines:

SELECT COUNT(*) FROM ubench WHERE IntRand0 >=
minimum AND IntRand0 < maximum AND IntConst0 = 0
AND IntConst1 = 0 AND IntConst2 = 0;

This query is called the multiprogrammed, or “multi,” random
microbenchmark in subsequent sections. As with the basic random
microbenchmark query, we examine the IntRand0 attribute to prompt the
database to use the ubench_ix.IR0 index, and check the value of
IntConst0 to ensure that the database accesses the data page for each
eligible row. We also access several other fields (IntConst1 and
IntConst2) to ensure that all cache lines for an eligible row are examined.
To increase the instruction cache footprint, we increase the degree of
multiprogramming: for each experiment we simultaneously invoke five
copies of the follow-on query. To ensure that data is not reused in the cache,
we use different [minimum...maximum] ranges for the five simultaneous
queries, and change the values between successive experiments.

2.2 Software Configuration

The hardware and software configurations used for our microbenchmark,
OLTP, and DSS experiments are shown in Table 1. We measured Informix’
parallel shared-memory database server [12] running on Windows NT 4.0.
For the microbenchmarks, we attempted to use the default database settings
as much as possible, changing only a minimal number of run-time
parameters, such as the amount of memory allocated to the database buffer
pool and the degree of I/O read-ahead. We allocated half of the physical
memory (128 MB) to the database buffer pool. Read-ahead was set to
maximize the number of pages read at a single time for sequential I/O
operations.

56

Table 1. Summary of system configurations.
Characteristic Microbenchmarks OLTP (TPC-C) DSS (TPC-D)
Processor 200 MHz Pentium

Pro
200 MHz Pentium
Pro

200 MHz Pentium
Pro

No. of processors 1 1 4
Caches: L1 I/L1
D/L2 (unified)

8 KB/8 KB/256 KB 8 KB/8 KB/256 KB 8 KB/8 KB/256 KB

System chipset 82440 FX 82450 KX/GX
(Orion)

82450 KX/GX
(Orion)

System bus speed 66 MHz 66 MHz 66 MHz
Memory size 256 MB 512 MB 4 GB (3 GB per

process)
Mem. organization Non-interleaved 4-way interleaved 4-way interleaved
Memory read B/W 99 MB/s 213 MB/s 213 MB/s
Mem. read latency
(dependent loads)

315 ns (63 cycles) 190 ns (38 cycles) 190 ns (38 cycles)

I/O system: data
disks

6 Seagate 4.2 GB 90 Quantum 4.55
GB

56 Quantum 4.55
GB

I/O system:
controllers

1 Adaptec U/UW
SCSI

3 Adaptec UW SCSI 4 Adaptec UW SCSI

Operating system NT 4.0 Server, SP 4 NT 4.0 Enterprise
Server, SP 3

NT 4.0 Enterprise
Server, SP 3

Database server Informix IDS Informix ODS Informix IDS
Additional results in: [14] [14], [16] [14], [15]

We experiment with performing I/O through the Windows NT file
system (NTFS) and through the raw disk interface. We examine the raw
disk interface to perform an apples-to-apples comparison with the full-scale
OLTP and DSS workloads, which use the raw device interface to perform
I/O. We examine NTFS data management to understand the sensitivity of
results to the choice of I/O interface. This comparison is performed only for
the “basic” microbenchmark queries described above. All follow-on queries
use the raw disk interface.

For both sets of experiments, we attempt to distribute data as evenly as
possible over six data disks. For the NTFS experiments, the data disks are
managed as an NTFS stripe set, and the microbenchmark database resides in
an NTFS file created on the stripe set. For the raw disk experiments, our
microbenchmark database was hash partitioned over database-managed
“fragments” on the six disks. We used the following hash function:
IntOrd0 % numDisks.

The microbenchmark sequential and random queries were created as
stored procedures on the database, to ensure that the query would be
statically compiled (optimized) before being run, thus eliminating the run-
time overhead of compiling the query. In the case of the “multi” random
microbenchmark, we created five different stored procedures; each invokes
the query once. The stored procedures were invoked using the command-
line client interface provided with the database.

Towards a Simplified Database Workload 57

2.3 Hardware Configuration and Measurement
Methodology

As shown in Table 1, the microbenchmark hardware system is
considerably simpler than that used for the full-scale OLTP and DSS
workloads: a uniprocessor Pentium Pro server with only 256 MB of main
memory, and about an order of magnitude fewer disks.

Since our evaluation of microbenchmark representativeness focuses on
processor and memory behavior, we next highlight several features of the
Pentium Pro. The Pentium Pro implements dynamic execution using an out-
of-order, speculative execution engine, which employs register renaming and
non-blocking caches. Intel x86 instructions (macro-instructions) begin and
end execution in program order. They are translated into a sequence of
simpler RISC-like micro-operations (µops), which are permitted to execute
out-of-order. Once decoded, µops are register renamed and placed into an
out-of-order speculative pool of pending operations (the reservation station).
Once their data arguments and the necessary computational resources are
available, these µops are issued for execution in the out-of-order section of
the processor. After execution has completed, an instruction’s µops are held
in a reorder buffer until they can be retired, which may occur only after all
previous instructions have been retired, and all of the instruction’s
constituent µops have completed. The Pentium Pro retires up to three µops
per clock cycle, yielding a theoretical minimum cycles per µop (µCPI) of
0.33. More information on the Pentium Pro can be found in [6] [11] [13]
[21] [34].

Measurements were performed using the Pentium Pro hardware counters
[13]. We present aggregate (user+operating system) activity, factoring out
the idle loop. On the uniprocessor, this technique is possible because NT
implements the idle loop using the HALT instruction. The event counters are
inactive during this idle loop, ensuring that we can reliably separate system
mode counter observations for the operating system and the idle loop. Idle
time is negligible for the full-scale TPC workloads. We ran each
microbenchmark query multiple times, measuring a single pair of events
during each run. Each run was broken into two-second fixed duration
intervals, and the number of events occurring during that two-second
window was recorded. We found that the standard deviation for a given
event was less than 10% of the mean for nearly all event types measured.

58

3. SEQUENTIAL I/O APPROXIMATIONS FOR DSS

This section examines how closely the architectural characteristics of the
sequential microbenchmark resemble those of a DSS workload based on
TPC-D [14] [15]. We focus on two of the scan-intensive queries, Q1 and Q6,
since they are the operations most comparable to the sequential
microbenchmark. We note that these DSS queries compute complex
aggregate functions (for example, sums and averages of non-native decimal
data types), which require more computation per row than the basic
sequential microbenchmark. Q6 computes one such aggregate, while Q1
computes eight aggregates (predominantly of decimal types, with a few
integer aggregates). Can the basic microbenchmark approximate the
behavior of these more computationally-intensive queries?

3.1 Sequential Microbenchmark CPI Analysis

We first examine the breakdown of cycles and CPIs of the various
workloads, shown in Table 2. We observe that the microbenchmark system
exhibits more kernel time than the DSS queries, regardless of which I/O
interface is employed. We assert that this is due to the small amount of
computation that the database performs per row for the basic query. As a
result, the kernel I/O processing becomes a non-trivial portion of the total
processing per row. This assertion is supported by the compute-intensive
query results, which exhibit roughly the same user-kernel time breakdown as
the DSS queries. Like the full-scale DSS queries, the microbenchmark
queries exhibit negligible idle time.

Table 2. Breakdown of time, measured cycles per micro-operation (µCPI) and measured
cycles per macro-instruction (CPI) for the sequential microbenchmark and the DSS queries
Characteristic NTFS seq.

µbench
Raw seq.
µbench

Compute
seq. µbench

DSS Q1
(complex)

DSS Q6
(simple)

% user time 88% 86% 95% 99% 93%
% kernel time 12% 14% 5% 1% 4%
% idle time 0% 0% 0% 0% 3%
µCPI 1.06 1.11 1.08 0.86 0.94
CPI 2.00 1.86 1.91 1.39 1.65
µops/instr. 1.88 1.70 1.77 1.62 1.75

The microbenchmark system’s overall µCPI differs from the DSS
queries’ µCPIs by 13% to 29%. CPI differences are even greater (13% to
44%), due to the somewhat higher ratio of µops to instructions for the
microbenchmark. To understand these discrepancies, we decompose µCPI
into its computation and stall components.

Towards a Simplified Database Workload 59

Figure 2. Breakdown of cycles per micro-operation (µCPI) for the sequential
microbenchmark and the DSS queries

Figure 2 shows the detailed breakdown of the µCPI components,
including computation, instruction stalls, and resource stalls. Computation
µCPI is based on the µop retire profile described in Section 3.3; we assume
µops retired in triple-retire cycles require 0.33 cycles in the steady state,
double-retire cycle µops take 0.5 cycles, and single-retire µops need one
cycle. (Note that this model implicitly assumes that µop execution takes one
cycle.) This calculation determines the number of cycles per µop. Stall
cycles are measured by two Pentium Pro counters as follows. Instruction-
related stalls count the number of cycles instruction fetch is stalled for any
reason, including L1 instruction cache misses, ITLB misses, ITLB faults,
and other minor stalls. Resource stalls account for cycles in which the
decoder gets ahead of execution. Examples of resource stalls are the
conditions where execution units, reorder buffer entries, register renaming
buffer entries, or memory buffer entries are full. In addition, serializing
instructions (for example, CPUID), interrupts, and privilege level changes
may spend considerable cycles in execution, forcing the decoder to wait and
incrementing the resource stalls counter. Stalls due to data cache misses are
not explicitly included in resource stalls; however, if some other resource
becomes oversubscribed due to a long data cache miss, the resource stalls
counter will be incremented.

0

0.2

0.4

0.6

0.8

1

1.2

NTFS seq
ubench

Raw seq
ubench

Compute seq
ubench

DSS Q1
(complex)

DSS Q6
(simple)

Workload

C
yc

le
s

pe
r

µo
p

(µ
C

P
I)

Resource Stalls
Instruction Stalls

Computation

60

From Figure 2, we observe that stall cycles comprise roughly half (45% to
55%) of the µCPI for all workloads. Stalls are somewhat more prevalent for
the microbenchmark experiments, due in part to the slower memory speeds
on the microbenchmark system. We see that the behavior of the basic query
is nearly the same whether NTFS or the raw disk interface is used for I/O.
The computation component is nearly identical for all workloads. The basic
microbenchmark’s instruction stall component is comparable to that of DSS
Q1. Its resource stall component is roughly 1.2X that of Q6. We defer
discussion of the compute-intensive query until the next section, where the
cache behavior of these configurations is described more fully.

3.2 Sequential Microbenchmark Cache Behavior

Table 3 presents the number of cache misses per 1000 instructions retired
and the miss ratios for both instruction and data caches for the sequential
microbenchmark and the DSS queries. We begin our discussion with data
cache behavior.

Table 3. Cache misses per 1000 instructions retired and cache miss ratios for the sequential
microbenchmark and the DSS queries
Characteristic NTFS seq.

µbench
Raw seq.
µbench

Compute
seq. µbench

DSS Q1
(complex)

DSS Q6
(simple)

L1 I-cache
misses

42 (3%) 38 (3%) 63 (6%) 40 (4%) 18 (1%)

L1 D-cache
misses

23 (3%) 23 (3%) 20 (3%) 23 (3%) 29 (4%)

ITLB misses 0 0 1 1 0
L2 Inst. misses 1 (3%) 2 (4%) 1 (2%) 0 (1%) 1 (4%)
L2 Data misses 7 (28%) 6 (22%) 3 (14%) 1 (6%) 4 (15%)
Overall L2
misses

8 (12%) 8 (11%) 4 (5%) 1 (3%) 5 (11%)

We observe that the basic microbenchmark’s L1 D-cache behavior is
comparable to that of Q1, but its data-related L2 misses are at least 2X the
L2 data misses of the DSS queries. This increased miss rate occurs because
the microbenchmark performs less computation per row than the DSS
queries do. This assertion is supported by the lower data-related L2 miss
count of the compute-intensive microbenchmark query. Further evidence is
provided by the trend observed in the DSS queries: Q6, which performs a
single aggregate operation, experiences more L2 data misses than Q1, which
performs more complex aggregates.

We hypothesize that this higher L2 data-related miss behavior contributes
indirectly to the increased resource stalls experienced by the basic
microbenchmark. The combination of higher L2 miss counts and a higher
microbenchmark system memory latency result in an increase in the time the

Towards a Simplified Database Workload 61

processor must wait for the L2 miss to be satisfied by memory. As a result,
conflicts for other resources, such as memory reorder buffer or register
renaming entries, may be more likely to occur, resulting in the higher
resource stall components experienced by the basic microbenchmark, as
shown in Figure 2.

The basic microbenchmark’s instruction cache miss behavior closely
mirrors the behavior of Q1, leading to the similar instruction-related stall
components shown in Figure 2. The majority of these stall cycles comes
from L1 cache misses that hit in the L2 cache. The compute-intensive
microbenchmark query, which includes several decimal aggregates and a
comparison, has a larger instruction footprint, resulting in the increase in L1
I-cache misses. This high instruction miss count is responsible for the large
instruction stall component shown for the compute-intensive
microbenchmark query in Figure 2. We also experimented with decreasing
the number of decimal aggregate operations for the compute-intensive
microbenchmark to decrease the instruction miss count. The observed
behavior was nearly identical to the compute-intensive behavior shown in
Table 3.

We note that differences in L1 instruction cache miss behavior also exist
between the two DSS queries. Q1 experiences more L1 I-cache misses due
to the increased footprint required for the different decimal aggregate
computations it must perform.

3.3 Sequential Microbenchmark ILP Behavior

Figure 3 shows the micro-operation retirement profile for the workloads,
broken down by how many µops are retired in each type of retirement cycle.
We observe that the majority of µops (60% to 65%) are retired in triple-retire
cycles; single-retire and double-retire cycles account nearly equally for the
remaining µops.

62

Figure 3. Micro-operation retirement profile, broken down by µops, for the sequential
microbenchmark and the DSS queries

3.4 Discussion

These results suggest that the sequential microbenchmark is a promising
technique for simplifying the evaluation of DSS workloads. Although the
naive “basic” microbenchmark query is a good starting point for
approximating the more complex workloads, it does not perform sufficient
computation per row to achieve representative L2 data cache behavior. We
demonstrated that increasing the amount and complexity of computation per
row provides more representative behavior.

4. RANDOM I/O APPROXIMATIONS FOR OLTP

In this section, we determine how closely the random database
microbenchmark approximates the processor and memory system behavior
of a full-scale OLTP workload based on TPC-C [14] [16]. We note that the
OLTP workload typically possesses a high degree of multiprogramming, and
contains both read accesses and updates to the data, which generate logging
activity. Thus, OLTP includes both read and write traffic to the data. Can a

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NTFS seq
ubench

Raw seq ubench Compute seq
ubench

DSS Q1
(complex)

DSS Q6 (simple)

Workload

P
er

ce
nt

 o
f M

ic
ro

-o
pe

ra
ti

on
s

3-uop
2-uop

1-uop

Towards a Simplified Database Workload 63

simple index scan (read-only) operation approximate the behavior of the
OLTP workload?

4.1 Random Microbenchmark CPI Analysis

We begin our analysis by quantifying the breakdown of cycles and CPIs
of the systems, shown in Table 4. We observe that the breakdown of user,
kernel, and idle time is roughly consistent between the random
microbenchmark and the OLTP workload. The basic microbenchmark
spends 5% to 10% more time in the kernel (and correspondingly less time at
user level) than the fully-scaled OLTP workload. As in the sequential
microbenchmark, we suspect that the small amount of database computation
per row leads to the kernel I/O path being a non-trivial part of the total
computation performed for each row. This hypothesis is strengthened by the
“multi” random microbenchmark time breakdown. In this more highly
multiprogrammed microbenchmark, the database spends more time
switching between the different queries in the system, resulting in a
somewhat higher percentage of user time and decreasing the relative
importance of the kernel I/O path.

Table 4. Breakdown of time, measured cycles per micro-operation (µCPI), and measured
cycles per macro-instruction (CPI) for the random microbenchmark
Characteristic NTFS random

µbench
Raw random
µbench

Multi random
µbench

OLTP

% user time 78% 72% 89% 83%
% kernel time 22% 28% 11% 17%
% idle time 0% 0% 0% 0%
µCPI 1.38 1.08 1.45 1.58
CPI 2.85 2.14 2.65 3.02
µops/instr. 2.06 2.00 1.83 1.91

We also see from Table 4 that the µCPI and CPI of the NTFS basic
microbenchmark and the multiprogrammed microbenchmark closely mirror
(within 15%) those of the full OLTP workload. In contrast, the µCPI and
CPI of the basic microbenchmark running on the raw disk interface are
considerably lower. To better understand the differences, we decompose the
µCPI components further.

Figure 4 shows this breakdown of the µCPI components, including
computation, instruction-related stalls and resource stalls. Stall cycles, rather
than computation cycles, dominate the µCPI for all workloads; they
comprise about 65% of the µCPI for the NTFS basic microbenchmark, the
multiprogrammed microbenchmark, and the OLTP workload, and 55% of
the µCPI for the raw disk basic microbenchmark. The computation
components are very similar across the workloads, but the stall components
vary more widely. Both basic microbenchmark configurations experience

64

about half as many instruction-related stalls as the full OLTP workload. This
effect is due to the better instruction cache behavior exhibited by the
microbenchmark. We describe this effect in more detail in the next section.

The NTFS basic microbenchmark experiences nearly 2X the resource
stalls of the OLTP workload, whereas the raw disk basic microbenchmark
experiences only about 75% of the OLTP total. We hypothesize that these
relative amounts are due indirectly to the data cache behavior exhibited by
the workloads, which is described in the next section.

Figure 4. Breakdown of cycles per micro-operation (µCPI) for the random microbenchmark
and the OLTP workload

4.2 Random Microbenchmark Cache Behavior

Table 5 presents the number of instruction and data cache misses and
miss ratios for our microbenchmark and the OLTP workload. We focus first
on instruction cache behavior. We observe that the basic microbenchmark
has similar L1 and L2 instruction miss counts for the NTFS and raw disk
interfaces. The number of microbenchmark instruction cache misses is
noticeably smaller than the number of misses for the OLTP workload. This
decrease is due to two factors: first, the decreased instruction working set
that comes from the limited computation of the microbenchmark, and
second, the decreased cache interference that comes with the
microbenchmark’s lower degree of multiprogramming. The OLTP workload
possesses a larger instruction footprint because it uses a mix of five different

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

NTFS random
ubench

Raw random
ubench

Multi random
ubench

OLTP

Workload

C
yc

le
s

pe
r

µo
p

(µ
C

P
I)

Resource Stalls
Instruction Stalls
Computation

Towards a Simplified Database Workload 65

transactions; some of these transactions include update operations, which
generate logging activity, including the kernel operations for performing
disk writes. As described earlier, the basic microbenchmark does not include
update operations. These lower instruction cache miss rates lead to the
decreased instruction stalls experienced by the microbenchmark, relative to
the OLTP system, as shown in Figure 4.

When we introduce a larger instruction working set and a higher level of
multiprogramming into the microbenchmark by executing five queries
simultaneously, we see that the instruction cache miss counts (especially L1
I-cache miss counts) increase considerably. This behavior results in the more
representative instruction stall component observed for the multi random
microbenchmark in Figure 4. The bulk of these instruction-related stalls are
due to L1 misses that hit in the L2 cache.

Table 5. Cache misses per 1000 instructions retired and cache miss ratios of the random
microbenchmark and the OLTP workload
Quantity NTFS random

µbench
Raw random
µbench

Multi random
µbench

OLTP

L1 I-cache
misses

61 (3%) 70 (6%) 114 (10%) 99 (7%)

L1 D-cache
misses

32 (4%) 23 (3%) 41 (6%) 51 (7%)

ITLB misses 1 2 5 4
L2 Inst. misses 3 (4%) 2 (3%) 3 (2%) 10 (11%)
L2 Data misses 10 (27%) 3 (11%) 5 (12%) 13 (26%)
Overall L2
misses

13 (13%) 5 (5%) 8 (5%) 23 (16%)

Focusing on the data cache behavior, we note that the basic
microbenchmark’s L1 data-cache miss count is 50% to 60% of the miss
count for the OLTP workload. Again, the lower degree of multiprogramming
leads to better cache behavior for the microbenchmark. Increasing the
multiprogramming level results in more L1 data-cache misses, as shown in
Table 5. We also investigated the possibility that a single query that touched
all of the cache lines for a given database row would yield increased L1
data-cache misses, but the observed behavior was the same as the basic
microbenchmark behavior.

Although NTFS microbenchmark L2 data cache behavior is similar to the
OLTP L2 data behavior, the raw disk experiments (both basic and multi)
experience much lower data-related L2 miss counts. This reduced count
likely contributes to the reduced resource stall components for these
microbenchmarks, as shown in Figure 4.

66

4.3 Random Microbenchmark ILP and Branch
Behavior

Figure 5 illustrates the micro-operation retirement profile for the
workloads, decomposed by how many µops are retired in each type of
retirement cycle. We observe that the majority of µops (54% to 62%) are
retired in triple-retire cycles, followed by single-retire cycles and finally
double-retire cycles.

 Figure 5. Micro-operation retirement profile, broken down by µops, for the random
microbenchmark and the OLTP workload.

We present the branch behavior of the workloads in Table 6. We see that
all workloads have similar branch frequencies of about 20%. The basic
microbenchmarks’ branch misprediction rates are about half the
misprediction rate experienced by the OLTP system. This effect is due to the
tighter instruction loop used for the microbenchmark, which minimizes
jumps to other transactions, logging routines, and kernel write routines; this
tighter loop leads to better branch prediction behavior. The greater
multiprogramming level of the multi random microbenchmark produces
more non-looping branches, resulting in worse branch prediction behavior
that is more representative of OLTP misprediction behavior.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NTFS random
ubench

Raw random ubench Multi random ubench OLTP

Workload

P
er

ce
nt

 o
f

M
ic

ro
-o

pe
ra

ti
on

s

3-uop
2-uop
1-uop

Towards a Simplified Database Workload 67

Table 6. Branch behavior for the random microbenchmark and the OLTP workload.
Quantity NTFS random

µbench
Raw random
µbench

Multi random
µbench

OLTP

Branch
frequency

18.7% 17.4% 19.1% 20.2%

Branch
misprediction
ratio

8.6% 9.5% 16.4% 16.7%

4.4 Discussion

Our results indicate that a single random microbenchmark query is
insufficient to approximate the more complex OLTP workload. The
characteristics that differ the most between this basic microbenchmark and
the OLTP workload are the instruction cache behavior and the branch
misprediction behavior. We demonstrated that both of these characteristics
could be made more representative by introducing multiple read-only queries
to increase the microbenchmark multiprogramming level. The first-level data
cache behavior, which differs somewhat between the workloads, also
benefits from these proposals.

An alternate proposal for increasing the microbenchmark instruction
cache footprint and branch misprediction rate is to introduce update
operations. Our initial attempts at introducing updates have proven
unsuccessful in generating a repeatable experiment. The deferred nature of
database data page writes implies that the number of disk writes may vary
drastically from run to run (resulting in query execution time variation), even
though the number of rows updated is the same in successive runs. Attempts
to decrease this variability by increasing the query duration have failed, due
to the optimizer’s estimation that the query will be unnecessarily long,
resulting in the query being aborted. Thus, we believe that the most
promising approach for producing a representative random microbenchmark
lies in posing multiple read-only queries.

5. RELATED WORK

Many of the studies that use database workloads to evaluate computer
architecture innovations have employed the complex OLTP [3] [7] [8] [9]
[16] [17] [18] [19] [22] [23] [24] [26] [27] [33] and DSS [3] [5] [15] [17]
[18] [23] [31] workloads defined by the TPC. These studies vary in their
usage of full-scale data sets versus in-memory data sets. One study provides
rules of thumb for using an in-memory version of the TPC-B OLTP
benchmark to approximate the processor and memory behavior of TPC-C

68

workload running on a full-scale system [3]. Although these guidelines are
quite useful, the authors do not present a head-to-head comparison of the
resulting architectural behavior for the two systems.

Very few researchers have examined the use of database
microbenchmarks as a means of simplifying the hardware and software
requirements of database performance evaluation. The most closely related
study, by Ailamaki, et al., uses in-memory microbenchmarks similar to the
ones described above to evaluate commercial databases running on next-
generation Intel hardware (a 400 MHz Pentium II Xeon uniprocessor,
running Windows NT 4.0) [1]. A primary goal is to determine how database
designers can modify their code to execute more efficiently on modern
architectures. A secondary goal is to compare the differences in behavior
between commercial databases. They find that half of the execution time is
spent in stalls, which corroborates our findings. The majority of the stalls are
due to second-level data cache misses and first-level instruction cache
misses. While there are differences in the magnitudes of stall components
between different databases, the relative importance of stall components is
roughly consistent between the databases. They find that the
microbenchmark behavior is similar to an in-memory version of TPC-D on
the same database. A scaled-back (in-memory) version of TPC-C incurs
more second-level cache and resource stalls than the microbenchmarks.

The biggest differences between this study and our study are that: 1) our
microbenchmarks include I/O operations, which are a critical component of
database workloads and 2) they measure a larger collection of commercial
databases and an additional relational operator (join). Their in-memory tests
represent the extreme case of simplifying hardware requirements for
microbenchmarking. However, the representativeness of in-memory
microbenchmarks for fully-scaled complex workloads is not clear, as the
differences between in-memory experiments and experiments that perform
I/O are not yet well-understood.

6. CONCLUSIONS AND FUTURE WORK

Although the TPC benchmarks provide standard database workloads for
use in computer architecture evaluations, they pose several challenges to
systems researchers, including large hardware requirements for full scale and
complex hardware and software configuration choices. To remove these
methodological hurdles, we propose and evaluate a simpler database
workload that possesses more modest hardware requirements, yet still
approximates the behavior of the more complex OLTP and DSS workloads.
This “microbenchmark” approach is based on posing queries to the database

Towards a Simplified Database Workload 69

that generate the same dominant I/O patterns as the full workloads. The
sequential microbenchmark, based on a sequential table scan, approximates
DSS behavior, and the random microbenchmark, based on an index scan,
approximates OLTP behavior. The key factor affecting the
representativeness of the basic sequential microbenchmark is the complexity
of the computation performed per database row. The key factor for the
random microbenchmark is the degree of database multiprogramming. We
demonstrate how these observations can be used to modify the basic
microbenchmarks to produce processor and memory system behavior
representative of the complex OLTP and DSS workloads. The initial results
from our study show that this approach is a promising method for reducing
the complexity of database performance evaluation. Additional evaluation is
necessary, however, to refine this technique.

Towards that end, we note several additional areas for follow-on work.
First, this study has focused on the most basic database primitive operations,
sequential table scan and index scan; what is the behavior of other common
database operations, such as joins and sorts? Second, related work indicates
that some of these algorithms may experience multi-phased behavior if the
data working set does not fit into memory, with separate phases for in-
memory behavior, writes of temporary data to disk, and subsequent reads of
the temporary data [14] [15]. (How) can a microbenchmark be designed to
generate similar multi-phased behavior? Third, our microbenchmarks were
evaluated on a uniprocessor, yet several studies suggest that the amount of
L2 cache coherence traffic increases as the number of processors grows
OLTP [3] [16]. (How) can a microbenchmark be designed to approximate
multiprocessor cache coherence behavior? Fourth, how generally
representative are our database microbenchmarks for different commercial
databases? for other hardware platforms? Finally, as described in Section 5,
in-memory microbenchmarks represent the extreme for minimizing system
hardware requirements; do in-memory workloads possess behavior
representative of workloads that perform I/O?

ACKNOWLEDGMENTS

This study has benefited greatly from methodological discussions with
Jim Gray and Don Slutz from Microsoft’s Bay Area Research Center and
Eric Anderson from UC Berkeley. We thank Nisha Talagala for lending us
the hardware for the microbenchmark system. John He at Informix actively
supported the earlier work that led to the OLTP and DSS measurements.

70

REFERENCES

[1] A. G. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. “DBMSs on modern
processors: Where does time go?” to appear in Proc. of the 25th International Conference
on Very Large Databases (VLDB ‘99), September 1999.

[2] R. H. Arpaci-Dusseau, A. C. Arpaci-Dusseau, D. E. Culler, J. M. Hellerstein, and D. A.
Patterson. “The architectural costs of streaming I/O: a comparison of workstations,
clusters, and SMPs,” Proc. 4th Symposium on High-Performance Computer Architecture
(HPCA-4), pages 90 - 101, February 1998.

[3] L. Barroso, K. Gharachorloo and E. Bugnion. “Memory system characterization of
commercial workloads,” In Proc. of the 25th Intl. Symposium on Computer Architecture
(ISCA), June 1998.

[4] D. Bhandarkar and J. Ding. “Performance characterization of the Pentium Pro processor.”
In Proc. of HPCA-3, February, 1997.

[5] Q. Cao, P. Trancoso, J.-L. Larriba, J. Torrellas, B. Knighten, and Y. Won. “Detailed
characterization of a quad Pentium Pro server running TPC-D,” Proc. of the Intl.
Conference on Computer Design (ICCD), October 1999.

[6] R. P. Colwell and R. L. Steck. “A 0.6um BiCMOS processor with dynamic execution.” In
International Solid State Circuits Conference (ISSCC) Digest of Technical Papers, pages
176-177, February 1995.

[7] Z. Cvetanovic and D. Bhandarkar. “Performance characterization of the alpha 21164
microprocessor using tp and spec workloads.” In Proc. of HPCA-2, pages 270-280,
February 1996.

[8] Z. Cvetanovic and D. D. Donaldson. “AlphaServer 4100 performance characterization.”
Digital Technical Journal. 8(4):3-20, 1996,

[9] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S. Squillante, and S. Liu. “Evaluation
of multithreaded uniprocessors for commercial application environments.” In Proc. of the
21st ISCA, June 1996, pp. 203 - 212.

[10]J. Gray. The Benchmark Handbook for Database and Transaction Processing Systems.
Morgan Kaufmann Publishers, Inc., 2nd edition, 1993.
http://www.benchmarkresources.com/handbook/index.html.

[11]L. Gwennap. “Intel's P6 uses decoupled superscalar design.” Microprocessor Report,
9(2):9-15, 1995.

[12]Informix Dynamic Server Administrator’s Guide, Vol. 1 and Vol. 2., Informix
Corporation.

[13]Intel Corporation.Pentium Pro family developer's manual, volume 3: Operating system
writer's manual. Intel Corporation, 1996, Order number 242692.

[14]K. Keeton. “Computer architecture support for database applications,” PhD dissertation,
Univ. of California at Berkeley, July 1999.

[15]K. Keeton, Y. Q. He, and D. A. Patterson. “Performance characterization of decision
support database workloads on a commodity SMP,” submitted for publication.

[16]K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker. “Performance
characterization of the quad Pentium Pro SMP using OLTP workloads.” In Proc. of the
25th ISCA, June 1998. An extended version of this paper is available as University of
California Computer Science Division Technical Report UCB/CSD-98-1001.

[17]J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy, and S. S. Parekh.
“An analysis of database workload performance on simultaneous multithreaded
processors.” In Proc. of the 25th ISCA, June 1998.

[18]T. Lovett and R. Clapp. “STiNG: A CC-NUMA computer system for the commercial
marketplace.” In Proc. of the 23rd ISCA, pp. 308-317, May 1996.

Towards a Simplified Database Workload 71

[19]A. Maynard, et al. “Contrasting characteristics and cache performance of technical and
multi-user commercial workloads.” In Proc. of the 6th Intl. Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VI), pages 145-
156, October 1994.

[20]L. McVoy and C. Staelin. “lmbench: Portable tools for performance analysis.” In Proc. of
the USENIX 1996 Annual Technical Conference, January 1996.

[21]D. Papworth. “Tuning the Pentium Pro microarchitecture.” IEEE Micro, pages 8-15,
April, 1996.

[22]S. E. Perl and R. L. Sites. “Studies of windows NT performance using dynamic execution
traces,” In Proc. of the Second USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 169-184, 1996.

[23]P. Ranganathan, et al. “Performance of database workloads on shared-memory systems
with out-of-order processors,” In Proc. of ASPLOS-VIII, October 1998.

[24]M. Rosenblum, et al. “The impact of architectural trends on operating system
performance.” In Proc. of the 15th ACM SOSP, pages 285Ð298, December 1995.

[25]D. Slutz. Personal communication, February 1999.
[26]S. S. Thakkar and M. Sweiger. “Performance of an OLTP application on Symmetry

multiprocessor system.” In Proc. of the 17th ISCA, June 1990, pp. 228-238.
[27]J. Torrellas, et al. “Characterizing the cache performance and synchronization behavior of

a multiprocessing operating system.” In Proc. of ASPLOS-V, pages 162-174, October
1992.

[28]TPC-C audited benchmark executive summaries, available from
http://www.tpc.org/.

[29]TPC-H and TPC-R audited benchmark executive summaries, available from
http://www.tpc.org/.

[30]Transaction Processing Performance Council. TPC Benchmark H (Decision Support)
Standard Specification, Revision 1.1.0, 1998, http://www.tpc.org.

[31]Transaction Processing Performance Council. TPC Benchmark R (Decision Support)
Standard Specification, Revision 1.0.1, 1998, http://www.tpc.org.

[32]P. Trancoso, J.-L. Larriba-Pey, Z. Zhang and J. Torrellas. “The memory performance of
DSS commercial workloads in shared-memory multiprocessors.” In Proc. of HPCA-3,
February 1997.

[33]B. Verghese, S. Devine, A. Gupta and M. Rosenblum. “Operating system support for
improving data locality on CC-NUMA computer servers.” In Proc. of ASPLOS-VI, pages
279-289, October 1996.

[34]T. Yeh and Y. Patt. “Two-level adaptive training branch prediction.” In Proc. IEEE
Micro-24, pages 51-61, November 1991.

