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Abstract

Commercial applications are an important, yet often overlooked, workload with significantly different characteristics from
technical workloads. The potential impact of these differences is that computers optimized for technical workloads may not
provide good performance for commercial applications, and these applications may not fully exploit advances in processor
design.  To evaluate these issues, we use hardware counters to measure architectural features of a four-processor Pentium
Pro-based server running a TPC-C-like workload on an Informix database. We examine the effectiveness of out-of-order
execution, branch prediction, speculative execution, superscalar issue and retire, caching and multiprocessor scaling. We
find that out-of-order execution, superscalar issue and retire, and branch prediction are not as effective for database work-
loads as they are for technical workloads, such as SPEC. We find that caches are effective at reducing processor traffic to
memory; even larger caches would be helpful to satisfy more data requests. Multiprocessor scaling of this workload is good,
but even modest memory system utilization degrades application memory latency, limiting database throughput.
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Abstract

Commercial applications are an important, yet often over-
looked, workload with significantly different characteris-
tics from technical workloads. The potential impact of
these differences is that computers optimized for technical
workloads may not provide good performance for commer-
cial applications, and these applications may not fully
exploit advances in processor design.  To evaluate these
issues, we use hardware counters to measure architectural
features of a four-processor Pentium Pro-based server
running a TPC-C-like workload on an Informix database.
We examine the effectiveness of out-of-order execution,
branch prediction, speculative execution, superscalar issue
and retire, caching and multiprocessor scaling. We find
that out-of-order execution, superscalar issue and retire,
and branch prediction are not as effective for database
workloads as they are for technical workloads, such as
SPEC. We find that caches are effective at reducing pro-
cessor traffic to memory; even larger caches would be
helpful to satisfy more data requests. Multiprocessor scal-
ing of this workload is good, but even modest memory sys-
tem utilization degrades application memory latency,
limiting database throughput.

1 Introduction

Commercial applications are an important class of
applications with a large installed base. According to
Dataquest, commercial applications, such as online trans-
action processing (OLTP) and decision support (DSS)
database service, file service, media and email service,
print service, and custom applications, were the dominant
applications run on server machines in 1995 and are pro-
jected to be the dominant server applications in 2000 [26].
Commercial applications comprised about 85% of the 1995
server market, and are projected continue this dominance
as the server market  grows 15 percent annually.  

Database workloads alone motivate the sale of vast
quantities of symmetric multiprocessing machines, and
hold the dominant fraction of the massively parallel com-
puting market [19]:  databases motivated 32% of the server
volume in 1995, and will motivate 39% of the 2000 server
volume [26]. Despite the widespread usage of commercial
applications, they are often ignored in preference to techni-
cal benchmarks, such as SPEC or LINPACK, in computer
architecture performance studies. This bias is due largely
to the lack of available representative multi-user traces of

commercial applications, the proprietary nature of database
performance information and source code, and the diffi-
culty of properly configuring a system to run typical data-
base benchmarks. 

Commercial and technical applications have signifi-
cantly different execution characteristics [16]. Commercial
applications generally have a large number (e.g., 100s to
1000s) of concurrent users. As a result, they typically have
high context switch rates and multiprogramming levels.
They spend a substantial portion of their execution in the
operating system. Commercial applications perform many
I/O operations, in a random access pattern, with data
spread over a wide portion of a disk. Commercial applica-
tions perform data manipulation on strings or integers, in
comparison with the extensive floating point activity in
technical workloads. Unlike the small instruction working
sets and tight loops of technical applications, commercial
applications execute fewer loop instructions, and often use
non-looping branch instructions. Because of their branch-
ing behavior and data access patterns, commercial applica-
tions have been less able to effectively use the memory
system of traditional workstation and server architectures. 

The potential implication of these differences is pro-
found: computers optimized for technical workloads may
not provide good performance for commercial applica-
tions, and these applications may not exploit advances in
processors at the same rate as SPEC. This problem is exac-
erbated by the fact that I/O and memory system perfor-
mance improvement rates lag far behind processor
performance improvements. As a result, it is important for
computer architects to consider a wide range of applica-
tions when designing and evaluating architectures, espe-
cially those intended to be used in SMPs.

In this paper, we use hardware counters to measure
architectural features of a four-processor Pentium Pro-
based server running a commercial database executing a
TPC-C-like workload. We vary several hardware and firm-
ware configuration parameters, such as L2 cache size, the
number of processors and the number of outstanding bus
transactions, to evaluate hardware design trade-offs. We
examine the efficiency of caching, out-of-order execution,
branch prediction, speculative execution, superscalar issue
and retire and multiprocessor scaling. 

We find that overall (e.g., database and operating sys-
tem) CPI is roughly five times higher than the theoretical
minimum CPI for the architecture, and much higher than
the CPI of SPEC. Resource and instruction-related stalls
comprise the majority of these cycles. While out-of-order
execution is somewhat effective at hiding memory hierar-
chy latency and other stalls, it is less effective for OLTP
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database workloads than for SPEC. The branch prediction
algorithms and hardware support do not work nearly as
well for this database workload. Finally, increasing super-
scalar issue and retire width will likely be only marginally
helpful for this workload. 

Not surprisingly, we find that caches are effective at
reducing the processor traffic to memory. We observe
improvements in L2 cache miss rates for L2 cache sizes up
to 1 MB, the largest available for this processor.  While
larger caches are effective, this benefit is not without con-
sequences.  Coherence traffic, in the form of cache misses
to dirty data in other processors’ caches, increases as
caches get bigger, and as the number of processors
increases.  We find that the exclusive state of the four-state
MESI cache coherence protocol is under-utilized for multi-
processor configurations, and could likely be omitted in
favor of a simpler three-state protocol. Finally, multipro-
cessor scaling of this workload is good, but even modest
memory system utilization degrades application memory
latency, limiting database throughput.

Several recent studies began the examination of the
architectural impacts of transaction processing database
workloads for symmetric multiprocessors. Most of the
studies have focused on some variation of the now-defunct
DebitCredit benchmark, also known in various incarna-
tions as TP1, TPC-A, and TPC-B [1] [5] [16] [22] [25]
[27]. (This benchmark has been withdrawn by the Transac-
tion Processing Council.)  A few have examined the more
complex TPC-C order-entry workload [6] [16]. Only two
of these papers have explored the effectiveness of out-of-
order execution for the TPC-B workload [1] [25]. None
examine the effectiveness of out-of-order processors for
TPC-C.  In general, we observe that these papers corrobo-
rate our findings, with a few exceptions.  Because the
scope of the studies is vast, we defer the discussion of sim-
ilarities between our work and these related studies until
presenting our results in Section 3 through Section 6.

This paper is organized as follows. Section 2 describes
our experimental setup, including the configuration of our
server, the architecture of the Pentium Pro processor, and a
discussion of the TPC-C workload. It also presents our
methodology for collecting and analyzing counter data. We
discuss the decomposition of CPI in Section 3, and then
further explore its memory hierarchy component in Section
4 and its processor component in Section 5.  Multiproces-
sor scaling is explored in Section 6. Future research direc-
tions are presented in Section 7, and conclusions and our
recommendations to computer architects are stated in Sec-
tion 8.

2 Experimental Setup

This section describes our experimental infrastructure,
including the configuration of our server and the architec-
ture of the Pentium Pro processor. We describe the work-
load used in this study, which is based on the TPC-C

benchmark, and discuss our methodology for collecting
and analyzing hardware counter data.

2.1  Measurement vs. Simulation

Hardware measurement studies are typically limited to
reporting performance for today’s machines. To investi-
gate future architectural alternatives, researchers generally
employ simulation techniques.  Both approaches have
advantages and disadvantages.   Direct measurement of
real hardware means that software runs at full speed, which
implies that it is possible to run a fully configured OLTP
database application.  Real hardware also means that there
is no question of validation for the hardware model, only
validation of the instrumentation.  Unfortunately, measure-
ment usually implies that architectural parameters, such as
the number of functional units, reorder buffer entries, and
cache sizes, are fixed.  In addition, performance counters
may not be accurate, or may not provide the desired infor-
mation.  

In contrast, simulation allows researchers to explore
designs of the future.  There is no limitation to what can be
measured, offering arbitrary levels of detail.  The difficul-
ties with this approach are that validation of complex simu-
lators is quite difficult and simulations can run up to
10,000 times slower than real-time, making it difficult to
simulate large-scale fully configured systems.

In this study, we show that there is some middle ground
between these two approaches.  We measure a real
machine, but vary hardware parameters, including  second-
level cache size, the number of outstanding bus transac-
tions, and the number of processors, to explore architec-
tural trade-offs.  The flexibility in configuration parameters
afforded by our system allows us to overcome some of the
traditional limitations of measurement approaches.  

2.2  SMP Hardware Architecture

Table 1 shows the system measured in this study, a
four-processor Intel-based SMP, which uses 200 MHz
Pentium Pro processors. We present detailed measure-
ments for this base system, and then modify various archi-
tectural parameters, such as L2 cache size, memory
bandwidth, and the number of processors, to study their
effects on performance.  We choose the four-processor
SMP as the base case since it is a building block for small-
to mid-range database servers.

Our base system consists of the quad Pentium Pro SMP,
populated with 4 GB of 4-way interleaved 60 ns main
memory. In NT 4.0, a process is limited to a 2 GB of user
space. Thus, only 2 GB of this memory is accessible to the
database server. In addition to the on-chip first-level
caches, each processor has a 1 MB L2 cache in the same
multichip module. The system is configured with 90 Quan-
tum 4.55 GB Ultra SCSI-3 disks that store the TPC-C
dataset. An additional 21 disks are used for performance
monitoring, development, and scratch space. The 90 data



4

disks are connected via three Adaptec dual channel SCSI-3
controllers. 

2.3  Overview of Pentium Pro Processor Architecture

Figure 1 shows the architecture of Intel’s Pentium Pro
processor. The Pentium Pro implements dynamic execu-
tion using an out-of-order, speculative execution engine,
which employs register renaming, non-blocking caches
and multiprocessor bus support. Intel IA-32 instructions

(i.e., macro-instructions) begin and end execution in pro-
gram order, in the “IN-ORDER SECTION” of Figure 1.
They are then translated into a sequence of simpler RISC-
like micro-operations (i.e., µops). µops are register
renamed and placed into the Reservation Station, an out-of
-order speculative pool of pending operations. Once their
data arguments and the necessary computational resources
are available, these µops are issued for execution in the
“OUT-OF-ORDER EXECUTION ENGINE.” After exe-
cution has completed, an instruction’s µops are held in the
Reorder Buffer until they can be retired, which may occur
only after all previous instructions have been retired, and
all of the constituent µops have completed. The Pentium
Pro retires up to three µops per clock cycle, yielding a the-
oretical minimum cycles per µop (µCPI) of 0.33. 

A more detailed description of the Pentium Pro’s archi-
tectural features can be found in [2] [3] [9] [12] [20]. We
will also present additional details in subsequent sections,
when discussing our measurement results.

2.4  Software Architecture

We measured a tuned prototype version of Informix
Online Dynamic Server [11], running on Windows NT 4.0
with service pack 3.  Since this work began, there have
been new releases of these software products, with
improved performance.  For this reason and due to the
TPC-C reporting rules, we do not present absolute perfor-
mance numbers.

The database server uses multiple processes, which
exploit processor affinity to ensure that each process is run
exclusively on its assigned CPU.  User-level threads are
then multiplexed on top of these processes.  Disk I/O is
done to raw disk partitions, not through the file system.
I/O is done only in the kernel.

We measured a variant of the Transaction Processing
Council’s TPC-C benchmark [8]. TPC-C is an online trans-
action processing (OLTP) benchmark that simulates an
order-entry environment, and includes the activities of
entering and delivering orders, recording payments, check-
ing the status of orders, and monitoring the level of stock at
the warehouses. 

TPC-C is currently the only active OLTP benchmark
supported by the TPC. It uses a mix of five transactions,
rather than a single debit-credit transaction, like the now-
defunct TPC-A and TPC-B benchmarks. TPC-C employs a
more complex database structure and utilizes nonuniform
data access patterns to simulate data hot spots, resulting in
higher levels of contention for data access and update.

We used a modified version of TPC-C, where two client
machines simulate thousands of remote terminal emulators
(RTEs), generating requests with no think time between
requests. The resulting load presented to the database
server strongly resembles the full configuration with RTEs,
and thus stresses the server in similar ways [28].

The performance metric for TPC-C is the number of
NewOrder transactions per minute (tpmC). Since we have
modified the TPC-C benchmark, and since our benchmarks

Characteristic Base System

Processor speed 200 MHz

Number of processors 4

L1 caches 8 KB instr., 8 KB data

L2 cache 1 MB (unified)

System chipset 82450 KX/GX (Orion)

System bus speed 66 MHz

Memory size 4 GB

Memory organization 4-way interleaved

Memory speed 14-1-1-1 (bus cycles)

lmbench read bandwidth 213 MB/s

lmbench read latency 190 ns

TABLE 1. Summary of base system configuration.
The memory read bandwidth and the average memory read
latency are given by uniprocessor microbenchmarks that are
part of the lmbench suite [17]. 
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FIGURE 1. Block diagram of Pentium Pro processor
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have not been audited, as per TPC-C rules, we cannot
directly report tpmC ratings. Instead, we report throughput
relative to the base system described above. 

The TPC-C specification places several constraints on
the relationship between transaction throughput and the
database size. We ensure that our configurations fall within
the prescribed range of 9 to 12.7 tpmC per warehouse, as
required by the TPC.  Configurations falling outside this
range may exhibit different behavior, such as different disk
I/O rates and different user-OS breakdown, which may
affect the code paths and architectural behaviors measured
[13] [15]. By keeping our configurations within the pre-
scribed range, we keep the load offered to the system as
consistent as possible across different configurations.

2.5  Methodology

We used the Pentium Pro hardware counters to measure
processor-centric events. In addition to the base system
described in Section 2.1, we measured numerous other sys-
tem configurations obtained by varying three architectural
parameters: L2 cache size, number of processors, and the
number of outstanding bus transactions.1 The values for
these parameters are shown in Table 2. L2 cache size was
modified by physically swapping processor/cache boards
to switch between the three cache sizes. The number of
processors was varied at boot time, so that the system was
restricted to having only one, two, or four processors
active. The buffer memory available to the database was
held constant at 512 MB per processor.  Finally, the num-
ber of outstanding bus transactions was varied by changing
a BIOS parameter to limit the “I/O queue depth” of the
controller [12]. 

To collect data on processor behavior, we used the Pen-
tium Pro hardware counters. Each processor has two
counters that can measure the number of a variety of
events, such as instructions and µops retired, branch
behavior, L1 and L2 cache misses, various bus transac-
tions, and several types of stalls, for either user-level activ-
ity or system-level activity [12]. We used a total of 82
event types for the data presented in this paper. For each

1. In an earlier version of this paper, we describe the 
results of varying a fourth parameter, memory band-
width.  We refer the interested reader to [14] for more 
details.

hardware configuration, we did at least five database runs.
Each run consisted of a 15-minute warm-up period, which
was sufficient to bring the database to steady state, and a
40-minute measurement period. (40 minutes is chosen to
maximize the measurement time before a checkpoint must
be taken.) The 40-minute measurement period is broken
into 5-second fixed duration intervals, during which an
event is measured for both user and system level. The same
event pair is simultaneously measured across all four pro-
cessors. Typically, each database run results in six to
eleven observations per event type. To obtain enough data
points to draw statistical conclusions, we perform at least
five database runs for each hardware configuration. Some
runs measured all events, and others focused on a subset of
important events. We cycle through the counters in a dif-
ferent order for each run, to greater increase their coverage.

For each event and processor, we computed a trimmed
mean; that is, we removed the minimum and maximum
observations, and then computed the mean from the
remaining observations [23]. After trimming, we have at
least 30 (in some cases 40) observations for each event
type. We then examined the data to determine the amount
of noise due to measurement error.   The standard deviation
for a given event for a given processor was less than 10%
of the mean for that event/processor combination, for
nearly all of the event types.

Unless otherwise noted, we will present the average val-
ues across all active processors in the system, since in most
cases the processors exhibit similar behavior. Any devia-
tions from this norm will be noted. 

3 Experimental Results:  CPI 

We begin by presenting the CPI for the TPC-C-like
workload on the four-processor base system in Section 3.1.
We then examine components of the CPI, such as memory
system behavior, processor characteristics, and multipro-
cessor scaling more closely in Section 4, Section 5 and
Section 6, respectively.  In each section we pose and
answer a set of questions exploring the relevant issues. 

3.1  How does database CPI compare with the
theoretical CPI possible on the Pentium Pro?

Using the Pentium Pro events that count the number of
cycles and the number of instructions retired during the
measurement period, we computed the cycles per micro-
operation, µCPI, and the cycles per macro-instruction, CPI,
for the database, the operating system, and the overall sys-
tem.  We begin by discussing the µCPI breakdown, shown
in Figure 2, and continue by presenting the CPI break-
down, shown in Figure 3.  Section 11.1 presents more
detailed numerical data for these figures.

The overall measured µCPI is 1.55.  Our system spends
between 76% and 80% of its execution time in database
code, which has a measured µCPI of 1.37.  The remaining
time is spent in the operating system at a measured µCPI of

Parameter Values

L2 cache size 256 KB, 512 KB, 1 MB

Number of processors 1, 2, 4

Outstanding bus transactions Uniprocessor:  1, up to 4

TABLE 2. Summary of architectural parameters
varied. 
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2.87, over two times the database µCPI.  The system is idle
for less than 1% of the time.  These values are 4X to 8.5X
greater than the 0.33 theoretical minimum µCPI for the
Pentium Pro.  To understand this discrepancy, we further
decompose the µCPI into computation and stall cycles, as
shown in Figure 2.

Computation µCPI is calculated based on the µop retire
profile presented in Section 5.1: we assume µops retired in
triple-retire cycles require 0.33 cycles in the steady state,
double-retire cycle µops take 0.5 cycles, and single-retire
µops need one cycle. This determines the number of cycles
per µop.  For example, if 53% of the µops are retired in tri-
ple-retire cycles, 22% in double-retire cycles, and 25% in
single-retire cycles, the computation µCPI is 0.53*0.33 +
0.22*0.5 + 0.25*1 = 0.53 cycles per µop.  

The Pentium Pro provides event types to monitor
resource stalls and instruction-related stalls. Resource
stalls account for cycles in which the decoder gets ahead of
execution.  For example, resource stalls encompass the
conditions where register renaming buffer entries, reorder
buffer entries, memory buffer entries, or execution units
are full.  In addition, serializing instructions (e.g., CPUID),
interrupts, and privilege level changes may spend consider-
able cycles in execution, forcing the decoder to wait and
incrementing the resource stalls counter.  Stalls due to
cache misses are not included in resource stalls.  Instruc-
tion-related stalls count the number of cycles instruction
fetch is stalled for any reason, including L1 instruction
cache misses, ITLB misses, ITLB faults, and other minor
stalls [2] [12]. 

Comparing computation and stall µCPI, we note that
stalls dominate. Stalls comprise 65% of the overall µCPI,
63% of the database µCPI and 75% of the operating system
µCPI.  The bulk of these stalls are due to cache misses,
which will be described in more detail in Section 4.

Figure 3 shows the breakdown of cycles per macro-
instruction (CPI).  The difference between these values and
the values presented in Figure 2 is the ratio of µops per
macro-instruction. The measured CPI for the overall sys-
tem is 2.90, which can be decomposed into the measured
database component, 2.52, and the measured operating sys-
tem component, 6.41.  In contrast, the majority of the
SPEC 95 programs have a CPI between 0.5 and 1.5 on the
Pentium Pro [2].  

These CPI and stall percentage numbers are roughly
consistent with those reported in the literature.  Cvetanovic
and Donaldson report a CPI of about 3.7 for Sybase run-
ning TPC-C on a four-processor in-order Alpha 21164-
based server [6].  They found that roughly 80% of the time
the processor was stalled.  Resource (e.g., “frozen”) stalls,
such as data cache misses and register and floating point
conflicts, comprised 49%, and “dry” stalls, where there is
no instruction to issue, comprised the remaining 31%. 

4 Memory System Behavior

We begin our more in-depth analysis of the CPI compo-
nents by examining memory system behavior. Table 3
summarizes the characteristics of the Pentium Pro caches.
Due to space considerations, in the following sections we
present results for the overall system (i.e., database + oper-
ating system) only, without detailed discussion of the dif-
ferences between database and operating system
behavior.  Detailed performance information for the over-
all system behavior, database-only behavior and the OS-
only behavior, are shown in Section 11.2.  In general, the
characteristics of the database and OS are similar, with the
OS exhibiting somewhat worse behavior.  For a discussion
of the database-only behavior, we refer the interested
reader to [14].
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4.1  How do cache miss rates vary with L2 cache size?

We examined how cache miss ratios change as cache
size increases by physically changing the processor boards
to measure configurations with 256 KB, 512 KB and 1 MB
L2 caches. Figure 4 summarizes the overall system L2
cache miss behavior.  As expected, the high-order effect of
increasing cache size is a decrease in L2 cache misses, and
in the corresponding cache miss rates. Overall L2 miss
rates decrease by 31% (from 16% to 9%) as L2 cache size
increases from 256 KB to 512 KB, and by another 33%
(from 9% to 6%) as the size is further doubled to 1 MB.
We see that instruction-related L2 cache misses are nearly
fully satisfied by the 1 MB cache; instruction-related miss
rates are only 1%. Data miss ratios are still quite high, even
for the 1 MB L2 cache, which suggests that even larger L2
caches could be beneficial for this workload. 

L1 cache behavior remains consistent across the differ-
ent L2 cache sizes.  About 90 L1 instruction-cache misses
are experienced per 1000 instructions retired, yielding miss
rates of 5% to 6%.  About 50 L1 data-cache misses are
experienced per 1000 instructions retired, yielding a miss
rate of 7%.

Table 11, Table 12 and Table 13 in Section 11.2 present
more detailed data in tabular form for the overall system,
the database and the OS, respectively.  These tables present
counts of cache accesses and misses per 1000 instructions
retired, and the resulting cache miss ratios.  

Several other recent studies indicate that both larger
(e.g., up to 8 MB L2)  and more associative (e.g., up to
four-way) caches, with longer cache lines (e.g., 64 to 128
bytes), are beneficial to OLTP workloads, including TPC-
C [1] [16] [25].  Our conversations with database experts
suggest that the instruction stream can be effectively
cached for all commercially available databases.  Data
accesses are more difficult to absorb, however, because the

data footprint is much (e.g., up to an order of magnitude
[16]) larger than the instruction footprint. 

4.2  What effects do larger caches have on transaction
throughput and stall cycles?

Figure 5 shows the overall system CPI breakdown for
the three L2 cache sizes. Doubling the second-level cache
size from 256 KB to 512 KB results in a 15% improvement
in CPI, and quadrupling the cache size to 1 MB results in a
25% improvement in CPI.  The bulk of this improvement is
attributable to improvements in both instruction-related
and resource stalls.  Improvements in database transaction
throughput roughly mirror the CPI improvements:  transac-
tion throughput increases 16% as L2 cache size is doubled
to 512 KB, and 28% as the L2 size is quadrupled to 1 MB.
More detailed numerical data is presented in Table 14 in
Section 11.3.

4.3  Are non-blocking L2 caches successful at reducing
memory stalls?

To study the effectiveness of non-blocking second-level
caches, we take advantage of a BIOS parameter that allows
us to limit the number of outstanding system bus transac-
tions [12].  Ideally, we would limit each of the four proces-
sors to a single outstanding bus transaction, and compare
behavior under this regime against the behavior under nor-
mal bus operation (up to 4 transactions outstanding per
processor, and up to 8 transactions across all processors).
However, our BIOS parameter permits only two options
for the total number of outstanding bus transactions:  up to
8, and one.  Thus, we instead compare a uniprocessor
under the normal bus operation with a uniprocessor limited
to a single outstanding bus transaction.

Characteristic L1 Inst. L1 Data L2 (unified)

Size 8 KB 8 KB 256 KB, 
512 KB, 1 
MB

Associativity 4-way 2-way 4-way

Hit penalty 3 cycles 3 cycles 4 cycles 
(addl.)

Non-blocking (e.g., 
hit-under-miss, 
miss-under-miss)?

yes yes yes

Outstanding misses four four four

Write policy write-
back 

write-
back 

write-back 

TABLE 3. Pentium Pro L1 and L2 cache
characteristics.

0

5

10

15

20

25

256 KB 512 KB 1 MB

L2 Cache Size

L
2 

M
is

se
s 

pe
r 

10
00

 I
ns

tr
uc

ti
on

s 

L2 I misses
L2 D misses

FIGURE 4. L2 cache miss behavior as a
function of L2 cache size. 



8

We performed this experiment for both 1 MB and 256
KB caches, and in both cases found negligible difference
between the configuration where the processor was
allowed 4 outstanding transactions, vs. the configuration
where the processor was limited to a single outstanding
transaction. Table 4 presents results for several key param-
eters for the 256 KB experiment. 

The latencies to memory on an L2 cache miss are too
long for the out-of-order engine to cover them com-
pletely.  It should be possible, though, for two or more L2
misses to overlap with each other, thus reducing memory-
related stall time.  This does not appear to be the case,
however:  improvements in stalls are negligible.  This
behavior leads us to believe that multiple outstanding
transactions aren’t used often enough to greatly improve
the stall component of CPI.

These observations are consistent with conclusions
from other related studies.  Rosenblum, et al., also
observed negligible reductions in stall time due to multiple
outstanding L2 misses for TPC-B [25].  However, they
demonstrated through simulation that dynamically sched-
uled processors can hide approximately half of the latency

of L1 misses, suggesting that there is a greater potential
benefit for non-blocking L1 caches.

5 Processor Issues

In addition to memory hierarchy-related stall CPI com-
ponents, a non-negligible component of CPI (both compu-
tation and stall cycles) is due to processor features.  In this
section we examine some of these processor features.

5.1  How useful is superscalar issue and retire?

In the Pentium Pro, three parallel decoders translate x86
macro-instructions into triadic µops.  Each cycle, up to
three µops can be retired in the out-of-order engine, and up
to three x86 instructions can be retired in the in-order
engine.  Figure 6 and Figure 7 present the profiles for
instruction and micro-operation decode and retire behav-
ior, broken down by cycles and instructions, respectively.
Section 11.4 presents this data in tabular form, including
data for database-only and OS-only behavior.  

Figure 6 shows that the system experiences a high per-
centage (e.g., 65% to 75%) of cycles where zero instruc-
tions (or  µops) are decoded or retired.  In contrast, the
SPEC integer programs with high L2 cache miss rates
show far fewer cycles (i.e., 35% to 51%) with no instruc-
tions decoded [2]. Similar behavior is exhibited for SPEC
program retirement profiles [2].

Figure 7 presents the same profiles, organized by the
percent of instructions (or  µops) decoded/retired in each
type of cycle. At the macro-instruction level, only 32% of
all instructions are decoded in triple-decode cycles, and
only 22% of all instructions are retired in triple-retire
cycles. Since there is only a modest benefit from macro-
instruction triple-decode and -retire cycles, this workload
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Characteristic
1 bus 
req.

<= 4 
bus req.

Measured CPI 3.08 3.02

Computation CPI 1.00 1.01

Resource Stall CPI 0.52 0.49

Instruction Stall CPI 1.55 1.52

Average memory latency 60 cyc. 58 cyc.

TABLE 4. Effects of non-blocking for 256 KB
L2 cache.
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may not benefit from increases in macro-instruction super-
scalar width.  The system more effectively exploits the
superscalar width in the out-of-order execution of µops:
53% of all µops are retired in triple-retire cycles.  Thus,
increasing superscalar width for the out-of-order engine
may prove to be beneficial.  

Finally, we note that 1.87 µops are retired for every
macro-instruction for the transaction processing work-
load.  In contrast, the average number of  µops per macro-
instruction is around 1.35 for the SPEC programs [2]. This
implies that the transaction processing workload utilizes
more complex x86 instructions than the SPEC programs
do.

5.2  How effective is branch prediction?

Branch behavior for the overall system, the database
alone and the operating system alone is shown in Table 5.
The behavior of the overall system is nearly identical to the
behavior of the database alone. Branches comprise about
21% of the overall instruction mix. The branch mispredic-
tion ratio is 15%, which is quite high relative to the branch
misprediction ratios of less than 10% for the SPECInt
applications.   In contrast to our results, Cvetanovic and
Donaldson report that the frequency of branches and
mispredictions for TPC-C on the Alpha 21164  is compara-
ble to SPECInt [6].

Branch Target Buffer (BTB) miss ratios are also quite
high: 56% for both the overall system and the database
alone. The operating system exhibits much better BTB
miss behavior, with a 33% miss rate.  The overall ratio is in
contrast to the SPEC workloads, where all programs except
one integer program exhibit a BTB miss ratio of less than
about 30%. Most SPEC BTB miss ratios are well below
15% [2]. 

One reason for this branch and BTB behavior is that the
compilation process used for the database application
employed only traditional compiler optimization tech-
niques, but did not employ more advanced optimization
techniques, such as profile-based optimization.  This tech-
nique, which can move infrequently executed basic blocks
out of line and lay out more frequently interacting basic
blocks contiguously, could improve branch misprediction
and BTB miss behavior, as well as L1 instruction cache
miss behavior [24].  However, there is a limit to the sav-
ings this technique can offer.  Furthermore, processors
must be able to efficiently execute code, even if it has not
been aggressively optimized.  At the least, these miss ratios
suggest that this workload requires a much larger BTB, and
perhaps a different branch prediction method.  Hilgendorf
and Heim report that BTB miss rates improve for BTBs up
to ~16k entries for OLTP workloads [10]. 

Finally, we note that the speculative execution factor, or
the number of macro-instructions decoded divided by the
macro-instructions retired, is 1.4 for the overall system.
The speculative execution factor for nearly all SPEC pro-
grams is between 1 and 1.3 [2].

5.3  Is out-of-order execution successful at hiding stalls?

The Pentium Pro implements dynamic execution using
an out-of-order, speculative execution engine, which
employs register renaming and non-blocking caches. How
effective is dynamic execution for database workloads? 

It is difficult to answer this question precisely, without
the ability to turn off out-of-order execution.  Instead, our
approach is to compare non-overlapped CPI vs. measured
CPI, as described in [2]. If out-of-order execution is effec-
tive, the individual components of the non-overlapped CPI
should be overlappable, and the measured CPI should be
less than the non-overlapped CPI.

To compute the non-overlapped CPI, we treat the
machine as if it were in-order, and explicitly account for
computation and all potential stall cycles, such as instruc-
tion and data cache miss-related stalls, branch mispredic-

FIGURE 7. Instruction and micro-operation decode
and retirement profiles, broken down by
instructions.
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Characteristic Overall DB OS

Branch frequency 21.5% 20.9% 27.3%

Branch misprediction ratio 14.6% 14.3% 16.6%

BTB miss ratio 55.7% 55.6% 32.9%

Speculative exec. factor 1.43 1.40 1.75

TABLE 5. Branch behavior. The Pentium Pro processor
implements a branch prediction scheme derived from the two-
level adaptive scheme described by Yeh and Patt [30]. The
branch target buffer (BTB), which contains 512 entries,
maintains branch history information and the predicted branch
target address. A static prediction scheme (backwards taken,
forward not taken) is employed. Mispredicted branches incur a
penalty of at least 11 cycles, with the average misprediction
penalty being 15 cycles [9].
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tion penalties, resource-related stalls, and other minor
stalls.  Cache miss and branch misprediction penalties are
computed by multiplying the number of misses per instruc-
tion by the associated miss penalty.  The computation com-
ponent is computed from the µop retirement profile, or the
percentage of single-, double- and triple-retire cycles, as
described in Section 3.1.  We assume a steady-state µCPI
of 0.33 for triple-retire cycles, 0.5 for double-retire cycles,
and 1 for single-retire cycles.  The computation CPI is then
computed by multiplying the µCPI by the µops per macro-
instruction.

Figure 8 presents the non-overlapped and measured CPI
for the three different L2 cache sizes.  The stacked bars for
each configuration include the resource stalls and computa-
tion components from Figure 3, and decompose the stall
components further to include L1 I and D cache misses, L2
cache misses, branch misprediction stalls, ITLB misses and
other minor stalls.  The black line in each column marks
the measured CPI for that configuration.

For all cache sizes, the measured CPI is less than the
non-overlapped total.  Measured CPI is 62% of its total bar
height for the 256 KB L2 cache,  67% for the 512 KB L2
and 70% for the 1 MB L2.  Thus, out-of-order execution is
somewhat effectively overlapping the CPI components to
achieve a lower actual CPI.  In  contrast, the measured CPI
of SPECInt programs is 45% to 65% (averaging 54%) of
the non-overlapped total [2]. Since fewer of these compo-
nents are being overlapped for the database workload, we
conclude that out-of-order and speculative execution are
somewhat less effective for database workloads than for
SPEC workloads.

Other researchers have demonstrated some execution
time improvements from out-of-order and increasing issue
width for TPC-B [1] [25].  [25] reports a modest 25%
speedup from out-of-order, due predominantly to the high

percentage of I/O-induced idle time due to their undercon-
figured simulated disk system.

6 Multiprocessor Scaling Issues

In this section, we explore the scalability of the Pentium
Pro architecture for running database workloads as the
number of processors is varied from one to two to four.
Specifically, we examine the memory system utilization,
the increase in L2 coherence misses, and the MESI profile
for L2 caches as the number of processors grows. 

6.1  How well does database performance scale as the
number of processors increases?

Figure 9 shows the scalability of relative database trans-
action throughput as a function of the number of proces-
sors. For these experiments,  L2 cache size is held constant
at 1 MB, memory per processor is held constant at 512
MB.  As stated in Section 2.4, the ratio of TPC-C through-
put to database size (i.e., number of warehouses) must fall
within the range from 9 to 12.7. To maintain the correct
ratio values, we scaled the size of the database for the two-
processor and uniprocessor cases. As demonstrated in the
figure, transaction throughput scales reasonably well as the
number of processors is increased from one to four.

6.2   How does memory system performance scale with
increasing cache sizes and increasing processor count?

Table 6 presents the memory system utilization across
all of the processors in the system for different cache sizes.
By memory system utilization, we mean the time the bus is
busy transferring data (or control information), or the time
when the bus is not busy but unavailable.  (This latter case
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may happen when some bus agent, for example the mem-
ory controller, falls behind in its internal processing.)
Since this phenomenon has been observed experimentally,
but cannot be fully accounted for by the existing counters,
we apply a 2X multiplier to the values measured by the
counters to properly estimate memory system utilization
[29].  

As expected, memory system utilization decreases with
increasing cache size, and increases with more processors.
Utilization grows more slowly for the 1 MB cache size as
the number of processors grows, reaching a maximum of
nearly 40% for four processors.  However, even at these
relatively low utilizations, bus activity has an impact on the
memory latency perceived by the database and operating
system.  

Table 7 presents the application memory latency as a
function of the L2 size and the number of processors.
These cycle counts are calculated from counter values that
measure the number of cycles where data read transactions
are outstanding on the bus, and the total number of data
read transactions. We see that application reads take
roughly 60 cycles for the uniprocessor case, but nearly 100
cycles for the four-processor configuration for the 1 MB
cache size.  Because memory system utilization and appli-
cation memory latency continue to grow as processors are
added, even for larger cache sizes, it is not clear to what
degree this memory system will scale to support additional
processors. 

6.3  How prevalent are cache misses to dirty data in
other processors’ cache?  

Increasing the L2 cache size also has the potential to
increase the number of coherence cache misses.  Particu-
larly problematic are cache misses to dirty data in other

processors’ caches [1] [18].  This difficulty arises in some
architectures because many RISC processors have been
optimized to give the CPU priority to the L2 cache.  In
addition, they are typically optimized for providing high
bandwidth to the L2 cache for the CPU and incoming
requests.  These optimizations often have the side effect of
increasing the latency for dirty misses [7].

Unfortunately, the Pentium Pro counters provide no
events for determining the latency of dirty misses.  It is still
useful, however, to quantify the frequency of this opera-
tion, and determine how it is affected by L2 cache size.

Table 8 presents the percentage of L2 cache misses to
dirty data in other processors’ caches for one-, two-, and
four-processor servers and different L2 cache sizes.  It
appears that doubling the size of the cache nearly doubles
the percentage of L2 misses to dirty data.  Likewise, dou-
bling the number of processors roughly doubles the per-
centage of L2 misses to dirty data.  As the cache size
increases, this percentage could be quite large.  Indeed,
Barroso and Gharachorloo report that roughly 60% of
misses require a cache-to-cache transfer for dirty data for
an 8 MB cache [1].

6.4  Is the four-state (MESI) invalidation-based cache
coherence protocol worthwhile for OLTP?

Cache lines may be in one of four states in this protocol:
modified (M), exclusive (E), shared (S), or invalid (I).
Some coherence protocols don’t distinguish between
exclusive (exclusive clean) and modified (exclusive
dirty). In this section, we investigate whether all four states
are used by this workload, and use this analysis to confirm
the effectiveness of the cache write policy. 

The Pentium Pro counters allow us to monitor the MESI
state of an L2 cache line on an access to the L2 cache (e.g.,
instruction fetch, load or store.) Accesses to “invalid” lines
correspond to cache misses, while accesses to lines in other
states correspond to hits to an L2 line found in that state,
before any modifications due to that access are made.

TABLE 6. Overall memory system utilization as a
function of L2 cache size and number of processors.

L2 Cache Size 1 P 2 P 4 P

256 KB 24.2% 43.5% 73.9%

512 KB 17.9% 33.8% 56.0%

1 MB 14.6% 24.9% 39.7%

TABLE 7. Application memory latency as a function of
L2 cache size and number of processors. All values are in
processor cycles.

L2 Cache Size 1 P 2 P 4 P

256 KB 58 72 118

512 KB 58 72 111

1 MB 58 74 97

TABLE 8. Percentage of L2 cache misses to dirty data
in another processor’s cache as a function of L2 cache
size and number of processors.  The absolute number of
dirty misses across all active processors for the five-second
measurement window is given in millions by the number in
parentheses. We hypothesize that the count for the uniprocessor
case is non-zero because the signal used to indicate a hit to dirty
data is also raised, in conjunction with another signal, to indicate
that the processor wishes to stall during the snoop bus cycle.

L2 Cache 
Size 1 P 2 P 4 P

256 KB 0.4% (0.03) 3.4% (0.49) 5.7% (1.38)

512 KB 0.7% (0.04) 6.1% (0.62) 11.8% (1.96)

1 MB 1.1% (0.04) 11.2% (0.80) 22.0% (2.45)
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Table 9 shows the percentages of L2 cache instruction
fetches, loads and stores, broken down by MESI state. 

As expected, nearly all of the instruction fetches that hit
in the L2 cache are to shared cache lines. The exclusive
state is heavily utilized for loads in the uniprocessor case,
as might be expected. In the dual- and quad-processor con-
figurations, hits resulting from loads are distributed across
the different states, going predominantly to shared lines,
followed by modified lines and finally exclusive lines. The
high percentage of load hits to modified lines indicates that
the processor reads data in the same line as it has recently
written. In addition, over 90% of the database store hits are
to modified lines, with few write accesses to shared or
exclusive lines. These measurements provide quantitative
evidence of the temporal locality present in the workload,
and validate the usefulness of the writeback write policy
employed by the Pentium Pro caches. 

A primary advantage of the exclusive state is that it
allows the processor to avoid the invalidation bus transac-
tion on a store to a shared line: if the line is already in the
exclusive state, it is the only copy currently cached. How-
ever, we see that store hits to exclusive lines rarely occur.
Thus, it isn’t clear whether the benefits of the E state are
worth the cost of implementing the fourth state for this
workload. A three-state protocol would be sufficient, and
not result in significantly increased bus traffic. 

7 Future Work

We see many interesting avenues of future research
worth pursuing. First, we plan to characterize decision sup-
port database workloads, such as the TPC-D benchmark,
using a methodology similar to the one used in this study.

Another fertile research area is to study the transaction
throughput and I/O rates as a function of database buffer
size (i.e., memory capacity), including an examination of
support for very large memory configurations. Some initial
work has been done in this area [28] [6], and more investi-
gation is warranted. Finally, we plan to investigate the
importance of system configuration in determining
observed performance. Many researchers scale back prob-
lem sizes or underconfigure the hardware in their systems
when measuring database workloads, violating the TPC
guidelines. We want to understand how these concessions
impact the measured behavior [15].

8 Conclusions

Commercial applications have very different character-
istics from technical applications, which are commonly
used as benchmarks in the design of computer architec-
tures. For better or for worse, benchmarks help to shape a
field. We need to give this important class of applications a
chance to help shape the field of computer architecture. 

We used the Pentium Pro’s built-in hardware counters
to monitor numerous architectural features of a four-pro-
cessor SMP running a properly configured commercial
database executing a TPC-C-like transaction processing
workload. In addition, we varied several hardware and
firmware parameters, including the number of processors,
L2 cache sizes and the number of outstanding bus transac-
tions.  We investigated the effectiveness of out-of-order
and speculative execution, superscalar design, branch pre-
diction, multiprocessor scaling and several cache parame-
ters. 

We found that out-of-order execution is only somewhat
effective for this database workload. The overall CPI was
2.90, which can be decomposed into a 2.52-cycle database
component, which applies for 80% of the execution time,
and a 6.41-cycle operating system component, which
applies for the remaining 20% of execution time. Stall
cycles comprise roughly 65% of the overall CPI. To
improve this situation, computer architects could provide
more detailed performance counters that allow perfor-
mance analysts to decompose resource stalls and instruc-
tion-related stalls further. 

This workload does not fully exploit the existing macro-
instruction superscalar issue and retire width. Zero macro-
instructions are decoded and retired in more than 65% of
the overall cycles.  Only 22% of macro-instructions are
decoded in triple-decode cycles, and only 32% of macro-
instructions are retired in triple-retire cycles.  Thus, it is not
clear that increasing the macro-instruction decode and
retire width further will be beneficial for this workload.
However, at the micro-operation level, 53% of all µops are
retired in triple-retire cycles, implying that increased
superscalar width for the out-of-order engine may be help-
ful.  

The Pentium Pro’s branch prediction scheme is not
nearly as effective for the TPC-C workload as it is for

Configuration and 
L2 Access Type M E S

(Miss)
I 

INST. FETCH

1 processor 0.0% 0.8% 97.8% 1.4%

2 processors 0.0% 0.0% 98.8% 1.2%

4 processors 0.0% 0.0% 98.8% 1.2%

LOAD

1 processor 25.4% 55.5% 1.1% 18.0%

2 processors 21.7% 17.6% 43.9% 16.9%

4 processors 24.7% 15.1% 46.0% 14.2%

STORE

1 processor 78.5% 1.5% 0.1% 19.9%

2 processors 78.0% 1.0% 4.4% 16.6%

4 processors 81.2% 0.6% 6.7% 10.5%

TABLE 9. State of L2 line on L2 hit. Table shows
percentage of L2 accesses.
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SPEC workloads. Furthermore, the branch target buffer’s
512 entries are insufficient for this workload. While some
performance benefit may come from compilation and
binary editing tools, there is room for innovation in branch
prediction algorithms and hardware structures to better
support database workloads.

We found that caches are effective at reducing the pro-
cessor traffic to memory: Only 0.4% of all instruction and
data accesses reach memory. We found that the nonblock-
ing nature of the L2 cache does not aid in reducing memory
stalls.  We speculate that the workload does not have multi-
ple outstanding cache misses frequently enough to take
advantage of this feature.

Examining the four-state MESI cache coherence policy,
we saw that the exclusive state is not often utilized for store
operations. Hence, architects could employ a three-state
(MSI) cache coherence protocol without significant
increase in bus traffic due to writebacks of potentially dirty
data. 

As expected, the amount of time when the memory sys-
tem is unavailable decreases with larger caches, and
increases as more processors are added.  However, even
low to medium memory system utilization can increase
application memory latency, which affects the scalability
of transaction throughput.
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11 Appendix

11.1  Overall CPI Behavior

Table 10 shows the breakdown of cycles per micro-
operation and cycles per macro-instruction components for
the base system (e.g., four processors with a 1 MB L2
cache).  (This data is shown graphically in Figure 2 and
Figure 3.)  

Comparing the measured CPIs against the those calcu-
lated from the computation, resource stall and instruction-
related stall components, we find that the computed values
are within 6% of the measured values in all cases.

The CPI for the operating system alone is more than 2X
the CPI of the database alone.  The CPI for the overall sys-
tem more closely resembles the database CPI, since
roughly 80% of the execution time is spent in the database. 

A final difference between database and operating sys-
tem CPI behavior is the relative importance of the CPI
components.  For the operating system, resource stalls are
the biggest CPI component, followed by instruction-related
stalls and computation.  We hypothesize that the impor-
tance of resource stalls is due to the prevalence of long-
lasting operations in the OS that cause execution to lag
behind the decoder (e.g., serializing instructions, interrupt
handling, and privilege level changes).  In contrast, the
order of importance for the database alone is instruction-
related stalls, followed by computation and finally resource
stalls.

11.2  Cache Behavior

Table 11, Table 12 and Table 13 present the cache
access and miss behavior as a function of L2 cache size for
the overall system, the database alone and the operating
system alone, respectively.  (The L2 miss data is shown
graphically in Figure 4.)  We note that DTLB misses are
not included in these tables, because they could not be
measured reliably. 

L1 and L2 cache miss rates for the database resemble
those for the overall system. The operating system’s L1 I-
cache miss rates are somewhat lower than those of the
overall system, and the L1 D-cache miss rates are some-

 

µCPI/CPI Component
µCPI: 
Overall µCPI: DB µCPI: OS

CPI: 
Overall CPI: DB CPI: OS

Resource stalls 0.35 0.25 1.15 0.66 0.45 2.56

Instruction-related stalls 0.66 0.62 1.00 1.24 1.13 2.24

Computation:  µops 0.54 0.53 0.56 1.00 0.97 1.24

Computed µCPI/CPI 1.55 1.39 2.71 2.89 2.55 6.04

Measured µCPI/CPΙ 1.55 1.37 2.87 2.90 2.52 6.41

TABLE 10. Breakdown of cycles per micro-operation (µCPI) and cycles per macro-instruction
(CPI) components for base system. 

Characteristic 256 KB 512 KB 1 MB

Instruction fetches 1738 1759 1586

Data references 389 388 437

L1 I-cache misses 92 (5%) 93 (5%) 93 (6%)

L1 D-cache misses 48 (7%) 51 (7%) 51 (7%)

ITLB misses 3 4 4

L2 Inst.-related misses 11 (12%) 4 (4%) 1 (1%)

L2 Data-related misses 12 (26%) 10 (19%) 7 (14%)

Overall L2 misses 23 (16%) 11 (9%) 8 (6%)

TABLE 11. Overall cache access and miss behavior
as a function of L2 cache size. The values in this table
represent the number of events occurring per 1000 instructions
retired.  Miss ratios for each cache are shown as a percentage
in parentheses.  

Characteristic 256 KB 512 KB 1 MB

Instruction fetches 1557 1496 1388

Data references 426 452 492

L1 I-cache misses 88 (7%) 89 (6%) 89 (7%)

L1 D-cache misses 46 (6%) 48 (7%) 48 (7%)

ITLB misses 3 4 4

L2 Inst.-related misses 9 (10%) 3 (4%) 1 (1%)

L2 Data-related misses 11 (24%) 8 (18%) 6 (12%)

Overall L2 misses 20 (15%) 11 (9%) 7 (5%)

TABLE 12. Database-only cache access and miss
behavior as a function of L2 cache size. The values in
this table represent the number of events occurring per 1000
instructions retired.  Miss ratios for each cache are shown as a
percentage in parentheses.  
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what higher.  L2 cache miss rates for the operating system
alone are at least 1.6X that for the database alone.

11.3  Impact of L2 Cache Size on CPI and Database
Throughput

Table 14 shows the breakdown of CPI for the overall
system, the database alone and the operating system alone
as a function of L2 cache size.  (The overall system data is
presented graphically in Figure 5.)  

As discussed in previous sections, the OS-only CPI is
more than 2X that of the DB-only CPI.  For both the over-
all CPI and the database-only CPI, the relative importance
of the components is instruction-related stalls, followed by
computation and finally resource stalls.  The relative
importance of operating system CPI components is some-
what different.  For the smaller L2 cache sizes, the instruc-
tion-related and resource stalls are most important.  For the
1 MB L2 cache, resource stalls are most important, fol-
lowed by instruction-related stalls and computation.

11.4  Effectiveness of Superscalar Issue and Retire

Table 15 and Table 16 present the macro-instruction
decode and retirement profiles for the overall system, the
database alone, and the operating system alone. Table 17
presents the micro-operation retirement profile, similarly
decomposed.  The overall system data from these tables
was presented graphically in Figure 6 and Figure 7.

Similar behavior is exhibited by the database and the
operating system, with a few exceptions.  The OS alone
experiences a higher percentage of zero-instruction decode
and retire cycles, and a higher percentage of zero-µop
retire cycles than the database alone.  A higher percentage
of the OS macro-instructions are decoded and retired in
single-decode and -retire cycles, implying that wider
macro-instruction superscalar issue and retire would be

even less useful for operating system code than for data-
base code. Both the database and the operating system
retire about half of all µops in triple-µop retire cycles.
Thus, micro-operation superscalar retire width appears to
be equally as useful for the operating system as it is for the
database. 

11.5  Effectiveness of MESI Cache Coherence Protocol

Table 18 and Table 19 decompose accesses to the L2
cache among the modified (M), exclusive (E), shared (S)
and invalid (I) states for the database alone and the operat-
ing system alone, respectively.  The overall system data is
presented in Table 9.

These tables illustrate several differences in behavior
between user level and system level.  Load operations for
the dual- and quad-processor configurations miss the L2
cache nearly 2X as often for the operating system as for the
database.  Also, the OS experiences a higher percentage of
store hits to shared lines for dual- and quad-processor con-
figurations:  20 to 30%, in comparison with less than 5%
for the database alone.  We hypothesize that there is an
increased incidence of read-modify-write operations on
operating system data shared between the processors:  a
load operation misses in the originating processor’s cache,
causing the line to be loaded from another cache in shared

Characteristic 256 KB 512 KB 1 MB

Instruction fetches 3587 4041 3409

Data references 224 182 231

L1 I-cache misses 130 (4%) 122 (3%) 132 (4%)

L1 D-cache misses 70 (9%) 70 (10%) 84 (11%)

ITLB misses 2 6 6

L2 Inst.-related misses 26 (20%) 8 (7%) 2 (2%)

L2 Data-related 
misses

27 (39%) 20 (28%) 17 (22%)

Overall L2 misses 53 (26%) 28 (14%) 19 (9%)

TABLE 13. Operating system-only cache access and
miss behavior as a function of L2 cache size. The
values in this table represent the number of events occurring
per 1000 instructions retired.  Miss ratios for each cache are
shown as a percentage in parentheses.  

Characteristic 256 KB 512 KB 1 MB

Relative transaction 
throughput

100% 116% 128%

Overall System

Measured CPI 3.86 3.27 2.90

Resource stalls 0.87 0.73 0.66

Instruction-related stalls 2.05 1.50 1.24

Computation:  µops 0.98 0.98 1.00

Database-only

Measured CPI 3.41 2.89 2.52

Resource stalls 0.66 0.56 0.45

Instruction-related stalls 1.83 1.36 1.13

Computation:  µops 0.96 0.96 0.97

Operating system-only

Measured CPI 8.44 6.53 6.41

Resource stalls 3.04 2.10 2.56

Instruction-related stalls 4.22 2.76 2.24

Computation:  µops 1.23 1.22 1.24

TABLE 14. Relative database throughput and CPI
breakdown as function of L2 cache size. 
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mode.  A subsequent store operation then updates the
shared line.

.

% cycles % inst.

Characteristic Overall Database OS Overall Database OS

0-instruction decode 68.7% 65.5% 80.8% n/a n/a n/a

1-instruction decode 17.9% 19.4% 12.1% 35.7% 34.7% 43.2%

2-instruction decode  8.1%  8.9%  5.4% 32.6% 31.7% 38.9%

3-instruction decode  5.3%  6.3%  1.7% 31.7% 33.6%  17.9%

TABLE 15. Instruction decode profile. In the Pentium Pro, three parallel decoders translate IA-32 macro-
instructions (e.g., instructions) into triadic micro-operations (e.g., µops). Most instructions are converted to a
single µop, some are converted into two to four µops, and complex instructions require microcode, which is a
longer sequence of µops. Up to five µops can be issued each clock cycle.

.

% cycles % inst.

Characteristic Overall Database OS Overall Database OS

0-instruction retire 76.2% 72.7% 88.2% n/a n/a n/a

1-instruction retire 15.2% 17.0% 8.6% 43.3% 41.9% 55.2%

2-instruction retire 6.1% 7.2%  2.5% 34.9% 35.3% 31.4%

3-instruction retire 2.6% 3.1%  0.7% 21.8% 22.8%  13.4%

TABLE 16. Macro-instruction retirement profile.  In the Pentium Pro, up to three x86 instructions can
be retired in a single cycle.

.

% cycles % inst.

Characteristic Overall Database OS Overall Database OS

µops per macro-instruction  1.87  1.84 2.23

0-µop retire 66.0% 62.8% 78.6% n/a n/a n/a

1-µop retire 15.6% 16.7% 10.9% 24.6% 23.7% 28.3%

2-µop retire  7.0%  7.9%  3.9% 22.2% 22.5% 20.3%

3-µop retire 11.3% 12.6%  6.6% 53.2% 53.7%  51.3%

TABLE 17. Micro-operation retirement profile.  In the Pentium Pro, up to three µops can be retired in a
single cycle.
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Configuration and 
L2 Access Type M E S

(Miss)
I 

INST. FETCH

1 processor 0.0% 0.8% 98.0% 1.2%

2 processors 0.0% 0.0% 98.9% 1.1%

4 processors 0.0% 0.0% 98.9% 1.1%

LOAD

1 processor 23.7% 56.8% 1.2% 18.3%

2 processors 21.2% 17.7% 45.2% 16.0%

4 processors 25.7% 15.6% 46.4% 12.2%

STORE

1 processor 76.3% 1.6% 0.0% 22.1%

2 processors 79.9% 1.1% 1.9% 17.0%

4 processors 85.8% 0.6% 2.9% 10.5%

TABLE 18. State of L2 line on L2 hit for the database.
Table shows percentage of L2 accesses.

Configuration and 
L2 Access Type M E S

(Miss)
I 

INST. FETCH

1 processor 0.0% 0.7% 96.8% 2.5%

2 processors 0.0% 0.0% 97.5% 2.5%

4 processors 0.0% 0.0% 98.0% 2.0%

LOAD

1 processor 37.1% 46.7% 0.4% 15.8%

2 processors 25.3% 17.0% 34.0% 23.6%

4 processors 18.5% 12.1% 42.7% 26.7%

STORE

1 processor 89.2% 0.9% 0.8% 9.1%

2 processors 67.4% 0.5% 17.7% 14.4%

4 processors 57.0% 0.3% 25.8% 16.8%

TABLE 19. State of L2 line on L2 hit for the operating
system. Table shows percentage of L2 accesses.


