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Abstract 

  

We present a novel methodology for identifying public knowledge and eliminating the 

biases it creates when aggregating information in small group settings.  A two-stage 

mechanism consisting of an information market and a coordination game is used to 

reveal and adjust for individuals’ public information.  A nonlinear aggregation of their 

decisions then allows for the calculation of the probability of the future outcome of 

an uncertain event, which can then be compared to both the objective probability of 

its occurrence and the performance of the market as a whole.  Experiments show 

that this nonlinear aggregation mechanism outperforms both the imperfect market 

and the best of the participants.  



Introduction 

The prediction of the future outcomes of uncertain situations is an important problem 

for individuals and organizations.  As a result, large resources are devoted to 

producing reliable forecasts of technology trends, revenues, growth, and other 

valuable insights.  To complicate matters, in the case of organizations the 

information relevant to predictions is often dispersed across people, making it hard 

to identify and aggregate it.  Thus, while several methods are presently used in 

forecasting, ranging from committees and expert consultants to aggregation 

techniques such as the Delphi method (Gordon et al 1964), the results obtained 

suffer in terms of accuracy and ease of implementation.   

In this paper, we propose and experimentally verify a market-based method to 

aggregate scattered information so as to produce reliable forecasts of uncertain 

events.  This method is based on the belief shared by most economists that markets 

efficiently collect and disseminate information (Hayek 1945).  In particular, rational 

expectations theory tells us that markets have the capacity not only to aggregate 

information held by individuals, but also to convey it via the price and volume of 

assets associated with that information.  Therefore, a possible methodology for the 

prediction of future outcomes is the construction of markets where the asset is 

information rather than a physical good.  Laboratory experiments have determined 

that these markets do indeed have the capacity to aggregate information in this type 

of setting (Forsythe et al 1982, O’Brien et al 1991, Plott et al 1982, Plott et al 1988).  

Information markets generally involve the trading of state-contingent securities.  If 

these markets are large enough and properly designed, they can be more accurate 

than other techniques for extracting diffuse information, such as surveys and 

opinions polls.  There are problems however, with information markets, as they tend 

to suffer from information traps (Camerer et al 1991, Nöth et al 1999), illiquidity 

(Sunder 1992), manipulation (Forsythe et al 1990, Nöth et al 1998), and lack of 

meaningful equilibria (Anderson et al 1997, Scharfstein et al 1990)i.  These problems 

are exacerbated when the groups involved are small and not very experienced at 

playing in these markets.  Even when possible, proper market design is very 

expensive, fragile, and context-specific. 

In spite of these obstacles, it is worth noting that certain participants in information 

markets can have either superior knowledge of the information being sought, or are 



better processors of the knowledge harnessed by the information market itself.  By 

keeping track of the profits and final holdings of the members, one can determine 

which participants have these talents, along with their risk attitudes. 

In earlier work, (Chen et al 2001), we demonstrated the comparative efficacy of a 

nonlinear aggregation mechanism with behavioral components to that of a market.  

Specifically, we showed that one could take past predictive performance of 

participants in information markets and to create weighting schemes that help 

predict future events, even if they are not the same event on which the performance 

was measured.  Furthermore, our two-stage approach successfully harnessed 

distributed knowledge in a manner that alleviated the problems that arise from low 

levels of participation.  Therefore, this mechanism is most useful in environments in 

which markets fail due to low participation and the resulting lack of liquidity. 

However, these results were not immune to the presence of public information, that 

is, information that is commonly known to multiple individuals in the group.  This is 

because public information is bound to introduce strong correlations in the 

knowledge possessed by members of the group, correlations that were not explicitly 

taken into account by our aggregation algorithm. 

Nevertheless, the success of our two-stage forecasting mechanism with private 

information led us to search for suitable modifications that would allow the detection 

of the amount of public information present in a group so as to subtract it.  Assuming 

that subjects can differentiate between the public and private information they hold, 

that the private aspect of their information is truly private (held only by one 

individual), and that the public information is truly public (held by at least two 

individuals), we created a coordination variant of the mechanism which allows for the 

identification of public information within a group and its subtraction when 

aggregating individual predictions about uncertain outcomes.  Experiments in the 

laboratory show that this aggregation mechanism outperforms both the market and 

the best player in the group.  

In what follows, we first outline the original two-stage mechanism for information 

aggregation and then explain the modified second stage that allows for public 

information to be extracted.  Next, we present laboratory experiments that 

quantitatively measure the performance of this new mechanism and established its 



superiority with respect to both the information market and the participating 

members.  An appendix provides the mathematical details of the coordination game. 

  

Extracting Private Information  

We start by reviewing the original nonlinear aggregation scheme, presented in Chen, 

Fine and Huberman (Chen et al 2001).  This aggregation scheme applies to a group 

of individuals that hold private information. 

Consider, for a moment, an environment in which a set of N people has purely 

private information about a future event.  If all players had the same amount of 

information about the event and were perfectly risk-neutral, then it would be easy to 

compute the true posterior probability of an event by collecting individual beliefs and 

using Bayes’ rule.  If individuals receive independent information conditioned on the 

true outcome, their prior beliefs are uniform (no other information is available other 

than the event sequence), and they each report the true posterior probabilities given 

their information, then the probability of an outcome s, conditioned on all of their 

observed information I, is given by: 
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where psi is the probability that individual i (i=1…N) assigns to outcome s.  This 

result allows us simply to take the individual predictions, multiply them together, and 

normalize them in order to get an aggregate probability distribution.  However, this 

will only work under the above restrictions on information and risk neutrality. 

In Chen, Fine and Huberman (Chen et al 2001), we show that in order to account for 

both the diverse levels of risk aversion and information strengths, we can add a 

stage to the mechanism.  Before individuals are asked to report their beliefs, they 

are asked to participate in an information market designed to elicit their risk 

attitudes and other relevant behavioral information.  This information market is 

driven by the same information structure in the reporting game.  It is assumed that 

there exists a sequence of similar events for us to conduct information markets on.  

We use information markets on earlier events to capture the behavioral information 

that is needed to derive the correct aggregation function.  Note that, although the 



participant pool is too small for the market to be perfectly efficient, it is a powerful 

enough mechanism to help us elicit the needed information. 

In the second stage, each player i is asked to report a vector of perceived state-

probabilities, ip
r

= {p1i,p2i,…pNi} , with psi the perceived probability that a given state 

s will be realized, and with the constraint that the vector sums to one.  When the 

true state x is revealed, each player is paid an amount equal to c1+c2*log(pxi), where 

c1 and c2 are positive numbers.  This payoff function ensures that risk-neutral 

expected utility maximizers would report their true beliefs.  So, each player should 

report his perceived probability distribution over the N possible states. 

In order to compute the probability distribution, we aggregate the individual reports 

by using the following nonlinear aggregation function, which is a modification of 

Bayes’ rule: 
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where s is a given possible state, I is the available information, and βi is the 

exponent assigned to individual i.   

 

The role of βi is to help recover the true posterior probabilities from individual i’s 

report.  The value of β for a risk neutral individual is one, as he should report the 

true probabilities indicated by his information.  For a risk averse individual, βi is 

greater than one so as to compensate for the flat distribution that he reports.  The 

reverse, namely βi smaller than one, applies to risk loving individuals.  In terms of 

both the market performance and the individual holdings and risk behavior, βi is 

given by  

βi=r(Vi/σi)c (3) 

where r is a parameter that captures the risk attitude of the whole market and is 

reflected in the market prices of the assets, Vi is the utility of individual i, and σi is 

the variance of his holdings over time.  We use c as a normalization factor so that if 

r=1, •βi equals the number of players; it is chosen to make the average β equal to 

one.  



To derive r, notice that when the market is perfectly efficient, then the sum of the 

prices of the securities should be exactly equal to the payoff of the winning security.  

However, in the thin markets characterized here, this efficiency condition was rarely 

met the case.  Moreover, although prices that do not sum to the winning payoff 

indicate an arbitrage opportunity, it was rarely possible to realize this opportunity 

with a portfolio purchase (once again, due to the thinness of the market).  However, 

we can use these facts to our advantage.  If the sum of the prices is below the 

winning payoff, then we can infer that the market is risk-averse, while if the price is 

above this payoff then the market exhibits risk-loving behavior.  Thus, the ratio of 

the winning payoff to the sum of the prices provides a proxy for the risk attitude of 

the market as a whole. This derivation is not standard in the finance literature, this is 

because typical market analysis assume a no arbitrage condition. However, in our 

case with a small market, it is clear from experimental evidence (Chen et al 2001) that 

the no arbitrage condition was violated. Furthermore, the amount and direction (whether on 

the buy or the sell side) of arbitrage opportunities in the market becomes an important 

indication of the risk attitude of the market as a whole. If people are driving the price up and 

beyond reasonable levels suggested by the condition of no arbitrage,  we conclude that people 

are willing to pay more for risks (since all the assets are risky).  

The ratio of value to risk, (Vi/σi), captures individual risk attitudes and predictive 

power.  An individual’s value Vi is given by the market prices multiplied by his 

holdings, summed over all the securities.  As in portfolio theory, his amount of risk 

can be measured by the variance of his values using normalized market prices as 

probabilities of the possible outcomes. There are many ways of measuring risk attitudes. 

Equation 3 is one rule of the thumb that delivered good performance in multiple experiments 

(Chen et al 2001). 

Identifying Public Information 

Although this mechanism works well with private independent information (see Table 

1 and Table 2, Experiments 1 through 5), its performance can be significantly 

degraded by the introduction of public information.  The introduction of public 

information implies that the probabilities that enter into Equation (2) are no longer 

independent of each other, and therefore they are no longer aggregated correctly. 

Equation (2) over counts information that is observed by more than one individual 

since it adds  (in the probability space) probabilities disregarding whether the reports 

are coming from the same information source. 



Thus the mechanism has to incorporate a feature that distinguishes the public 

information from the private, so that it can be suitably subtracted when aggregating 

the individual predictions.  We achieve this by using in the second stage a 

coordination game.  In this game, we ask players to announce what they believe to 

be common information.  That is, we ask them to reveal what they think others will 

reveal.  Since the private information a player holds is, by definition, unique to that 

player, a rational player should reveal only what he believes to be public. 

So, our matching game asks players that, in addition to making their best bet 

(MYBB), they reveal what they believe they all know (AK).  The first half, MYBB, 

works as in the original experiments.  That is, players report a vector of bets on the 

possible states, and are paid according to a log function of these bets.  In the AK 

game however, the subjects try to guess the bets placed by someone else in the 

room, and these bets are then matched to another player whose bets are most 

similar to theirs.  The payout from this part of the game is a function of both their 

matching level and the possible payout from the number of tickets allocated by the 

other member of the pair.  The payoffs are constructed such that participants have 

the incentive to match their peers in their public reports.  The design of this game is 

discussed further in the Experimental Design section. 

In order to design a payoff function that induces both truthful revelation and 

maximal matching, we assume that: (A1) the public and private information held by 

an individual are independent of one another, (A2) that private information is 

independent across individuals, (A3) that public information is truly public (observed 

by more than one individual), and (A4) that an given individual can distinguish 

between the public and the private information he holds. In other words: 

For each individual i with observed information Oi, there exists information Oi
priv and 

Oi
pub such that: 

(A1) P(s|Oi) = P(s|Oi
priv) P(s|Oi

pub) for all i,s 

(A2) P(s|Oi
priv and Ojpriv) = P(s|Oi

priv) P(s| Ojpriv) for all i,j,s 

(A3) There exists a j for every i such that Oi
pub = Oj

pub 

(A4) All individuals know their P(s|Oi
priv) and P(s|Oi

pub) 



Notice that (A3) does not place any restrictions on the subset of individuals 
who observe public information and does not require public information to be 
common knowledge. The only requirement is that any public information is 
observed by more than one individual. Furthermore, (A4) is also not as 
restrictive as it might seem. We do not require the structure of public 
information (who knows what) to be common knowledge. All we assume is 
that each individual knows which part of his information is private and which 
is public without having to know who has the same public information. 

So, in the second stage, each player i is asked to report two probability distributions, 

ip
r

={p1i,p2i,…pNi} (from MYBB) and iq
r

={q1i,q2i,…qNi} (from AK), by allocating a set 

of tickets to each of the possible states.  Let x be the true outcome.  The payoff 

function for each player i is given by the following expression: 

 

P=c1+c2*log(pxi)+f( iq
r

, jq
r

)*(c3+c4*log(qxj)) 
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where c1, c2, c3 and c4 are positive constants, j is chosen in such a way that 
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In words, subjects are paid according to a log function of their reports in the MYBB 

game, plus a payment from the AK game.  This payment is a function of the player 

with whom he has a maximal match, and is the product of the matching level and a 

scaled log function of the matched player’s report in the AK game.  This match level 

is given by the second term of Equation (4) and is detailed in Equation (5) above. 

As shown earlier (Chen et al 2001), the first part of the payoff function in Equation 

(4), c1+c2*log(pxi), will induce risk neutral subjects who maximize their expected 

utility to report their true belief, conditioned on both their private and public 

information.  Concerning the last term of Equation (4), we first note that player i can 

only affect it through his matching level, which is given by the function f( iq
r

, jq
r

).  

Since )x,y(f)x,x(f rrrr
≥ for all yr , player i’s best response is to report iq

r
= jq

r
.  Further, 



since j is chosen such that f( iq
r

, jq
r

) ≥ f( iq
r

, kq
r

) for all k, player i only needs to co-

ordinate his iq
r

with only one other individual in the group to achieve an optimal 

payoff.  Additionally, it is easy to show that this part of the game has multiple Nash 

equilibria, since any common report vector q
r

reported by both players i and j is a 

potential Nash equilibrium.  Therefore, we designed the payoff function given by in 

Equations (4) and (5) to encourage individuals to coordinate on the probability 

distribution induced by the public information.  Lastly, the third piece of the payoff 

function for player i, c3+c4*log(qjx) induces a different payoff for each Nash 

equilibrium q
r

 on which the two individuals coordinate.  Since this factor depends on 

the strategy of player i’s partner j, no one player can directly affect it.  This is 

important to preserve the revelatory qualities of the game.  Since player i does not 

know to whom he will be matched, only that it will be a player with revelation similar 

to his, his best strategy is simply to reveal what he thinks others will. 

We thus designed the payoff such that the more information revealed in the reports 

q
r

, the higher the potential payoff to the subjects involved, which will yield an 

information-rich equilibrium.  Additionally, since private information is independent 

across individuals (it is truly private), the most lucrative equilibrium on which 

individuals can coordinate on is the probability distribution induced by using the 

public information only.  Therefore, this mechanism will induce individuals to report 

both their true beliefs ( ipr ) and their public information ( iqr ).  Once these vectors are 

reported, we still need to aggregate them, which we discuss in the next section.  

 

Aggregating Information 

Once we have a mechanism for extracting public beliefs from private ones, it is 

straightforward to add a public information generalization to Equation (2).  By 

dividing the perceived probability distributions of the players by the distributions 

induced by the public information only, we develop what we call a General Public 

Information Mechanism (GPIC), which is given by   
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(6) 

 

where the qr s are extracted from individuals’ reports  before they are aggregated. 

This correction allows us to isolate the private information from the individual 

reports.  Note that Equation (6) yields a report on only private information; it 

entirely eliminates anything public. 

While this mechanism is quite general, and outperforms both the market prediction 

and that of our original IAM, there are potential improvements to it that can be 

implemented.  Thus, we developed modifications to the aggregation function to 

address issues of uncertain information structures and multiple equilibria.  In theory, 

knowledge of the individuals’ reports ip
r

={p1i,p2i,…pNi} and iq
r

={q1i,q2i,…qNi}, should 

make information aggregation straightforward since for a given individual i, his 

probability assignment to state s, with respect to private information,  should be 

proportional to psi/qsi.  To add in public information more efficiently, we aggregate 

the individual reports of public information iq
r

={q1i,q2i,…qNi} into a single vector 

q
r

={q1,q2,…qN}.  In order to do this, we employ one additional assumption, that 

every individual observes the same public information, Opub.  We then aggregate by 

averaging the reports, weighted by each individual’s β , thusly: 
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Once we have completed this aggregation process, we can use the new vector q
r

 in 

place of iq
r

in the original function in Equation (6).  If q
r

 is derived correctly, it will 

resolve the matter of parsing the private information from the public.  Furthermore, 

in much the same way that some people process their private signals better than 

others, there are some individuals that report public information more accurately 

than others.  If one can identify these individuals, one can recover public information 



more efficiently than by taking a weighted average of everyone’s report.  Thus, 

instead of using the whole group to recover public information, as in Equation (6), 

we use a limited set J, a subset of the whole group: 

qs= ∑∑
=∈

ββ
N

1i
i

Ji
siiq  

 

(7a) 

The βi is determined by equation 3. The resultant forecast is then given by a 

modification of the GPIC in Equation (6).  It uses a small subset of players to 

determine the public information so as to parse it from the private.  While this 

mechanism is quite efficient, it only applies to the special case where the public 

information is completely public and identical.  Therefore, we refer to it as the 

Special Public Information Correction Mechanism, or SPIC.   
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(8) 

Note that this mechanism yields a probability distribution that reflects both private 

and public information.  Table 3 walks the reader through an example in which 

Equations (2), (6), and (8) are all used to aggregate information, with varying levels 

of success. 

Experimental Design 

In order to test this mechanism we conducted a number of experiments at Hewlett-

Packard Laboratories in Palo Alto, California.  The subjects were a mix of 

undergraduate and graduate students in economics and computer science at 

Stanford University and knew the experimental parameters discussed below, as they 

were part of the instructions and training for the sessions.  The instructions and 

quizzes can be found online at: 

http://www.hpl.hp.com/econexperiment/InfoExpte.htm. The five sessions were run 

with nine to eleven subjects in each.  Most students had participated in similar 

experiments some months earlier, which involved private information only.  By the 



final experiment, 90% of subjects were experienced. Table 4 details the percent of 

players with experience in each aggregation experiment. 

We implemented the two-stage mechanism in a laboratory setting.  Possible 

outcomes were referred to as states in the experiments.  There were ten possible 

states, A through J, in all the experiments.  Each had an Arrow-Debreu state security 

associated with it.  The information available to the subjects consisted of observed 

sets of random draws from a computerized urn, with replacement.  After privately 

drawing the state for the ensuing period, we created the virtual urn.  This urn had 

twelve entries (or balls), one for each of the ten possible states, plus an additional 

two for the true (preselected) state security.  Thus, it is slightly more likely to 

observe a ball for the true state than others.  

We allowed subjects to observe different number of draws from the urn in order to 

control the amount of information given to the subjects. A private draw is a draw 

from the urn which is shown to a single subject. A public draw was shown to multiple 

subjects. We used four variants on the information structure to ensure that the 

results obtained were robust.  In the first structure, we provide two private and two 

public draws to all participants. In this case, since a subject would observe 3 draws, 

he has relatively little information about the outcome. However, the a group of ten 

would have observed 22 (10*number of private draws + number of public draws) 

draws and knows quite precisely what the outcome should be.  

In the remaining experiments, all subjects received three private draws.  In one, 

they also received one public draw, in another, only half of the cohort received the 

public draw, and in the final treatment all players received a public draw, but there 

were two different public draws available.  Further details of the treatments can be 

found in Table 1. 

The information market we constructed consists of an artificial call market in which 

the securities are traded (described below).  The states are equally likely and 

randomly drawn.  If a state occurred, the associated state security paid off at a value 

of 1,000 francs.  Hence, the expected value of any given security, a priori, is 100 

francs.  Subjects were provided with some securities and francs at the beginning of 

each period. 



Each period consisted of six rounds, lasting 90 seconds each.  At the end of each 

round, the bids and asks were gathered and a market price and volume was 

determined.  We employed a market clearing condition, such that supply equals 

demand in each round.  No one sold an item for less than they asked for it, and no 

one paid more for an item than the offered to pay.  The price at which all items 

transacted was the average of the marginal bids.  The transactions were then 

completed and another call round began.  At the end of six trading rounds the period 

was over, the true state security was revealed, and subjects were paid according to 

the holdings of that security.  This procedure was then repeated in the next period, 

with no correlation between the states drawn in each period.  The market phase of 

the experiments consisted of six to nine periods. 

In the second-stage, every subject played under the same information structure as 

in the first stage, although the draws and the true states were independent from 

those in the first.  There are two parts to this game, described in the Identifying 

Public Information section above, which were referred to as the "What Do We All 

Know" (AK) and the "Make Your Best Bet" (MYBB) games.  Each period, the subjects 

received their draws of information, as in the market game.  They also received two 

sets of 100 tickets each, one set for AK, and one for MYBB.  We will discuss these 

two games in turn. 

In MYBB, the subjects were asked to distribute their tickets across the ten states 

with the constraint that all 100 tickets must be spent each period and that at least 

one ticket is spent on each state.  Since the fraction of tickets spent determines psi, 

this implies that psi is never zero.  The subjects were given a chart that told them 

how many francs they would earn upon the realization of the true state as a function 

of the number of tickets spent on the true state security.  The payoff was a linear 

function of the log of the percentage of tickets placed in the winning state as given 

by the first half of Equation (3).  The chart the subjects received showed the payoff 

for every possible ticket expenditure, and an excerpt from the chart is shown in 



Table 5.  The MYBB game is identical to the second stage played in Chen, Fine and 

Huberman (Chen et al 2001).  

We also played the matching game in this stage, known as AK.  In this stage, 

subjects received 100 tickets, but with a different goal.  They tried to guess the bets 

placed by someone else in the room.  After they placed the bets, they were matched 

to another player, one whose bets were most similar to theirs.  The more similar the 

bets were to their nearest match, the higher the reported "Percent Match with 

Partner."  The payoffs for any given ticket expenditure were higher in the AK game 

than the MYBB game, and are detailed in Table 5.  

Figure 1 shows a screenshot from the second stage of the game, which displays the 

bets placed in a sample Period 1.  As shown on the upper right, the true state was F.  

Following down the items reported in the upper right of the screen, we see that this 

player bet 20 tickets on F in the MYBB game, which has corresponds to a Possible 

Payout of 662 francs.  He was matched with a partner whose AK distribution of 

tickets matched his at a 49% level.  This partner bet enough tickets to have a 

Possible Payout of 178 francs.  Our sample player thus earned 662 francs for the 20 

tickets bet in the MYBB game, plus .49*178 = 87 francs for the AK game, for a total 

of 749 francs.  



Figure 1: Sample Page from Stage Two of the Experiment 

Possible 

States:  A  To  J  Period        1  

Drawing from a urn with replacement containing:  State        F  

3  balls for the true state  Total  Tickets on this State     20 

1  ball for each false state  Payoff  Percent Match with Partner  49  

|||  Private Information  749 Maximal Payoff from Partner 178  

>>>  Public Information     Payoff        749  

   MAKE YOUR BEST BET  WHAT DO WE ALL KNOW?  My Information  

State  

Number of 

Tickets  

Possible 

Payout  

Number of 

Tickets     State  Count    

A  20 662 10     A  1  |||  

B  3 264  5     B  0     

C  3  264  5     C  0     

D  3  264  5     D  0     

E  20  662  25     E  1  >>>  

F  20 662  10     F  1  |||  

G  3 264 5     G  0     

H  3  264  5     H  0     

I  20  662  25     I  1  >>>  

J  5  371  5     J  0     

   

Total Tickets 

Spent  100  

Total Tickets 

Spent  100           

 

Analysis 

In order to analyze these results we first calculate an omniscient probability 

distribution for each period using every observation that was available to the 

individuals.  This distribution is used as a limit-case benchmark.  That is, only a 

perfect information aggregation mechanism should be able to achieve this 

distribution.  We compare the resultant probabilities from information aggregation 

mechanisms to this benchmark by using the Kullback-Leibler measure (Kullback et al 



1952).  The Kullback-Leibler measure of two probability distributions p and q is given 

by:  

( ) 















=

q
pEqpKL p log,

 

 

(9) 

where p is the "true" distribution (in our case, the omniscient probability 

distribution). In the case of finite number of discrete states, the above Equation (9) 

can be rewritten as:  
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It can be shown that KL(p,q)=0 if and only if the two distributions being compared, p 

and q, are identical, and that KL(p,q) ≥ 0 for all probability distributions p and q. 

Therefore, the smaller the Kullback-Leibler number, the closer that two probabilities 

are to each other.  Furthermore, the Kullback-Leibler measure of the joint 

distribution of multiple independent events is the sum of the Kullback-Leibler 

measures of the individual events.  Since periods within an experiment were 

independent events, the sum or average (across periods) of Kullback-Leibler 

measures is a good summary statistic for an entire experiment. 

We compare five information aggregation mechanisms to the benchmark 

distributions.  In addition, we also report the Kullback-Leibler measures of the no 

information prediction (uniform distribution over all the possible states) and the best 

(most accurate) individual’s predictions.  The no information prediction serves as the 

first baseline to determine if any information is contained in our mechanism’s 

predictions.  Further, if a mechanism is really aggregating information, then it should 

be doing at least as well as the best individual.  Therefore, the predictions of the best 

individual in the experiment serve as the second baseline, which helps us to 

determine if information aggregation indeed occurred in the experiments. 

The first two information aggregation mechanisms we evaluate are the market 

prediction and the Chen, Fine, and Huberman (Chen et al 2001) mechanism in 

Equation (2).  We calculate the market prediction by using the last traded prices of 

the assets.  We use the last traded prices rather than the current round’s price 



because sometimes there was no trade in a given asset in a given round.  From 

these prices, we infer a probability distribution on the states.  The second 

aggregation mechanism is the original IAM, found in Equation (2).  Recall that this 

mechanism was designed on the assumption of no public information.  The purpose 

of its inclusion is to measure the performance degradation due to the double-

counting issue of inherent to the presence of public information. 

The third mechanism is our proposed improvement, referred to as the General Public 

Information Correction (GPIC) mechanism, given by Equation (6).  It uses both 

individuals’ reports of public information regarding outcomes as well as the 

individuals’ perceived probabilities of these outcomes.  If this mechanism is working 

as predicted by the theory, it should provide a superior outcome to that of the 

original IAM. 

As an additional benchmark the fourth mechanism, referred to as the Perfect Public 

Info Correction (PPIC), replaces individuals’ reports of public information with the 

true public information that they have observed.  Obviously, this is not possible in a 

realistic environment, since we do not know the true public information (or, this 

exercise would be pointless).  However, it allows us to validate the behavioral 

assumptions we make in the design of the mechanism.  Our model implicitly 

assumes that individuals aggregate their public and private information by a 

modified version of Bayes’ rule to arrive at their reports, and we can use this 

benchmark to validate this assumption.  

Lastly, we address the special case in which the experimenter knows that every 

individual receives the same public information.  This fifth mechanism, referred to as 

the Special Public Info Correction mechanism (SPIC), recovers the public information 

by using the reports of only the best two individuals to correct the public information 

bias in all participants’ reports.  

Results 

We start by reporting not only the result of our public information experiments, but 

those of the original Chen, Fine, and Huberman (Chen et al 2001) paper as well 

(Experiments 1 through 5 on Tables 1 and 2).  Recall that in these experiments, all 

information was independent and private.  As is shown in Table 1 and Table 2, once 

even a small amount of public information is introduced into the system 



(Experiments 6 through 10), the performance of the original IAM decreases 

dramatically.  In Figure 2 we illustrate the double counting issue before the GPIC 

modification.  In this figure, we plot the probability distributions generated by 

omniscience, the prediction from the original IAM and the available public 

information from a sample period (Experiment 8, period 9).  As one can see, using 

the original IAM results in a false peak at state H, which is the state on which public 

information was available.  In some cases, the double counting issue is so severe 

that the results are worse than that of the no information measure (see, for 

example, Experiments 6, 7 and 8).  Thus, this verifies the necessity to derive a 

method correcting for the biases introduced by public information. 

Figure 2: Illustration of the Double Counting Issue  
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Before we evaluate the public information mechanisms as a whole, we evaluate the 

accuracy of the AK game.  If this game is working as planned, the q
r

s reported by 

the players should mirror the true public information distributed to them.  

Empirically, we have found that reporting varies a great deal, with some players 

reporting almost exactly the public information they have been provided, and some 

reporting far flatter distributions.  In the experiments where there was more public 

information (two draws, as opposed to one), the KL between the true public 

information and the average report was 0.125.  Furthermore, if we use the SPIC, and 

only take the best pair for each experiment, the KL is 0.027, as opposed to 0.15 

were we to use a flat distribution instead. 



In Table 1 we summarize the relative performance, in terms Kullback-Leibler 

measures, of all of the benchmarks mechanisms enumerated above.  Table 2 reports 

the same results in terms of the percentage relative to the no information Kullback-

Leibler measure (indicating the level of improvement over this benchmark).  Note 

that the amount of aggregate information available in an experiment varied across 

the treatments.  Because the pure KL measure reported in is affected by the amount 

of underlying information, the percentage measurement in Table 2 are more useful 

when comparing results across experiments.  

The GPIC mechanism (Equation 6) outperforms the best single individual’s guesses 

reports in all five experiments.  It also outperforms the market prediction in four out 

of five experiments.  The GPIC mechanism uses the reports of public information of 

individuals to perform the correction.  As expected, this mechanism recovers enough 

public information to perform well compared to an information market.  However, 

there is room for improvement compared to the case where the true public 

information is used. 

To understand this inefficiency, let us assume that the information aggregator knows 

the true public information seen by every individual and applies the algorithm in 

Equation (8).  The accuracy of the results obtained (Perfect Public Info Correction, or 

PPIC) are almost as good as the performance of the original IAM mechanism in the 

private information case (Experiments 1 through 5).  Furthermore, this method 

outperforms any other method by a large margin.  Although this is not an 

implementable mechanism, since no one knows the true public information, it does 

show the correctness of our behavioral model as to how people mix private and 

public information is correct.  Therefore, there is validity in our approach to teasing 

out this public information in the GPIC. 

Figure 3 illustrates the efficacy of the GPIC.  In this figure, once again, the results 

from Experiment 8, period 9 are plotted.  The GPIC mechanism eliminates the false 

peak shown in Figure 2.  However, the correction is not perfect.  There is still some 

residual positive probability being placed on state H, the site of the false peak.  

When the PPIC is used to perform the correction, the false peak is completely 

eliminated.  

Figure 3: Information Aggregation with Public Information Correction 
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In addition to using KL numbers, we can judge an information aggregation process 

by evaluating how often the correct outcome is predicted.  For these purposes, we 

assume that the state with the highest probability weight is the mechanisms’ 

prediction.   

Table 6 looks at the public information experiments (experiments 6 to 10) and 

evaluates the frequency with which each mechanism correctly predicts the outcome. 

Notice that, because of the manner in which information is generated in the 

experiment, even using all the information will not result in perfect predictions every 

time.  The omniscient probability, which is calculated as if we have all the 

information in the experiments, predicts correctly an average of 74% of the time.  

Even if the mechanism were doing a perfect job, this would be the maximal accuracy 

level.  As one can see, the general method (GPIC) is accurate 47% of the time.   The 

SPIC predicts correctly 58% of the time. 

It is important to realize that while algorithms that explicitly aggregate private and 

public information are sensitive to the underlying information structures, markets are 

not.  In all the experiments, including the ones with only private information, the 

performance of the market, measured as a percentage of the no information KL, is 

fairly consistent, albeit somewhat inaccurate.  



It is interesting to note that if we assume that every individual receives the same 

public information, we may not need to use everyone’s report to recover public 

information, as described in the SPIC mechanism By searching for pairs with the best 

performance, we can achieve improvements over our GPIC.  However, these pairs 

were found ex post.  That is, we calculate the performance for every pair and then 

choose the best.  So, this extension shows merely the possibility of using pairs (or 

larger subgroups) to recover public information.  Simple intuitive ad hoc rules, such 

as choosing the pairs that are closest together in the KL sense, can find good pairs in 

some experiments.  We include the results from such an attempt in Table 1 and 

Table 2 as the Special Public Information Correction, or SPIC.  The issue of 

identifying subgroups to recover either public, or for that matter, private information 

is subject of future research. 

Conclusion and Extensions 

Accurate predictions are essential to individuals and organizations, and the ability to 

quickly gather, aggregate, and act on information is a key asset in today’s economy.  

For large communities, information relevant to forecasts is often dispersed across 

people, frequently in different geographical areas.  Our methodology addresses the 

needs for an implementable mechanism to aggregate this information accurately and 

with the correct incentives.  One can take past predictive performance of participants 

in information markets and create weighting schemes that will help predict future 

events, even if they are not the same event on which the performance was 

measured.  Furthermore, our two-stage approach can improve upon predictions by 

harnessing distributed knowledge in a manner that alleviates problems with low 

levels of participation.  It also mitigates the issues of redundant, public signals in a 

group.  

The rapid advances of information technologies and the understanding of information 

economics have opened up many new possibilities for applying mechanism design to 

gather and analyze information.  This paper discusses one such design and provides 

empirical evidence about its validity.  
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Table 1: Kullback-Leibler Numbers, by Experiment 

 Experimental Structure Kullback-Liebler Values (Standard Deviation) 

Expt Number of 
Players 

Private 
Info 

Public Info  No Info Market 
Prediction 

Best 
Player 

Original 
IAM 

General 
Public Info 
Correction 

Perfect 
Public Info 
Correction 

Special 
Public Info 
Correction 

1 13 3 draws 
for all 

None 1.977 
(0.312) 

1.222  
(0.650) 

0.844 
(0.599) 

0.553  
(1.057) 

N/A N/A N/A 

2 9 3 draws 
for all 

None 1.501 
(0.618) 

1.112  
(0.594) 

1.128 
(0.389) 

0.214  
(0.195) 

N/A N/A N/A 

3 11 ½: 5 
draws ½: 
1 draw 

None 1.689 
(0.576) 

1.053  
(1.083) 

0.876 
(0.646) 

0.414  
(0.404) 

N/A N/A N/A 

4 8 ½: 5 
draws ½: 
1 draw 

None 1.635 
(0.570) 

1.136  
(0.193) 

1.074 
(0.462) 

0.413  
(0.260) 

N/A N/A N/A 

5 10 ½: 3 
draws ½: 

varied 
draws  

None 1.640 
(0.598) 

1.371  
(0.661) 

1.164 
(0.944) 

0.395  
(0.407) 

N/A N/A N/A 

6 10 2 draws 
for all 

2 draws for 
all 

1.332 
(0.595) 

0.847  
(0.312) 

0.932 
(0.566) 

2.095  
(.196) 

0.825  
(0.549) 

0.279  
(0.254) 

0.327 
(0.247) 

7 9 2 draws 
for all 

2 draws for 
all 

1.420 
(0.424) 

0.979  
(0.573) 

0.919 
(0.481) 

2.911  
(2.776) 

0.798  
(0.532) 

0.258  
(0.212) 

0.463 
(0.492) 

8 11 3 draws 
for all 

1 draws for 
all 

1.668 
(0.554) 

1.349  
(0.348) 

1.033 
(0.612) 

2.531  
(1.920) 

0.718  
(0.817) 

0.366  
(0.455) 

0.669 
(0.682) 

9 10 3 draws 
for all 

½: 1 draw 1.596 
(0.603) 

0.851  
(0.324) 

1.072 
(0.604) 

0.951  
(1.049) 

0.798  
(0.580) 

0.704  
(0.691)  

0.793 
(0.706) 

10 10 3 draws 
for all 

1 draws for 
all 

2 sets of 
public info 

1.528 
(0.600) 

0.798  
(0.451) 

 1.174 
(0.652) 

0.886  
(0.763) 

1.015  
(0.751) 

0.472  
(0.397) 

0.770 
(0.638) 

 



 

Table 2: Percentage of No-Info Kullback-Leibler Numbers, by Experiment 

 Experimental Structure Kullback-Liebler Values, as a Percent of the No Info Case 

Expt Number of 
Players 

Private 
Info 

Public Info No Info Market 
Prediction 

Best 
Player 

Original 
IAM 

General 
Public Info 
Correction 

Perfect 
Public Info 
Correction 

Special 
Public Info 
Correction 

1 13 3 draws 
for all 

None 100% 61.8% 42.7% 28.0% N/A N/A N/A 

2 9 3 draws 
for all 

None 100% 74.1% 75.2% 14.3% N/A N/A N/A 

3 11 ½: 5 
draws ½: 
1 draw 

None 100% 62.3% 51.9% 24.5% N/A N/A N/A 

4 8 ½: 5 
draws ½: 
1 draw 

None 100% 69.5% 65.7% 25.3% N/A N/A N/A 

5 10 ½: 3 
draws ½: 

varied 
draws 

None 100% 83.6% 71.0% 24.1% N/A N/A N/A 

6 10 2 draws 
for all 

2 draws for 
all 

100% 63.6% 70.0% 157.3% 61.94% 20.94% 24.53% 

7 9 2 draws 
for all 

2 draws for 
all 

100% 69.0% 64.7% 205.0% 56.2% 18.2% 32.6% 

8 11 3 draws 
for all 

1 draws for 
all 

100% 80.9% 61.9% 151.7% 43.0% 22.0% 40.1% 

9 10 3 draws 
for all 

½: 1 draw 100% 53.3% 67.1% 59.6% 50.0% 44.1% 49.7% 

10 10 3 draws 
for all 

1 draws for 
all 

2 sets of 
public info 

100% 52.2% 76.9% 57.9% 66.4% 30.9% 50.4% 

 



 

Table 3: Example demonstrating the Aggregation Mechanisms 

Private Signals  Probability Predictions, by Player  
  State A State B State C    State A State B State C  

Player 1            -               2             1  Player 1 p 40% 40% 20%  
Player 2            -               1             2  Player 2 p 40% 20% 40%  
             

Public Signals  Player 1 q 70% 15% 15%  
   State A   State B   State C   Player 2 q 50% 25% 25%  

Player 1             2            -              -         
Player 2             2            -              -         
          

Total Signals       
   State A   State B   State C        

Omniscient signal             2             3             3       
Omniscient Prob. 25% 38% 38%       
          

  
Private Info. Mechanism  

(Eq. 1) 
General Public Info. 
Mechanism (Eq. 5) 

Special Public Info. 
Mechanism    (Eq. 7) 

Player 1's • P(A) P (B) P (C) P(A) P (B) P (C) P(A) P (B) P (C) 

0.2 46% 13% 40% 15% 21% 64% 29% 18% 54% 
0.4 48% 16% 36% 14% 26% 60% 28% 22% 50% 
0.6 49% 19% 32% 13% 32% 55% 27% 26% 46% 
0.8 50% 22% 29% 11% 38% 51% 26% 32% 42% 
1.0 50% 25% 25% 10% 45% 45% 25% 38% 38% 
1.2 50% 29% 22% 8% 52% 40% 23% 44% 33% 
1.4 49% 32% 19% 7% 59% 34% 21% 50% 29% 
1.6 48% 36% 16% 6% 66% 29% 19% 56% 25% 
1.8 46% 40% 13% 4% 72% 24% 17% 62% 21% 
2.0 44% 44% 11% 4% 77% 19% 15% 68% 17% 
 



Table 4: Percent of Participants with Experience, by Experiment 

Expt 
% 

Inexperienced 

%Experienced in 
Private Info. 
Treatment 

% Experienced in 
Public Info. 
Treatment 

%Experienced in 
Either Treatment 

1 100% 0% 0% 0% 
2 62% 38% 0% 38% 
3 78% 22% 0% 22% 
4 45% 55% 0% 55% 
5 50% 50% 0% 50% 
6 70% 30% 0% 30% 
7 56% 0% 44% 44% 
8 27% 9% 64% 73% 
9 40% 10% 50% 60% 
10 10% 20% 70% 90% 

 
 



Table 5: Excerpt from Payoff Chart used in the MYBB Game 

Number of Tickets Possible Payoff in 
MYBB Game 

Possible Payoff in 
AK Game 

 Number of Tickets Possible Payoff in 
MYBB Game 

Possible Payoff in 
AK Game 

1 33 -1244  50 854 1515 

10 516 388  60 893 1642 

20 662 873  70 925 1750 

30 747 1157  80 953 1844 

40 808 1359  90 978 1926 

 
 
 
 



Table 6: Percent Accuracy of Information Mechanisms, by Experiment 

 
Expt. Omniscience GPIC PPIC SPIC 

6 86% 45% 68% 77% 
7 67% 38% 52% 52% 
8 78% 67% 83% 61% 
9 70% 40% 55% 45% 
10 70% 43% 61% 57% 



 

Appendix I 
 

 
Consider the following game. 
 
There are M players facing an uncertain world. There are N possible states of the 
world. Each player receives information about the likelihood of possible states. There 
are two types of information: private and public. Each player is asked to report two 
probability distributions and their payoff in the game depends on these reports. 
 
Definitions and notations: 
 

• A set of players indexed by i={1,…,M} 
• A set of possible outcomes (states) S={s1,…,sN} 
 
• Oi

priv private information of player i 
 
• Oi

pub
 public information of player i. Public information is defined as information 

observed by more than one player. 
 

• P(s|O) denotes the conditional probabilities of outcome s conditioned on 
information O.  

 
 
The Game 
 

• Stage one: Each player observes his or her information (private & public) 
• Stage two: Each player is asked to report two probability distributions 

ip
r ={p1i,p2i,…pNi} and iq

r ={q1i,q2i,…qNi} with the constraints ∑
=

=
N

s
sip

1
1 and 

∑
=

=
N

s
siq

1
1 , and qsi>ε for all i (where ε is a small number chosen to bound the 

payoff away from negative infinity) 
 
• Stage three: The true state, x ε S is revealed and each player is paid  
 

P=c1+c2*log(pxi)+f( iq
r

, jq
r

)*(c3+c4*log(qxj)) 

With the following conditions: 

Condition F1: )y,x(f rr
 is maximal when xs=ys for all s   

Condition F2: c2 and c3 are positive real numbers. 

Condition F3: c1 and c4 are non-negative real numbers. 

Condition F4: j is chosen such that j = 
k
maxarg  f( iqr , kqr ) 

Condition F5: c3 and c4 are chosen such that [c3+c4*log(ε)]>0 



Note: The specific functional form 

2

2/1),( 















−−= ∑

s
ss yxyxf rr

is used in 

the experiments. However, any continuously differentiable function that 

satisfies condition (F1) will be sufficient for the results derived below. 

 

 
Assumptions about information: 
 

Assumption A1: P(s|Oi) = P(s|Oi
priv) P(s|Oi

pub) for all i,s 

Assumption A2: P(s|Oi
priv and Oj

priv) = P(s|Oi
priv) P(s| Oj

priv) for all i,j,s 

Assumption A3: There exists a j for every i such that Oi
pub = Oj

pub 

Assumption A4: All individuals know their P(s|Oi
priv) and P(s|Oi

pub) 

 
Lemma 1: { ip

r
= P(s|Oi

priv and Oi
pub) , iq

r
=P(s|Oi

pub) for all s,i} is a Bayesian Nash 

equilibrium. That is, each player will report as ip
r

 his true conditional probability 

beliefs and as iq
r  the beliefs conditioned solely on his public information.  

 
Proof: 
 
Assume all players but i are playing an equilibrium strategy.  Player i’s 
maximization problem is  
 

{ }
{ }∑

=

++
=

N

sqp N
sisis

Max
1

jsjiis21
pub
i

priv
i

,
))log(q*c4+(c3*) q,qf()log(pcc )O and O |P(s

1

rr
           

s.t. ∑
=

=
N

1s
is 1p  and ∑

=

=
N

1s
is 1q . 

 
There will be at least one other player j that plays qj= P(s| Oipub),  since at least 
one player other than i observes the same public information and arrives at the 
same distribution Qi. 
 
The resulting Lagrangian is  
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The first order condition is λ=
sip

)O and O |P(s pub
i

priv
i  for all i, which implies  

P(s|Oi
priv and Oi

pub)=λpsi 
 
Summing over both sides, we get 1=λ . Thus psi= P(s| Oi

priv and Oi
priv)  for all i. 

 
Rewriting the terms in the payoff functions that depends on qsi, we have: 
 

∑
=

N

s 1
sj43

pub
i

priv
iji ))log(q*c+(c )O and O |P(s) q,qf(

rr
 

 
Recalling condition (F1), iq

r
= P(s| Oi

pub) maximizes f(qi, P(s| Oi
pub)). So all we 

need to show is ∑
=

N

s 1
js43

pub
i

priv
i ))log(q*c+(c )O and O |P(s ≥ 0. 

Using condition (F5):  
 

c3+c4*log(ε)>0, implies 
c3+c4*log(qsj)>0 for all j,s since qjs ≥ ε, therefore 

∑
=

N

s 1
sj43

pub
i

priv
i ))log(q*c+(c )O and O |P(s ≥ 0 since P(s| Oi

priv and Oi
priv) ≥ 0   

 
QED. 
 

 
 
Lemma 2:  There are multiple equilibria to this game. 

The same proof applies to : { ip
r

= P(s|Oi
priv and Oi

priv) , iq
r

=P(s|Oi
pub) =

N
1

 for all 

s,i} or for that matter, any set of iq
r

 on which players coordinate. 
 



 
Footnotes 

 
 

  

                                                
i Notable exceptions:  The Iowa Electronic Market (http://www.biz.uiowa.edu/iem/ ) 
has shown that political events can be accurately predicted using markets when they 
are large enough.  Their predictions have consistently been more accurate than 
those resulting from major news polls.  Additionally, recent work by Pennock, 
Lawrence, Giles and Nielsen (Pennock et al 2000) show that the Hollywood Stock 
Exchange (HSX) does a remarkable job of predicting box office revenues and Oscar 
winners.  However, both of these institutions have many traders, while we focus on 
systems with small number of participants (fewer than 15). 
 


